請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81815完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳億乘(Yi-Chen Chen) | |
| dc.contributor.author | Samuel Yi-Hsieng Wu | en |
| dc.contributor.author | 吳奕賢 | zh_TW |
| dc.date.accessioned | 2022-11-25T03:04:14Z | - |
| dc.date.available | 2026-07-30 | |
| dc.date.copyright | 2021-08-20 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-03 | |
| dc.identifier.citation | Abebe, W. Mozaffari, M. S. (2011). Role of taurine in the vasculature: an overview of experimental and human studies. American Journal of Cardiovascular Disease, 1, 293-311. Adedara, I. A., Alake, S. E., Adeyemo, M. O., Olajide, L. O., Ajibade, T. O., Farombi, E. O. (2018). Taurine enhances spermatogenic function and antioxidant defense mechanisms in testes and epididymis of L-NAME-induced hypertensive rats. Biomedicine Pharmacotherapy, 97, 181-189. Adibi, S. A. Mercer, D. W. (1973). Protein digestion in human in intestine as reflected in luminal, mucosal, and plasma amino acid concentrations after meals. Journal of Clinical Investigation, 52, 1586-1594. Albracht-Schulte, K., Kalupahana, N. S., Ramalingam, L., Wang, S., Rahman, S. M., Robert-McComb, J., Moustaid-Moussa, N. (2018). Omega-3 fatty acids in obesity and metabolic syndrome: mechanistic update. Journal of Nutritional Biochemistry, 58, 1-16. Aloysius, T. A., Carvajal, A. K., Slizyte, R., Skorve, J., Berge, R. K., Bjørndal, B. (2019). Chicken protein hydrolysates have anti-Inflammatory effects on high-fat diet induced obesity in mice. Medicines, 6, 5. Alsabeeh, N., Chausse, B., Kakimoto, P. A., Kowaltowski, A. J., Shirihai, O. (2018). Cell culture models of fatty acid overload: problems and solutions. BBA-Molecular and Cell Biology of Lipids, 1863, 143-151. Al-Sawalha, N. A., Alshogran, O. Y., Awawdeh, M. S., Almomani, B. A. (2019). The effects of L-carnosine on development of metabolic syndrome in rats. Life Sciences, 237, 116905. Al-Shamsi, K. A., Mudgil, P., Hassan, H. M., Maqsood, S. (2018). Camel milk protein hydrolysates with improved techno-functional properties and enhanced antioxidant potential in vitro and in vivo food model systems. Journal of Dairy Science, 101, 47-60. Amalraj, A., Jude, S., Sukumaran, N. P., Gopi, S. (2019). Nanomaterials in nutraceutical and phytonutrient industries. In Thomas, S., Grohens, Y., Pottathara, Y. B. (Eds.), Industrial applications of nanomaterials (pp. 441-474). Elsevier Inc. Ambade, A. Mandrekar, P. (2012). Oxidative stress and inflammation: essential partners in alcoholic liver disease. International Journal of Hepatology, Article ID 853175. Andersen, M. E., Clewel III, H. J., Gearhart, J., Allen, B. C., Barton, H. A. (1997). Pharmacodynamic model of the rat estrus cycle in relation to endocrine disruptors. Journal of Toxicology and Environmental Health, 52, 189-209. Andrikopoulos, S., Blair, A. R., Deluca, N., Fam, C., Proietto, J. (2008). Evaluating the glucose tolerance test in mice. American Journal of Physiology-Endocrinology and Metabolism, 295, E1323-1332. Añibarro-Ortega, M., Pinela, J., Ćirić, A., Martins, V., Rocha, F., Soković, M. D., Barata, A. M., Carvalho, A. M., Barros, L., Ferreira, I. C. F. R. (2020). Valorisation of table tomato crop by-products: phenolic profiles and in vitro antioxidant and antimicrobial activities. Food and Bioproducts Processing, 124, 307-319. Appendini, P., Hotchkiss, J. H. (2000). Antimicrobial activity of a 14-residue synthetic peptide aöainst foodborne microorganisms. Journal of Food Protection. 63, 889-893. Araminia, B., Shalbafan, M., Mortezaei, A., Shirazi, E., Ghaffari, S., Sahebolzamani, E., Mortazavi, S. H., Shariati, B., Ardebili, M. E., Aqamolaei, A., Naderi, S., Akhondzadeh, S. (2020). L-carnosine combination therapy for major depressive disorder: a randomized, double-blind, placebo-controlled trial. Journal of Affective Disorders, 267, 131-136. Arduini, A. (1992). Carnitine and its acetyl esters as secondary antioxidants. American Heart Journal, 123, 1726-1727. Armstrong, N. J., Hull, D., Guo, K., Barton, D., Hazlehurst, J. M., Gathercole, L. L., Nasiri, M., Yu, J., Gough, S. C., Newsome, P. N., Tomlison, J. W. (2016). Glucagon-like peptide 1 decreases lipotoxicity in nonalcoholic steatohepatitis. Journal of Hepatology, 64, 399-408. Arulsevan, P., Fard, M. T., Tan, W. S., Gothai, S., Fakurazi, S., Norhaizan, M. E., Kumar, S. S. (2016). Role of antioxidants and natural products in inflammation. Oxidative Medicine and Cellular Longevity, Article ID 5276130. Asgary, S., Karimi, R., Momtaz, S., Naseri, R., Farzaei, M. H. (2019). Effect of resveratrol on metabolic syndrome components: a systematic review and meta-analysis. Reviews in Endocrine and Metabolic Disorders, 20, 173-186. Association of Official Analytical Chemists (AOAC). (2019). Official Methods of Analysis (21st ed.). AOAC International. Assy, N., Nassar, F., Nassar, G., Grosovski, M. (2009). Olive oil consumption and nonalcoholic fatty liver disease. World Journal of Gastroenterology, 15, 1809-1815. Asoodeh, A., Homayouni-Tabrizi, M., Shabestarian, H., Emtenani, S., Emtenani, S. (2016). Biochemical characterization of a novel antioxidant and angiotensin I-converting enzyme inhibitory peptide from Struthio camelus egg white protein hydrolysis. Journal of Food and Drug Analysis, 24, 332-342. Azhdari, M., Karandish, M., Mansoori, A. (2019). Metabolic benefits of curcumin supplementation in patients with metabolic syndrome: a systemic review and meta-analysis of randomized controlled trials. Phytotherapy Research, 33, 1289-1301. Badi, R. M., Mostafa, D. G., Khaleel, E. F., Satti, H. H. (2019). Resveratrol protects against hepatic insulin resistance in a rat’s model of nonalcoholic fatty liver disease by down-regulation of GPAT-1 and DGAT2 expression and inhibition of PKC membranous translocation. Clinical and Experimental Pharmacology and Physiology, 46, 545-555. Balcik Misir, G., Koral, S. (2019). Effects of edible coatings based on ultrasound treated fish proteins hydrolysate in quality attributes of chilled bonito fillets. Journal of Aquatic Food Product Technology, 28, 999-1012. Bali, J., Greene, E., Li, W., Kidd, M. T., Dridi, S. (2015). Branched-chain amino acids modulate the expression of hepatic fatty acid metabolism-related genes in female broiler chickens. Molecular Nutrition Food Research, 59, 1171-1181. Banejee, S. Poddar, M. K. (2020). Carnosine research in relation to aging brain and neurodegeneration: a blessing for geriatrics and their neuronal disorders. Archives of Gerontology and Geriatrics, 91, 104239. Barone, R., Pauwels, S., De Camps, J., Krenning, E. P., Kvols, L. K., Smith, M. C., Bouterfa, H., Devuyst, O., Jamar, F. (2004). Metabolic effects of amino acid solutions infused for renal protection during therapy with radiolabeled somatostatin analogues. Nephrology Dialysis Transplantation, 19, 2275-2281. Bassols, J., Martínez-Calcerrada, J., Osiniri, I., Díaz-Roldán, F., Xargay-Torrent, S., Mas-Parés, B., Dorado-Ceballos, E., Prats-Puig, A., Carreras-Badosa, G., Zegher, F., Ibáñez, L., López-Bermejo, A. (2019). Effects of metformin administration on endocrine-metabolic parameters, visceral adiposity and cardiovascular risk factors in children with obesity and risk markers for metabolic syndrome: a pilot study. PLOS ONE, 14, e0226303. Beigh, S. H. Jain, S. (2012). Prevalence of metabolic syndrome and gender differences. Biomedical Informatics, 8, 613-616. Bennett, A., Billett, M. A., Salter, A. M., Mangiapane, E. H., Bruce, J. S., Anderton, K. L., Marenah, C. B., Lawson, N., White, D. A. (1995). Modulation of hepatic apolipoprotein B, 3-hydroxy-3-methylglutaryl-CoA reductase and low-density lipoprotein receptor mRNA and plasma lipoprotein concentrations by defined dietary fats. Biochemical Journal, 311, 167-173. Bian, Y., Zhang, M., Wang, K. (2018). Taurine protects against knee osteoarthritis development in experimental rat models. The Knee, 25, 374-380. Bird, S. R. Hawley, J. A. (2017). Update on the effects of physical activity on insulin sensitivity in humans. BMJ Open Sport Exercise Medicine, 2, e000143. Bonanome, A. Grundy, S. M. (1988). Effect of dietary stearic acid on plasma cholesterol and lipoprotein levels. The New England Journal of Medicine, 318, 1244-1248. Borrajo, P., López-Pedrouso, M., Franco, D., Pateiro, M., Lorenzo, J. M. (2020). Antioxidant and antimicrobial activity of porcine liver hydrolysates using flavourzyme. Applied Science, 10, 3950. Brainard, R. E., Watson, L. J., DeMartino, A. M., Brittian, K. R., Readnower, R. D., Boakye, A. A., Zhang, D., Hoetker, J. D., Bhatnagar, A., Baba, S. P., Jones, S. P. (2013). High fat feeding in mice is insufficient to induce cardiac dysfunction and does not exacerbate heart failure. PLOS ONE, 8, e83174. Bruckbauer, A., Zemel, M. B., Thorpe, T., Akula, M. R., Stuckey, A. C., Osborne, D., Martin, E. B., Kennel, S., Wall, J. (2012). Synergistic effects of leucine and resveratrol on insulin sensitivity and fat metabolism in adipocytes and mice. Nutrition Metabolism, 9, 77. Buettner, R., Schölmerich, J., Bollheimer, L. C. (2007). High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity, 15, 798-808. Bugianesi, E., Gastaldelli, A., Vanni, E., Gambino, R., Cassader, M., Baldi, S., Ponti, V., Pagano, G., Ferrannini, E., Rizzetto, M. (2005). Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms. Diabetologia, 48, 634–642. Burton, E. J., Scholey, D. V., William, P. E.V. (2014). Type, properties and processing of bio-based animal feed. In Waldorn, K. (Eds.), Advance in Biorefineries (pp. 771-802). Woodhead Publishing Limited. Butterworth, R. F. Canbay, A. (2019). Hepatoprotection by L-ornithine L-aspartate in non-alcoholic fatty liver disease. Digestive Diseases, 37, 63–68. Campos-Ferraz, P., Bozza, T., Nicastro, H., Lancha, A. H. (2013). Distinct effects of leucine or a mixture of the branched-chain amino acids (leucine, isoleucine, and valine) supplementation on resistance to fatigue, and muscle and liver-glycogen degradation, in trained rats. Nutrition, 29, 1388-1394. Campos, I., Valente, L. M. P., Matos, E., Marques, P., Freire, F. (2020). Life-cycle assessment of animal feed ingredients: poultry fat, poultry by-product meal and hydrolyzed feather meal. Journal of Cleaner Production, 252, 119845. Cao, Y., Xu, J., Cui, D., Liu, L., Zhang, S., Shen, B., Wu, Y., Zhang, Q. (2021). Protective effect of carnosine on hydrogen peroxide-induced oxidative stress in human kidney tubular epithelial cells. Biochemical and Biophysical Research Communications, 534, 576-582. Cariou, B., Byrne, C. D., Loomba, R., Sanyal, A. j. (2021). Nonalcoholic fatty liver disease as a metabolic disease in humans: a literature review. Diabetes, Obesity and Metabolism, 2021, 1-15. Carrillo, W., Guzmán, X., Vilcacundo, E. (2017). Native and heated hydrolysates of milk proteins and their capacity to inhibit lipid peroxidation in the zebrafish larvae model. Foods, 6, 81. Caruso, G., Caraci, F., Jolivet, R. B. (2019). Pivotal role of carnosine in the modulation of brain cells activity: multimodal mechanism of action and therapeutic potential in neurodegenerative disorders. Progress in Neurobiology, 175, 35-53. Carvalho, F. G. D., Brandao, C. F. C., Batitucci, G., Souza, A. O., Ferrari, G. D., Alberici, L. C., Mouñoz, V. R., Pauli, J. R., Moura, L. P. D., Ropelle, E. R., Silva, A. S. R., Junqueira-Franco, M. V. M., Marchini, J. S., Freitas, E. C. (2021). Taurine supplementation associates with exercise increases mitochondrial activity and fatty oxidation gene expression in the subcutaneous white adipose tissue of obese women. Clinical Nutrition, 40, 2180-2187. Casarotti, S. N., Borgonovi, T. F., Tieghi, T. M., Sivieri, K., Penna, A. L. B. (2020). Probiotic low-fat fermented goat milk with passion fruit by-product: in vitro effect on obese individual’s microbiota and on metabolites production. Food Research International, 136, 109453. Casaschi, A., Maiyoh, G. K., Adeli, K., Theriault, A. G. (2005). Increased diacylglycerol acyltransferase activity is associated with triglyceride accumulation in tissues of diet-induced insulin-resistance hyperlipidemic hamsters. Metabolism Clinical and Experimental, 54, 403-409. Caviglia, J. M., Gayet, C., Ota, T., Hernandez-Ono, A., Conlon, D. M., Jiang, H., Fisher, E. A., Ginberg, H. N. (2011). Different fatty acids inhibit apoB 100 secretion by different pathways: unique roles for ER stress, ceramide, and autophagy. Journal of Lipid Research, 52, 1636-1651. Centers for Disease Control and Prevention (CDC), (2015). National Diabetes Statistics Report 2020. Retrieved from https://www.cdc.gov/diabetes/data/statistics-report/risks-complications.html. Accessed April 12, 2021 Chang, J. J., Hsu, M. J., Huang, H. P., Chung, D. J., Chang, Y. C., Wang, C. J. (2013). Mulberry anthocyanins inhibit oleic acid induced lipid accumulation by reduction of lipogenesis and promotion of hepatic lipid clearance. Journal of Agricultural and Food Chemistry, 61, 6069-6076. Chang, R., Chou, M. C., Hung, L. Y., Wang, M. E., Hsu, M. C., Chiu, C. H. (2016). Study of valproic acid-enhanced hepatocyte steatosis. BioMed Research International, Article ID 9576503. Chang, Y. C., Liu, H. W., Chen, Y. T., Chen, Y. A., Chen, Y. J., Chang, S. J. (2018). Resveratrol protects muscle cells against palmitate-induced cellular senescence and insulin resistance through ameliorating autophagic flux. Journal of Food and Drug Analysis, 26, 1066-1074. Chang, Y. H., Chen, Y. L., Huang, W. C., Liou, C. J. (2018). Fucoxanthin attenuates fatty acid-induced lipid accumulation in FL83B hepatocytes through regulated Sirt1/AMPK signaling pathway. Biochemical and Biophysical Research Communications, 495, 197-203. Chang, Y. Y., Chou, C. H., Chiu, C. H., Yang, K. T., Lin, Y. L., Weng, W. L., Chen, Y. C. (2011). Preventive effects of taurine on development of hepatic steatosis induced by a high-fat/cholesterol dietary habit. Journal of Agricultural and Food Chemistry, 59, 450-457. Chang, Y. Y., Lin, Y. L., Yang, D. J., Liu, C. W., Hsu, C. L., Tzang, B. S., Chen, Y. C. (2013). Hepatoprotection of noni juice against chronic alcohol consumption: lipid homeostasis, antioxidation, alcohol clearance, and anti-inflammation. Journal of Agricultural and Food Chemistry, 61, 11016-11024. Che, Y., Wang, Z. P., Yuan, Y., Zhang, N., Jin, Y. G., Wan, C. X., Tang, Q. Z. (2018). Role of autophagy in a model of obesity: a long‑term high fat diet induces cardiac dysfunction. Molecular Medicine Reports, 18, 3251-3261. Chen, C., Xia, S., He, J., Lu, G., Xie, Z., Han, H. (2019). Roles of taurine in cognitive function of physiology, pathologies and toxication. Life Science, 231, 116584. Chen, H. M., Muramoto, K., Yamauchi, F. (1995). Structural analysis of antioxidative peptides from soybean β-conglycinin. Journal of Agricultural and Food Chemistry, 43,574-578. Chen, H. M., Muramoto, K., Yamauchi, F., Fujimoto, K., Nokihara, K. (1998). Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. Journal of Agricultural and Food Chemistry, 46, 49-53. Chen, J. W., Kong, Z. L., Tsai, M. L., Lo, C. Y., Ho, C. T., Lai, C. S. (2018). Tetrahydrocurcumin ameliorates free fatty acid-induced hepatic steatosis and improves insulin resistance in HepG2 cells. Journal of Food and Drug Analysis, 26, 1075-1085. Chen, L., Liao, W., Fang, J., Qin, S., Lu, X., Wu, J. (2020). Purification and identification of angiotensin II type I receptor downregulating peptide from egg white hydrolysate. Journal of Food Biochemistry. 44, e13220. Chen, M., Singh, A., Xiao, F., Dringenberg, U., Wang, J., Engelhardt, R., Yeruva, S., Rubio-Aliaga, I., Nässl, AM., Kottra, G., Daniel, H., Seidler, U. (2010). Gene ablation for PEPT1 in mice abolishes the effects of dipeptides on small intestinal fluid absorption, short-circuit current, and intracellular pH. American Journal of Physiology-Gastrointestinal and Liver Physiology 299, G265-274. Chen, P. J., Tseng, J. K., Lin, Y. L., Wu, Y. H. S., Hsiao, Y. T., Chen, J. W., Chen, Y. C. (2017). Protective effects of functional chicken liver hydrolysates against liver fibrogenesis: antioxidation, anti-inflammation, and antifibotsis. Journal of Agricultural and Food Chemistry, 65, 4961-4969. Chen, X., Jiang, D., Xu, P. P., Geng, Z. M., Xiong, G. Y., Zou, Y., Wang, D. Y., Xu, W. M. (2021). Structural and antimicrobial properties of Maillard reaction products in chicken liver protein hydrolysate after sonication. Food Chemistry, 343, 128417. Chen, X., Zou, Y., Wang, D., Xiong, G., Xu, W. (2020). Effects of ultrasound pretreatment on the extent of Maillard reaction and the structure, taste and volatile compounds of chicken liver protein. Food Chemistry, 331, 127369. Chen, Y. C., Chen, P. J., Tai, S. Y. (2018). Composition of chicken liver hydrolysates and method for improving alcohol metabolism, as well as preventing and treating liver fibrosis. Inventor; National Taiwan University, assignee. USA patent: US10,105,400B2. Oct. 23, 2018. Cho, Y., Kim, R. H., Park, H., Wang, H. J., Lee, H., Kang, E. S. (2020). Effect of Ezetimibe on glucose metabolism and inflammatory markers in adipose tissue. Biomedicines, 8, 512. Choi, J. K., Ho, J., Curry, S., Qin, D., Bittman, R., Hamilton, J. A. (2002). Interactions of very long-chain saturated fatty acids with serum albumin. Journal of Lipid Research, 43, 1000-1010. Chou, C. H., Wang, S. Y., Lin, Y. T., Chen, Y. C. (2014). Antioxidant activities of chicken liver hydrolysates by pepsin treatment. International Journal of Food Science Technology, 49, 1654-1662. Coleman, K. J., Huang, Y. C., Koebnick, C., Reynolds, K., Xiang, A. H., Black, M. H., Alskaf, S. (2014). Metabolic syndrome is less likely to resolve in Hispanics and non-Hispanic blacks after bariatric surgery. Annals of Surgery, 259, 279-285. Cooke, A. A., Connaughton, R. M., Lyons, C. L., McMorrow, A. M., Roche, H. M. (2016). Fatty acids and chronic low-grade inflammation associated with obesity and the metabolic syndrome. European Journal of Pharmacology, 785, 207-214. Cooper, M. A., Menta, B. W., Perez-Sanchez, C., Jack, M. M., Khan, Z. W., Ryals, J. M., Winter, M., Wright, D. E. (2018). A ketogenic diet reduced metabolic syndrome-induced allodynia and promotes peripheral nerve growth in mice. Experimental Neurology, 306, 149-157. Council of Agriculture (COA), Executive Yuan, Taiwan. Agricultural Production: 2. Livestock Production, 2020. Available at https://eng.coa.gov.tw/ws.php?id=2505611. Accessed November 17, 2020 Courten, B., Jakubova, M., Courten, M. P. J., Kukurova, I. J., Vallova, S., Krumpole, P., Valkovic, L., Kurdiova, T., Garzon, D., Barbaresi, S., Teede, H., Derave, W., Krssak, M., Aldini, G., Ukropec, J., Ukropcova, B. (2016). Effects of carnosine supplementation on glucose metabolism: pilot clinical trial. Obesity, 24, 1027-1034. Couteur, D. G., Solon-Biet, S. M., Cogger, V. C., Ribeiro, R., Cabo, R., Raubenheimer, D., Coonry, G. J., Simpson, S. J. (2020). Branched-chain amino acids, aging and age-related health. Ageing Research Reviews, 64, 101198. Cruz-Teno, C., Pérez-Martínez, P., Delgado-Lista, J., Yubero-Serrano, E. M., García-Ríos, A., Marín, C., Gómez, P., Jiménez-Gómez, Y., Camargo, A., Rodríguez-Cantalejo, F., Malagón, M. M., Pérez- Jiménez, F., Roche, H. M., López-Miranda, J. (2012). Dietary fat modifies the postprandial inflammatory state in subjects with metabolic syndrome: the LIPGENE study. Molecular Nutrition Food Research, 56, 854-865. Dalmasso, G., Nguyen, H. T., Yan, Y., Charrier-Hisamuddin, L., Sitaraman, S. V., Merlin, D. (2008). Butyrate transcriptionally enhances peptide transporter PepT1 expression and activity. PLoS One. 3, e2476. D'Antona, G., Ragni, M., Cardile, A., Tedesco, L., Dossena, M., Bruttini, F., Caliaro, F., Corsetti, G., Bottinelli, R., Carruba, M. O., Valerio, A., Nisoli, E. (2010). Branched-chain amino acid supplementation promotes survival and supports cardiac and skeletal muscle mitochondrial biogenesis in middle-aged mice. Cell Metabolism, 12, 362–372. Da Rocha, M., Alemán, A., Romani, V. P., López-Caballero, M. E., Gómez-Guillén, M. C., Montero, P., Prentice, C. (2018). Effects of agar films incorporated with fish protein hydrolysate or clove essential oil on flounder (Paralichthys orbignyanus) fillets shelf-life. Food Hydrocolloids, 81, 351-363. Da Silva Malheiros, P., Sant’Anna, V., Utpott, M., Brandelli, A. (2012). Antilisterial activity and stability of nanovesicle-encapsulated antimicrobial peptide P34 in milk. Food Control. 23, 42-47. Dávalos, A., Miguel, M., Bartolomé, B., López-Fandiño, R. (2004). Antioxidant activity of peptides derived from egg white proteins by enzymatic hydrolysis. Journal of Food Protection, 67, 1939-1944. Dayanandan, A., Kumar, P., Panneerselvam, C. (2001). Protective role of L-carnitine on liver and heart lipid peroxidants in atherosclerotic rats. Journal of Nutritional Biochemistry, 12, 254-257. Dekkers, E., Raghavan, S., Kristinsson, H. G., Marshall, M. R. (2011). Oxidative stability of mahi mahi red muscle dipped in tilapia protein hydrolysates. Food Chemistry. 124, 640-645. Denroche, H. C., Levi, J., Wideman, R. D., Sequeira, R. M., Huynh, F. K., Covey, S. D., Kieffer, T. J. (2011). Leptin therapy reverses hyperglycemia in mice with streptozotocin-induced diabetes, independent of hepatic leptin signaling. Diabetes, 60, 1414–1423. Dhama, K., Khan, S., Tiwari, R., Sircar, S., Bhat, S., Malik, Y. S., Singh, K. P., Chaicumpa, W., Bonilla-Aldana, D. K., Rodriguez-Morales, A. J. (2020). Coronavirus Disease 2019–COVID-19. Clinical Microbiology Reviews, 33, e00028-20. Dinel, A. L., Lucas, C., Le Faouder, J., Bouvret, E., Pallet, V., Layé, S., Joffre, C. (2021). Supplementation with low molecular weight peptides from fish protein hydrolysate reduces acute mild stress-induced corticosterone secretion and modulates stress responsive gene expression in mice. Journal of Functional Foods. 76, 104292. Dixon, J. B., Bhathal, P. S., Hughes, N. R., O'Brien, P. E. (2004). Nonalcoholic fatty liver disease: Improvement in liver histological analysis with weight loss. Hepatology, 39, 1647–1654. Donnelly, K. L., Smith, C. I., Schwarzenberg, S. J., Jessurun, J., Boldt, M. D., Parks, E. J. (2005). Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. Journal of Clinical Investigation, 115, 1343-1351. Drotningsvik, A., Mjøs, S. A., Pampanin, D. M., Slizyte, R., Carvajal, A., Remman, T., Høgøy, I., Gudbrandsen, O. A. (2016). Dietary fish protein hydrolysates containing bioactive motifs affect serum and adipose tissue fatty acid compositions, serum lipids, postprandial glucose regulation and growth in obese Zucker fa/fa rats. British Journal of Nutrition. 116, 1336-1345. Drummond, E., Flynn, S., Whelan, H., Nongonierma, A. B., Holton, T. A., Robinson, A., Egan, T., Cagney, G., Shields, D. C., Gibney, E. R., Newsholme, P., Gaudel, C., Jacquier, J. C., Noronha, N., FitzGerald, R. J., Brennan, L. (2018). Casein hydrolysate with glycemic control properties: Evidence from cells, animal models, and humans. Journal of Agricultural and Food Chemistry, 66, 4352-4363. Eckel, R. H., Grundy, S. M., Zimmet, P. (2005). The metabolic syndrome. Lancet, 365, 1415-1428. Escudero, E., Sentanderu, M. Á., Toldra, F. (2010). Characterization of peptides released by in vitro digestion of pork meat. Journal of Agricultural and Food Chemistry, 58, 5160-5165. Escudero, E., Toldra, F., Sentanderu, M. Á., Nishimura, H., Arihara, K. (2012). Antihypertensive activity of peptides identified in the in vitro gastrointestinal digest of pork meat. Meat Science, 91, 382-384. Eslam, M., Newsome, P. N., Sarin, S. K., Anstee, Q. M., Targher, G., Romero-Gomez, M., Zelber-Sagi, S., Wong, V. W. S., Dufour, J. F., Schattenberg, J. M., Kawaguchi, T., Arese, M., Valeti, L., Shiha, G., Tiribeli, C., Yki-Järvinen, H., Fan, J. G., Grønbæk, H., Yilmaz, Y., Cortez-Pinto, H., Oliveira, C. P., Mendez-Sanchez, N., Ahn, S. H., Castera, L., Bugianesi, E., Ratziu, V., George, J. (2020). A new definition for metabolic dysregulation-associated fatty liver disease: an international expert consensus statement. Journal of Hepatology, 73, 202-209. Esmail, V. A. W., Mohammed, M. O., Al-Nimer, M. S. M. (2021). Short-term orlistat therapy improves fatty infiltration indices and liver fibrosis scores in patients with nonalcoholic fatty liver disease and metabolic syndrome. Arab Journal of Gastroenterology, 22, 1-5. Estruch, R., Ros, E., Salas-Salvadó, J., Covas, M. I., Corella, D., Arós, F., Gómez-Gracia, E., Ruiz-Gutiérrez, V., Fiol, M., Lapetra, J., Lamuela-Raventos, R. M., Serra-Majem, L., Pintó, X., Basora, J., Muñoz, M. A., Sorlí, J. V., Martínez, J. A., Fitó, M., Gea, A., Hernán, M. A., Martínez-González, M. A. (2018). Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. The New England Journal of Medicine, 378, e34. European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD), European Association for the Study of Obesity (EASO). (2016). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. Journal of Hepatology, 64, 1388–1402. European Commission. (2015). EU circular economy action plan: a new circular economy action plan for a cleaner and competitive Europe. Retrieved from https://ec.europa.eu/environment/circular-economy/. Accessed December 14, 2020 Fathi, M., Martin, A., McClements, D. J. (2014). Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends in Food Science Technology, 39, 18-39. Freeman, H. J., Sleisenger, M. H., Kim, Y. S. (1983). Human protein digestion and absorption: normal mechanisms and protein-energy malnutrition. Clinics in Gastroenterology, 12, 357-378. Fu, H., Katsumura, Y., Lin, M., Muroya, Y., Hata, K., Fujii, K., Yokoya, A., Hatano, Y. (2009). Free radical scavenging and radioprotective effects of carnosine and anserine. Radiation Physics and Chemistry, 78, 1192-1197. Fu, L., Bruckbauer, A., Li, F., Cao, Q., Cui, X., Wu, R., Shi, H., Zemel, M. B., Xue, B. (2015). Interaction between Metformin and leucine in reducing hyperlipidemia and hepatic lipid accumulation in diet-induced obese mice. Metabolism, 64, 1426-1434. Fuchs, C., Bakuradze, T., Steinke, R., Grewal, Eckert, G., Richling, E. (2020). Polyphenolic composition of extracts from winery by-products and effects on cellular cytotoxicity and mitochondrial functions in HepG2 cells. Journal of Functional Foods, 70, 103988. Fujita, H., Yokoyama, K., Yoshikawa, M. (2000). Classification and antihypertensive activity of angiotensin I-converting enzyme inhibitory peptides derived from food proteins. Journal of Food Science, 65, 564-569. Gaggini, M., Morelli, M., Buzzigoli, E., DeFronzo, R. A., Bugianesi, E., Gastaldelli, A. (2013). Non-alcoholic fatty liver disease (NAFLD) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease. Nutrients, 5, 1544–1560. Ganapathy, V. (2012). Protein Digestion and Absorption. In L. R. Johnson, F. K. Ghishan, J. D. Kaunitz, J. L. Merchant, H. M. Said, J. D. Wood (Eds.), Physiology of the Gastrointestinal Tract 5th edition (pp. 1595-162). Elsevier Inc. Ganapathy, V. Leibach, F. H. (1982). Peptide transport in intestinal and renal brush border membrane vesicles. Life Science, 30, 2137-2146. Gannon, N. P., Schnuck, J. K., Vaughan, R. A. (2018). BCAA metabolism and insulin sensitivity-dysregulated by metabolic status? Molecular Nutrition Food Research, 62, 1700756. Garcés-Rimón, M., González, C., Vera, G., Uranga, J. A., López-Fandiño, R., López-Miranda, V., Miguel, M. (2018). Pepsin egg white hydrolysate improves glucose metabolism complications related to metabolic syndrome in Zucker fatty rats. Nutrients. 10, 441. Garcés-Rimón, M., López-Expósito, I., López-Fandiño, R., Miguel, M. (2016). Egg white hydrolysates with in vitro biological multiactivities to control complications associated with the metabolic syndrome. European Food Research and Technology. 242, 61–69. Garcia-Caraballo, S. C., Comhair, T. M., Verheyen, F., Gaemers, I., Schaap, F. G., Houten, S. M., Hakvoot, T. B. M., Dejong, C. H. C., Lamers, W. H., Koehler, S. E. (2013). Prevention and reversal of hepatic steatosis with a high-protein diet in mice. Biochimica et Biophysica Acta, 1823, 685-695. Gardner, M. L., Lindblad, B. S., Burston, D., Matthews, D. M. (1983). Trans-mucosal passage of intact peptides in the guinea-pig small intestine in vivo: a re-appraisal. Clinal Science (London), 64, 433-439. Gastaldelli, A. Marchesini, G. (2016). Time for Glucagon like peptide-1 receptor agonists treatment for patients with NAFLD? Journal of Hepatology, 64, 262-264. Gastaldelli, A., Miyazaki, Y., Pettiti, M., Santini, E., Ciociaro, D., DeFronzo, R. A., Ferrannini, E. (2006). The effect of rosiglitazone on the liver: decreased gluconeogenesis in patients with type 2 diabetes. The Journal of Clinical Endocrinology Metabolism, 91, 806-812. Gayle, D. A., Desai, M., Casillas, E., Beloosesky, R., Ross, M. G. (2006). Gender-specific orexigenic and anorexigenic mechanism in rats. Life Science, 79, 1531-1536. Gemechu, F. G. (2020). Embracing nutritional qualities, biological activities and technological properties of coffee byproducts in functional food formulation. Trends in Food Science Technology, 104, 235-261. Gentile, D., Fornai, M., Pellegrini, C., Colucci, R., Benvenuti, L., Duranti, E., Masi, S., Carpi, S., Nierl, P., Nericcio, A., Garelli, F., Virdis, A., Pistelli, L., Blandizzi, C., Antonioli, L. (2018). Luteolin prevents cardiometabolic alterations and vascular dysfunction in mice with HFD-induced obesity. Frontier in Pharmacology, 9, 1094. Ghoneim, S., Butt, M. U., Hamid, O., Shad, A., Asaad, I. (2020). The incidence of COVID-19 in patients with metabolic syndrome and nonalcoholic steatohepatitis: A population-based study. Metabolism Open, 8, 100057. Ghosh, S., Chowdhury, S., Das, A. K., Sil, P. C. (2019). Taurine ameliorates oxidative stress-induced inflammation and ER stress mediates testicular damage in STZ-induced diabetic Wistar rats. Food and Chemical Toxicology, 124, 64-80. Giombelli, C., Iwassa, I. J., Silva, C., Barros, B. C. B. (2020). Valorization of peach palm by-product through subcritical water extraction of soluble sugars and phenolic compounds. The Journal of Supercritical Fluids. 165, 104985. Glass, C. K. Olefsky, J. M. (2012). Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metabolism, 15, 635-645. Gomes, M. H. G. Kurozawa, L. E. (2021). Influence of rice protein hydrolysate on lipid oxidation stability and physico-chemical properties of linseed oil microparticles obtained through spray-drying. LWT-Food Science and Technology, 139, 110510. Gómez-García, R., Campos, D. A., Aguilar, C. N., Madureira, A. R., Pintado, M. (2020). Valorization of melon fruit (Cucumis melo L.) by-product: phytochemical and biofunctional properties with emphasis on recent trends and advances. Trends in Food Science Technology, 99, 507-519. Gosh, A., Ray, M., Gangopadhyay, D. (2020). Evaluation of proximate composition and antioxidant properties in silk-industrialbyproduct. LWT, 132, 109900. Graham, T. E., Yang, Q., Blüher, M., Hammarstedt, A., Ciaraldi, T. P., Henry, R. R., Wason, C. J., Oberbach, A., Jansson, P. A., Smith, U., Kahn, B. B. (2006). Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. New England Journal of Medicine, 354, 2552–2563. Grand View Research. (2020). Nutraceutical market size, share trends analysis report by product (dietary supplements, functional foods, functional beverages), by region, and segment forecasts, 2020 - 2027. Retrieved from https://www.grandviewresearch.com/industry-analysis/nutraceuticals-market. Accessed January 8, 2021 Green, C. L. Lamming, D. W. (2018). Regulation of metabolic health by essential dieta……… | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81815 | - |
| dc.description.abstract | "我國政府近年來依照國際發展趨勢而大力提倡「農業循環經濟」,因此各種農業副產物的加值化利用受到重視。國內家禽肝臟因氣味濃厚不受消費者青睞而用途有限,然近十年因禽肉成為國人最主要的蛋白質來源,其中又以白肉雞為大宗,因此研究白肉雞產業之屠宰副產物的加值化利用具有其意義。敝研究團隊已經成功將此產業副產物開發成具生物活性之雞肝水解物(chicken-liver hydrolysate, CLH)。根據先前的動物實驗結果指出:補充CLHs具有抗氧化、抗發炎、抗肥胖、抗肝纖維化、減少脂質生成等功效。故此推測CLHs之補充應具減緩代謝症候群(Metabolic syndrome, MetS)之病理進程功效。此研究旨於釐清長期餵飼高脂飼糧之小鼠經補充CLH對於其心腎保護、脂質恆定和血糖恆定之影響。 在實驗一的部分,於長期餵飼高脂飼糧之小鼠補充CLHs,可以顯著地降低(p < 0.05)體重、血清膽固醇、腹部脂肪量,並透過Sirius red組織染色顯示其可以有效減緩(p < 0.05)腎臟及心臟的纖維化情形。若進一步將心肌組織均質後測定促發炎和纖維化相關之細胞激素,結果顯示CLHs之補充可以減緩(p < 0.05)其發炎和纖維化之程度。而其中心肌細胞中自噬作用(autophagy)也參與其中。CLHs補充降低(p < 0.05) LC3BII之累積、提升Rab7之表現量。由此可見CLHs補充可以於高脂飼糧長期誘導的狀況下,維持autophagy之進行,以利組織清除多餘之油脂和損壞之胞器。 在實驗二中,油酸誘導FL83B細胞之平台中,透過蛋白質表現量之測定,顯示CLHs添加於培養液中,於4 mg CLH/L之濃度可以有效降低(p < 0.05)細胞中油脂的累積。也證實CLHs添加可以活化(p < 0.05) AMPK,並進一步抑制(p < 0.05)脂肪酸合成路徑的關鍵酵素表現(ACC和FAS),並且可以有效地促進(p < 0.05)脂肪酸氧化之效率(fatty-acid β-oxidation),也可以增加(p < 0.05) UCP2的表現量,以利剩餘能量之代謝。並在實驗二的動物實驗中,以IHC確認關鍵酵素之表現(DGAT2和ACADM)能再次驗證細胞實驗中得到的結果。另外,於葡萄糖耐受性試驗中證實CLHs補充可以顯著增加(p < 0.05)葡萄糖吸收的速率,因此曲線下面積顯著小於(p < 0.05) 單純高脂飲食組(HFD組)。在肝臟、骨骼肌和腎周脂肪組織中,也發現CLHs補充可以恢復(p < 0.05)胰島素訊息主要因子IRβ和GLUT4蛋白質表現量。 綜合上述而言,本試驗證實CLHs可以有效改善長期餵飼高脂飼糧所產生的脂質代謝異常、胰島素阻抗等,這在MetS的應用上提供客觀的證據。除此以外,CLHs的開發不僅是循環農業上的應用,在商業開發上面具有實際的應用性,雖在商業生產前尚有挑戰,但此研究確實可以提供國內白肉雞產業做為一個副產物加值利用的可行方案。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T03:04:14Z (GMT). No. of bitstreams: 1 U0001-3007202117431600.pdf: 10626611 bytes, checksum: 14edb318f2d6b7805784c6bf4457caf9 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "LIST OF FIGURES/Ⅰ LIST OF TABLES/Ⅵ LIST OF APPENDIXES/Ⅷ ABBREVIATION LIST/Ⅸ ABSTRACT (Chinese Version.)/1 ABSTRACT (English Version)/3 I. INTRODUCTION/6 II. LITERATURE REVIEW/13 2.1 Utilization of food by-products/13 2.2 Food-protein hydrolysates and chicken-liver hydrolysates/17 2.2.1 Peptide transport and bioavailability/17 2.2.2 Trends and applications of food-protein hydrolysates/24 2.2.2.1 Additives in the food processing industry/24 2.2.2.2 Bioactive nutraceuticals/29 2.2.3 Bioactive peptides, amino acids, and their derivatives/32 2.2.3.1 Essential amino acids, branched-chain amino acids, taurine, and others/32 2.2.3.2 Bioactive peptides/33 2.2.4 Manufacture of functional chicken-liver hydrolysates/45 2.2.4.1 Chicken liver: feed additives and slaughterhouse waste/45 2.2.4.2 The potential of commercial exploitation/47 2.2.4.3 The development of chicken-liver hydrolysates/49 2.2.5 Functionalities of functional chicken-liver hydrolysates/54 2.3 Metabolic syndrome: a worldwide issue/62 2.3.1 Life style and nutritional factor/70 2.3.2 Lipid homeostasis in the metabolic syndrome/76 2.3.3 Hepatic insulin resistance in the metabolic syndrome/88 2.3.4 Hepatocyte steatotic model in vitro/93 2.3.5 Long-term high fat diet-induced model in vivo/95 III. MATERIALS AND METHODS/102 3.1 Experimental design/102 3.2 Materials and chemicals/106 3.3 Nutritional composition, free amino-acid profiles, and carnosine/anserine contents of the chicken liver hydrolysates/110 3.4 FL83B cell culture/110 3.5 Lipid accumulation model of the FL83B cell/112 3.6 Animal and diets/113 3.7 Intraperitoneal glucose tolerance test/116 3.8 Collection of serum, liver, abdominal fat, feces, and muscle of experimental mice/116 3.9 Serum biochemical values and lipid profiles of livers and feces/117 3.10 Serum lipid peroxidation level and anti-oxidant capacity/117 3.11 Hepatic lipid peroxidation and pro-inflammatory cytokine levels/118 3.12 Myocardial pro-inflammatory and fibrotic cytokines levels/118 3.13 Western blotting/118 3.14 Histological analyses and immunohistochemistry stain of livers, adipose tissue, kidney, and heart/121 3.15 Statistical analysis/122 IV. RESULTS/123 4.1 Experiment Ⅰ: Effects of chicken liver hydrolysates on growth performance, serum biochemical analyses, and organ weights in high-fat diet-induced mice/123 4.2 Experiment Ⅰ: Effects of chicken liver hydrolysates on obesity and renal morphology in high-fat diet-induced mice/125 4.3 Experiment Ⅰ: Effects of chicken liver hydrolysates on myocardial damage in high-fat diet-induced mice/126 4.4 Experiment Ⅱ: Effects of chicken liver hydrolysates on oleic acid-induced lipid accumulation in vitro/136 4.5 Experiment Ⅱ: Effects of chicken liver hydrolysates on physiological parameters, blood biochemical values, hepatic antioxidative capacities, and pro-inflammatory cytokines of experimental mice/137 4.6 Experiment Ⅱ: Effects of chicken liver hydrolysates on hepatic steatosis and insulin resistance of liver, adipose tissue, and skeletal muscle/138 V. DISCUSSION/154 5.1 Chicken liver hydrolysate is rich in bioactive amino acids and peptides, which may attenuate metabolic disorders/154 5.2 The cardio-renal protective effects of chicken liver hydrolysate are attributed to its free amino acid composition/155 5.3 Chicken liver hydrolysate supplementation reduced the weight gain, which releases the impacts to cardiovascular system/158 5.4 Chicken liver hydrolysate supplementation modulated lipid homeostasis against lipid deposition in vitro and in vivo/161 5.5 Chicken liver hydrolysate supplementation promoted whole-body insulin sensitivities and hepatic energy expenditure/166 VI. CONCLUSION/169 REFERENCES/173 APPENDIXES/245" | |
| dc.language.iso | en | |
| dc.subject | 血糖恆定 | zh_TW |
| dc.subject | 肝臟保護 | zh_TW |
| dc.subject | 自噬作用 | zh_TW |
| dc.subject | 白肉雞肝水解物 | zh_TW |
| dc.subject | 脂質恆定 | zh_TW |
| dc.subject | 心腎保護 | zh_TW |
| dc.subject | glucose homeostasis | en |
| dc.subject | autophagy | en |
| dc.subject | lipid homeostasis | en |
| dc.subject | hepatoprotection | en |
| dc.subject | cardio-renoprotection | en |
| dc.subject | broiler liver hydrolysate | en |
| dc.title | 白肉雞副產物加值化利用:以小鼠模式探討機能性雞肝水解物於慢性高脂飲食下對心腎保護、肝臟保護及血糖恆定之影響 | zh_TW |
| dc.title | "Value-added Utilization of Broilers’ Byproducts: Effects of Functional Chicken-liver Hydrolysates on Cardio-renoprotection, Hepatoprotection, and Glucose Homeostasis in a Long-term High-fat Dietary Habit via a Mouse Model" | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 邱智賢(Hsin-Tsai Liu),徐慶琳(Chih-Yang Tseng),謝淑貞,黃惠君,謝昌衛,曾榮凱,楊登傑 | |
| dc.subject.keyword | 白肉雞肝水解物,心腎保護,肝臟保護,血糖恆定,脂質恆定,自噬作用, | zh_TW |
| dc.subject.keyword | broiler liver hydrolysate,cardio-renoprotection,hepatoprotection,glucose homeostasis,lipid homeostasis,autophagy, | en |
| dc.relation.page | 254 | |
| dc.identifier.doi | 10.6342/NTU202101948 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-08-03 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
| dc.date.embargo-lift | 2026-07-30 | - |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-3007202117431600.pdf 此日期後於網路公開 2026-07-30 | 10.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
