請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81811完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 游佳欣(Jiashing Yu) | |
| dc.contributor.author | Wei-Fan Lu | en |
| dc.contributor.author | 盧韋帆 | zh_TW |
| dc.date.accessioned | 2022-11-25T03:04:08Z | - |
| dc.date.available | 2025-07-27 | |
| dc.date.copyright | 2021-08-20 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-03 | |
| dc.identifier.citation | 1. Rouse, J.G. and M.E. Van Dyke, A Review of Keratin-Based Biomaterials for Biomedical Applications. Materials, 2010. 3(2): p. 999-1014. 2. Andreia, V. and C.-P. Artur, The Use of Keratin in Biomedical Applications. Current Drug Targets, 2013. 14(5): p. 612-619. 3. Feroz, S., et al., Keratin - Based materials for biomedical applications. Bioactive Materials, 2020. 5(3): p. 496-509. 4. Rajabi, M., et al., Keratinous materials: Structures and functions in biomedical applications. Mater Sci Eng C Mater Biol Appl, 2020. 110: p. 110612. 5. Chen, I.C. and J. Yu, Human Hair: Scaffold Materials for Regenerative Medicine. Adv Exp Med Biol, 2020. 1249: p. 223-229. 6. Shimomura, Y. and M. Ito, Human hair keratin-associated proteins. J Investig Dermatol Symp Proc, 2005. 10(3): p. 230-3. 7. Fraser, R.D.B. and D.A.D. Parry, Trichocyte Keratin-Associated Proteins (KAPs). Adv Exp Med Biol, 2018. 1054: p. 71-86. 8. Deb-Choudhury, S., Crosslinking Between Trichocyte Keratins and Keratin Associated Proteins. Adv Exp Med Biol, 2018. 1054: p. 173-183. 9. Rechiche, O., et al., Expression and purification of high sulfur and high glycine-tyrosine keratin-associated proteins (KAPs) for biochemical and biophysical characterization. Protein Expr Purif, 2018. 146: p. 34-44. 10. Lee, H., et al., Human hair keratin and its-based biomaterials for biomedical applications. Tissue Engineering and Regenerative Medicine, 2014. 11(4): p. 255-265. 11. Donato, R.K. and A. Mija, Keratin Associations with Synthetic, Biosynthetic and Natural Polymers: An Extensive Review. Polymers (Basel), 2019. 12(1). 12. Burnett, L.R., et al., Hemostatic properties and the role of cell receptor recognition in human hair keratin protein hydrogels. Biomaterials, 2013. 34(11): p. 2632-40. 13. Rahmany, M.B., R.R. Hantgan, and M. Van Dyke, A mechanistic investigation of the effect of keratin-based hemostatic agents on coagulation. Biomaterials, 2013. 34(10): p. 2492-500. 14. Lai, H.Y., et al., Self-Assembly of Solubilized Human Hair Keratins. ACS Biomater Sci Eng, 2021. 7(1): p. 83-89. 15. Lu, T.Y., et al., Effect of varied hair protein fractions on the gel properties of keratin/chitosan hydrogels for the use in tissue engineering. Colloids Surf B Biointerfaces, 2020. 195: p. 111258. 16. Yang, K.C., et al., Effect of thermal treatments on the structural change and the hemostatic property of hair extracted proteins. Colloids Surf B Biointerfaces, 2020. 190: p. 110951. 17. Lin, C.W., et al., Keratin scaffolds with human adipose stem cells: Physical and biological effects toward wound healing. J Tissue Eng Regen Med, 2019. 13(6): p. 1044-1058. 18. Lin, C.W., et al., Photo-Crosslinked Keratin/Chitosan Membranes as Potential Wound Dressing Materials. Polymers (Basel), 2018. 10(9). 19. Fujii, T., S. Takayama, and Y. Ito, A novel purification procedure for keratin-associated proteins and keratin from human hair. Journal of Biological Macromolecules, 2013. 13(3): p. 92-106. 20. Nakamura, A., et al., A rapid extraction procedure of human hair proteins and identification of phosphorylated species. Biol Pharm Bull, 2002. 25(5): p. 569-72. 21. Yamauchi, K., et al., Preparation of stable aqueous solution of keratins, and physiochemical and biodegradational properties of films. J Biomed Mater Res, 1996. 31(4): p. 439-44. 22. Lin, C.-W., et al., Evaluation of adhesion, proliferation, and differentiation of human adipose-derived stem cells on keratin. Journal of Polymer Research, 2018. 25(2): p. 40. 23. Lin, Y.H., et al., Keratin/chitosan UV-crosslinked composites promote the osteogenic differentiation of human adipose derived stem cells. J Mater Chem B, 2017. 5(24): p. 4614-4622. 24. Wu, Y.L., et al., Modulation of keratin in adhesion, proliferation, adipogenic, and osteogenic differentiation of porcine adipose-derived stem cells. J Biomed Mater Res B Appl Biomater, 2017. 105(1): p. 180-192. 25. Brunelle, J.L. and R. Green, One-dimensional SDS-polyacrylamide gel electrophoresis (1D SDS-PAGE). Methods Enzymol, 2014. 541: p. 151-9. 26. Brunelle, J.L. and R. Green, Coomassie blue staining. Methods Enzymol, 2014. 541: p. 161-7. 27. Zayas, J.F., Solubility of Proteins, in Functionality of Proteins in Food, J.F. Zayas, Editor. 1997, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 6-75. 28. Wang, B., et al., Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Progress in Materials Science, 2016. 76: p. 229-318. 29. Bragulla, H.H. and D.G. Homberger, Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. Journal of anatomy, 2009. 214(4): p. 516-559. 30. Agarwal, V., et al., Comparative study of keratin extraction from human hair. Int J Biol Macromol, 2019. 133: p. 382-390. 31. Greenfield, N.J., Using circular dichroism spectra to estimate protein secondary structure. Nature Protocols, 2006. 1(6): p. 2876-2890. 32. Gao, F., et al., Recombinant Human Hair Keratin Nanoparticles Accelerate Dermal Wound Healing. ACS Appl Mater Interfaces, 2019. 11(20): p. 18681-18690. 33. Martin, J.J., et al., Keratin capped silver nanoparticles – Synthesis and characterization of a nanomaterial with desirable handling properties. Colloids and Surfaces B: Biointerfaces, 2011. 88(1): p. 354-361. 34. Miles, A.J. and B.A. Wallace, Circular dichroism spectroscopy of membrane proteins. Chemical Society Reviews, 2016. 45(18): p. 4859-4872. 35. Kauvar, D.S., R. Lefering, and C.E. Wade, Impact of hemorrhage on trauma outcome: an overview of epidemiology, clinical presentations, and therapeutic considerations. J Trauma, 2006. 60(6 Suppl): p. S3-11. 36. Blackbourne, L.H., et al., Decreasing killed in action and died of wounds rates in combat wounded. J Trauma, 2010. 69 Suppl 1: p. S1-4. 37. Katzenell, U., et al., Analysis of the causes of death of casualties in field military setting. Mil Med, 2012. 177(9): p. 1065-8. 38. Clifford, C.C., Treating traumatic bleeding in a combat setting. Mil Med, 2004. 169(12 Suppl): p. 8-10, 4. 39. Huang, L., et al., Advances in Topical Hemostatic Agent Therapies: A Comprehensive Update. Adv Ther, 2020. 37(10): p. 4132-4148. 40. Wang, X.-X., et al., Recent Advances in Hemostasis at the Nanoscale. Advanced Healthcare Materials, 2019. 8(23): p. 1900823. 41. Garmo, C., T. Bajwa, and B. Burns, Physiology, Clotting Mechanism, in StatPearls. 2021: Treasure Island (FL). 42. Palta, S., R. Saroa, and A. Palta, Overview of the coagulation system. Indian journal of anaesthesia, 2014. 58(5): p. 515-523. 43. Yang, X., et al., Design and development of polysaccharide hemostatic materials and their hemostatic mechanism. Biomaterials Science, 2017. 5(12): p. 2357-2368. 44. Wo, Y., et al., Recent advances in thromboresistant and antimicrobial polymers for biomedical applications: just say yes to nitric oxide (NO). Biomater Sci, 2016. 4(8): p. 1161-83. 45. Hickman, D.A., et al., Biomaterials and Advanced Technologies for Hemostatic Management of Bleeding. Adv Mater, 2018. 30(4). 46. Zheng, C., et al., Research status and development potential of composite hemostatic materials. J Mater Chem B, 2020. 8(25): p. 5395-5410. 47. Saghazadeh, S., et al., Drug delivery systems and materials for wound healing applications. Adv Drug Deliv Rev, 2018. 127: p. 138-166. 48. Rajendran, N.K., et al., A review on nanoparticle based treatment for wound healing. Journal of Drug Delivery Science and Technology, 2018. 44: p. 421-430. 49. Balaji, A., et al. Natural and synthetic biocompatible and biodegradable polymers. 2018. 50. Nakielski, P. and F. Pierini, Blood interactions with nano- and microfibers: Recent advances, challenges and applications in nano- and microfibrous hemostatic agents. Acta Biomaterialia, 2019. 84: p. 63-76. 51. Liu, X., et al., Rapid hemostatic and mild polyurethane-urea foam wound dressing for promoting wound healing. Materials Science and Engineering: C, 2017. 71: p. 289-297. 52. Park, J.-Y., et al., Biodegradable polycaprolactone nanofibres with β-chitosan and calcium carbonate produce a hemostatic effect. Polymer, 2017. 123: p. 194-202. 53. Weber, M., et al., Blood-Contacting Biomaterials: In Vitro Evaluation of the Hemocompatibility. Frontiers in Bioengineering and Biotechnology, 2018. 6(99). 54. Hacker, M.C., J. Krieghoff, and A.G. Mikos, Chapter 33 - Synthetic Polymers, in Principles of Regenerative Medicine (Third Edition), A. Atala, et al., Editors. 2019, Academic Press: Boston. p. 559-590. 55. Behrens, A.M., M.J. Sikorski, and P. Kofinas, Hemostatic strategies for traumatic and surgical bleeding. Journal of Biomedical Materials Research Part A, 2014. 102(11): p. 4182-4194. 56. M, N.S., U. Mony, and R. Jayakumar, Chitin and Chitosan as Hemostatic Agents. Encyclopedia of Polymer Science and Technology, 2016: p. 1-12. 57. Hajosch, R., et al., A novel gelatin sponge for accelerated hemostasis. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2010. 94B(2): p. 372-379. 58. Aboushwareb, T., et al., A keratin biomaterial gel hemostat derived from human hair: Evaluation in a rabbit model of lethal liver injury. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2009. 90B(1): p. 45-54. 59. Bharathala, S. and P. Sharma, Chapter 8 - Biomedical Applications of Nanoparticles, in Nanotechnology in Modern Animal Biotechnology, P.K. Maurya and S. Singh, Editors. 2019, Elsevier. p. 113-132. 60. Kushida, T., et al., Effect of nano-scale curvature on the intrinsic blood coagulation system. Nanoscale, 2014. 6(23): p. 14484-14487. 61. Sanfins, E., et al., Size-Dependent Effects of Nanoparticles on Enzymes in the Blood Coagulation Cascade. Nano Letters, 2014. 14(8): p. 4736-4744. 62. Lundqvist, M., et al., The nanoparticle protein corona formed in human blood or human blood fractions. PLOS ONE, 2017. 12(4): p. e0175871. 63. Ilinskaya, A.N. and M.A. Dobrovolskaia, Nanoparticles and the blood coagulation system. Part I: benefits of nanotechnology. Nanomedicine, 2013. 8(5): p. 773-784. 64. Hao, F., et al., Exploring the Heterogeneity of Nanoparticles in Their Interactions with Plasma Coagulation Factor XII. ACS Nano, 2019. 13(2): p. 1990-2003. 65. Luo, T., et al., Development and assessment of kerateine nanoparticles for use as a hemostatic agent. Materials Science and Engineering: C, 2016. 63: p. 352-358. 66. Wang, J., et al., Development of feather keratin nanoparticles and investigation of their hemostatic efficacy. Mater Sci Eng C Mater Biol Appl, 2016. 68: p. 768-773. 67. Liu, P., et al., DOX-Conjugated keratin nanoparticles for pH-Sensitive drug delivery. Colloids Surf B Biointerfaces, 2019. 181: p. 1012-1018. 68. Gaio, E., et al., Keratin nanoparticles co-delivering Docetaxel and Chlorin e6 promote synergic interaction between chemo- and photo-dynamic therapies. J Photochem Photobiol B, 2019. 199: p. 111598. 69. Martella, E., et al., Functionalized Keratin as Nanotechnology-Based Drug Delivery System for the Pharmacological Treatment of Osteosarcoma. International journal of molecular sciences, 2018. 19(11): p. 3670. 70. Li, Y., et al., Preparation and characterization of DOX loaded keratin nanoparticles for pH/GSH dual responsive release. Mater Sci Eng C Mater Biol Appl, 2017. 73: p. 189-197. 71. Saravanan, S., et al., Chitosan scaffolds containing chicken feather keratin nanoparticles for bone tissue engineering. Int J Biol Macromol, 2013. 62: p. 481-6. 72. Wang, Y., et al., Shape-adaptive composite foams with high expansion and absorption used for massive hemorrhage control and irregular wound treatment. Applied Materials Today, 2018. 13: p. 228-241. 73. Liu, J.-Y., et al., Hemostatic porous sponges of cross-linked hyaluronic acid/cationized dextran by one self-foaming process. Materials Science and Engineering: C, 2018. 83: p. 160-168. 74. Sundaram, M.N., et al., Injectable chitosan-nano bioglass composite hemostatic hydrogel for effective bleeding control. International Journal of Biological Macromolecules, 2019. 129: p. 936-943. 75. Yang, X., et al., Fabricating antimicrobial peptide-immobilized starch sponges for hemorrhage control and antibacterial treatment. Carbohydrate Polymers, 2019. 222: p. 115012. 76. Hu, S., et al., Preparation of composite hydroxybutyl chitosan sponge and its role in promoting wound healing. Carbohydrate Polymers, 2018. 184: p. 154-163. 77. Chen, Z., et al., Blood coagulation evaluation of N-alkylated chitosan. Carbohydrate Polymers, 2017. 173: p. 259-268. 78. Verma, M.L., et al., Carbohydrate and protein based biopolymeric nanoparticles: Current status and biotechnological applications. International Journal of Biological Macromolecules, 2020. 154: p. 390-412. 79. Tarhini, M., H. Greige-Gerges, and A. Elaissari, Protein-based nanoparticles: From preparation to encapsulation of active molecules. International Journal of Pharmaceutics, 2017. 522(1): p. 172-197. 80. Ghaffari, R., et al., Dual-Sensitive Hydrogel Nanoparticles Based on Conjugated Thermoresponsive Copolymers and Protein Filaments for Triggerable Drug Delivery. ACS Applied Materials Interfaces, 2018. 10(23): p. 19336-19346. 81. Joseph, E. and G. Singhvi, Chapter 4 - Multifunctional nanocrystals for cancer therapy: a potential nanocarrier, in Nanomaterials for Drug Delivery and Therapy, A.M. Grumezescu, Editor. 2019, William Andrew Publishing. p. 91-116. 82. Samimi, S., et al., Chapter 3 - Lipid-Based Nanoparticles for Drug Delivery Systems, in Characterization and Biology of Nanomaterials for Drug Delivery, S.S. Mohapatra, et al., Editors. 2019, Elsevier. p. 47-76. 83. Aluigi, A., et al., Organic solvent-free preparation of keratin nanoparticles as doxorubicin carriers for antitumour activity. Materials Science and Engineering: C, 2018. 90: p. 476-484. 84. Sun, Z., et al., Cellulose/keratin–catechin nanocomposite hydrogel for wound hemostasis. Journal of Materials Chemistry B, 2018. 6(38): p. 6133-6141. 85. Oslakovic, C., et al., Polystyrene nanoparticles affecting blood coagulation. Nanomedicine: Nanotechnology, Biology and Medicine, 2012. 8(6): p. 981-986. 86. Tapper, H. and H. Herwald, Modulation of hemostatic mechanisms in bacterial infectious diseases. Blood, 2000. 96(7): p. 2329-37. 87. Sun, H., The Interaction Between Pathogens and the Host Coagulation System. Physiology, 2006. 21(4): p. 281-288. 88. van Gorp, E.C., et al., Review: infectious diseases and coagulation disorders. J Infect Dis, 1999. 180(1): p. 176-86. 89. Bowler, P.G., Wound pathophysiology, infection and therapeutic options. Ann Med, 2002. 34(6): p. 419-27. 90. Dai, T., Y.Y. Huang, and M.R. Hamblin, Photodynamic therapy for localized infections--state of the art. Photodiagnosis Photodyn Ther, 2009. 6(3-4): p. 170-88. 91. Oruba, Z., et al., Antimicrobial photodynamic therapy-A discovery originating from the pre-antibiotic era in a novel periodontal therapy. Photodiagnosis Photodyn Ther, 2015. 12(4): p. 612-8. 92. Dias, L.D., et al., Curcumin as a photosensitizer: From molecular structure to recent advances in antimicrobial photodynamic therapy. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2020. 45: p. 100384. 93. Fernando, I.P.S., et al., Alginate-based nanomaterials: Fabrication techniques, properties, and applications. Chemical Engineering Journal, 2020. 391: p. 123823. 94. Ramdhan, T., et al., Physical and mechanical properties of alginate based composite gels. Trends in Food Science Technology, 2020. 106: p. 150-159. 95. Zhang, M. and X. Zhao, Alginate hydrogel dressings for advanced wound management. Int J Biol Macromol, 2020. 162: p. 1414-1428. 96. Ahmad Raus, R., W.M.F. Wan Nawawi, and R.R. Nasaruddin, Alginate and alginate composites for biomedical applications. Asian Journal of Pharmaceutical Sciences, 2020. 97. Varaprasad, K., et al., Alginate-based composite materials for wound dressing application:A mini review. Carbohydr Polym, 2020. 236: p. 116025. 98. Peng, H.T., Hemostatic agents for prehospital hemorrhage control: a narrative review. Military Medical Research, 2020. 7(1): p. 13. 99. Zhong, Y., et al., Application and outlook of topical hemostatic materials: a narrative review. Annals of Translational Medicine, 2021. 9(7): p. 577. 100. Li, D., et al., Recent Advances on Synthetic and Polysaccharide Adhesives for Biological Hemostatic Applications. Frontiers in Bioengineering and Biotechnology, 2020. 8(926). 101. Hickman, D.A., et al., Biomaterials and Advanced Technologies for Hemostatic Management of Bleeding. Advanced Materials, 2018. 30(4): p. 1700859. 102. Afjoul, H., A. Shamloo, and A. Kamali, Freeze-gelled alginate/gelatin scaffolds for wound healing applications: An in vitro, in vivo study. Mater Sci Eng C Mater Biol Appl, 2020. 113: p. 110957. 103. Nayak, K.K. and P. Gupta, Study of the keratin-based therapeutic dermal patches for the delivery of bioactive molecules for wound treatment. Mater Sci Eng C Mater Biol Appl, 2017. 77: p. 1088-1097. 104. Gupta, P. and K.K. Nayak, Optimization of keratin/alginate scaffold using RSM and its characterization for tissue engineering. International Journal of Biological Macromolecules, 2016. 85: p. 141-149. 105. Nayak, K.K. and P. Gupta, In vitro biocompatibility study of keratin/agar scaffold for tissue engineering. Int J Biol Macromol, 2015. 81: p. 1-10. 106. Ho, M.H., et al., Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials, 2004. 25(1): p. 129-38. 107. Ferroni, C., et al., Wool Keratin 3D Scaffolds with Light-Triggered Antimicrobial Activity. Biomacromolecules, 2016. 17(9): p. 2882-90. 108. Aluigi, A., et al., Methylene Blue Doped Films of Wool Keratin with Antimicrobial Photodynamic Activity. ACS Appl Mater Interfaces, 2015. 7(31): p. 17416-24. 109. Wang, J., et al., Feather keratin hydrogel for wound repair: Preparation, healing effect and biocompatibility evaluation. Colloids and Surfaces B: Biointerfaces, 2017. 149: p. 341-350. 110. Kakkar, P., et al., Development of keratin–chitosan–gelatin composite scaffold for soft tissue engineering. Materials Science and Engineering: C, 2014. 45: p. 343-347. 111. Xu, S., et al., Biological evaluation of human hair keratin scaffolds for skin wound repair and regeneration. Materials Science and Engineering: C, 2013. 33(2): p. 648-655. 112. Singaravelu, S., et al., Biomimetic interconnected porous keratin–fibrin–gelatin 3D sponge for tissue engineering application. International Journal of Biological Macromolecules, 2016. 86: p. 810-819. 113. Loh, Q.L. and C. Choong, Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size. Tissue Engineering Part B: Reviews, 2013. 19(6): p. 485-502. 114. Bhardwaj, N., S. Chakraborty, and S.C. Kundu, Freeze-gelled silk fibroin protein scaffolds for potential applications in soft tissue engineering. International Journal of Biological Macromolecules, 2011. 49(3): p. 260-267. 115. Gorgieva, S. and V. Kokol, Preparation, characterization, and in vitro enzymatic degradation of chitosan-gelatine hydrogel scaffolds as potential biomaterials. Journal of Biomedical Materials Research Part A, 2012. 100A(7): p. 1655-1667. 116. Li, Y., et al., Triple stimuli-responsive keratin nanoparticles as carriers for drug and potential nitric oxide release. Materials Science and Engineering: C, 2018. 91: p. 606-614. 117. Caughey, G., Mast cell tryptases and chymases in inflammation and host defense. Immunological Reviews, 2007. 217. 118. Radhakrishnan, K. and A.M. Raichur, Biologically triggered exploding protein based microcapsules for drug delivery. Chemical Communications, 2012. 48(17): p. 2307-2309. 119. Kuo, S.-H., et al., Fabrication of Anisotropic Cu Ferrite-Polymer Core-Shell Nanoparticles for Photodynamic Ablation of Cervical Cancer Cells. Nanomaterials, 2020. 10(12). 120. Wu, P.-T., et al., Methylene-Blue-Encapsulated Liposomes as Photodynamic Therapy Nano Agents for Breast Cancer Cells. Nanomaterials, 2019. 9(1). 121. Carvalho, C.R., et al., Enhanced performance of chitosan/keratin membranes with potential application in peripheral nerve repair. Biomaterials Science, 2019. 7(12): p. 5451-5466. 122. Rogina, A., et al., Effect of in situ formed hydroxyapatite on microstructure of freeze-gelled chitosan-based biocomposite scaffolds. European Polymer Journal, 2015. 68: p. 278-287. 123. Salgado, A.J., O.P. Coutinho, and R.L. Reis, Novel Starch-Based Scaffolds for Bone Tissue Engineering: Cytotoxicity, Cell Culture, and Protein Expression. Tissue Engineering, 2004. 10(3-4): p. 465-474. 124. Sacco, P., et al., Polysaccharide-Based Networks from Homogeneous Chitosan-Tripolyphosphate Hydrogels: Synthesis and Characterization. Biomacromolecules, 2014. 15(9): p. 3396-3405. 125. Luo, Y., et al., Enhanced photocatalytic and photothermal properties of ecofriendly metal-organic framework heterojunction for rapid sterilization. Chemical Engineering Journal, 2021. 405: p. 126730. 126. Liu, P., et al., Ionic liquid functionalized non-releasing antibacterial hydrogel dressing coupled with electrical stimulation for the promotion of diabetic wound healing. Chemical Engineering Journal, 2021. 415: p. 129025. 127. Li, T.-T., et al., Daylight-driven rechargeable, antibacterial, filtrating micro/nanofibrous composite membranes with bead-on-string structure for medical protection. Chemical Engineering Journal, 2021. 422: p. 130007. 128. Zhang, J., et al., Copper ferrite heterojunction coatings empower polyetheretherketone implant with multi-modal bactericidal functions and boosted osteogenicity through synergistic photo/Fenton-therapy. Chemical Engineering Journal, 2021. 422: p. 130094. 129. Qasim, S.B., et al., Freeze gelated porous membranes for periodontal tissue regeneration. Acta Biomaterialia, 2015. 23: p. 317-328. 130. Kamali, A. and A. Shamloo, Fabrication and evaluation of a bilayer hydrogel-electrospinning scaffold prepared by the freeze-gelation method. Journal of Biomechanics, 2020. 98: p. 109466. 131. Fujii, T., T. Tanaka, and K. Ohkawa, Biomineralization of calcium phosphate on human hair protein film and formation of a novel hydroxyapatite–protein composite material. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2009. 91B(2): p. 528-536. 132. Wurm, F., et al., Multivalent Ions as Reactive Crosslinkers for Biopolymers—A Review. Molecules, 2020. 25(8). 133. Wang, J., et al., Preparation of Keratin-Glycine Metal Complexes and Their Scavenging Activity for Superoxide Anion Radicals. International Journal of Polymer Science, 2018. 2018: p. 2764749. 134. Sadeghi, S., et al., Carboxymethyl cellulose-human hair keratin hydrogel with controlled clindamycin release as antibacterial wound dressing. International Journal of Biological Macromolecules, 2020. 147: p. 1239-1247. 135. Zahouani, H., et al., Characterization of the mechanical properties of a dermal equivalent compared with human skin in vivo by indentation and static friction tests. Skin Research and Technology, 2009. 15(1): p. 68-76. 136. Pailler-Mattei, C., S. Bec, and H. Zahouani, In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Medical Engineering Physics, 2008. 30(5): p. 599-606. 137. Jachowicz, J., R. McMullen, and D. Prettypaul, Indentometric analysis of in vivo skin and comparison with artificial skin models. Skin Research and Technology, 2007. 13(3): p. 299-309. 138. Wu, Z., et al., Antibacterial and Hemostatic Thiol-Modified Chitosan-Immobilized AgNPs Composite Sponges. ACS Applied Materials Interfaces, 2020. 12(18): p. 20307-20320. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81811 | - |
| dc.description.abstract | 人髮角蛋白因其高生物相容性、非免疫原性與生物降解性,而被廣泛應用於生物材料,包括藥物遞送、組織工程、傷口癒合和促進細胞生長及分化。我們使用兩步驟還原萃取法從人髮中萃取出角蛋白相關蛋白(KAPs)和角蛋白並詳細分析,而分離出的KAPs和角蛋白均可利用它們本身不同的理化性質以促進生醫應用。傷口不受控的出血與感染被認為是創傷後造成生命威脅的兩個主要原因。然而,開發具有高止血能力及有效抗菌功效的安全傷口敷料仍然是一個嚴峻的挑戰。在先前的研究中,已發現角蛋白本身具有促進血小板活化和纖維蛋白聚合的能力。第一部分,我們探討KAPs材料作為止血劑的應用,因為之前的研究沒有報導其止血性能。KAPs奈米粒子通過去溶劑化法合成,這些粒子在顯微外觀下呈現球形型態且平均流體動力學直徑約為170 nm。從體外止血實驗結果表示,使用濃度為50 mg/mL KAPs奈米粒子與新鮮的血液混合處理後,所需的凝血時間可從原先16分鐘減少到4分鐘內。溶血試驗的數據證明KAPs奈米粒子具有低溶血百分比。綜合上述結果表示KAPs奈米粒子在未來臨床止血應用上的實踐有很高的機會。第二部分,我們構思了一種具有良好生物降解性、生物相容性、止血能力和抗菌功能的新型止血材料,以解決普通止血材料的缺點。通過冷凍凝膠法製備了亞甲基藍摻雜的角蛋白/藻酸鹽複合支架,此複合支架具有超過1600%的液體吸收率、互相連通性的孔洞結構及良好的生物相容性及生物降解性。體外藥物釋放實驗指出複合支架能夠透過強大的液體吸收性能確保初期高爆發釋放,從而在傷口癒合的初始階段防止感染。通過體外抗菌光動力測試獲得的結果指出,亞甲基藍摻雜的複合支架可以觸發抗菌光動力作用來防止菌落快速生長。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T03:04:08Z (GMT). No. of bitstreams: 1 U0001-0208202122462800.pdf: 3643857 bytes, checksum: cfb64a948092b00453324fc6b6485bde (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 摘要 i Abstract ii Contents iv List of Figures ix List of Tables xii Chapter 1 Extraction and identification of KAPs and keratin from human hair 1 1.1 Literature review 1 1.1.1 Keratin 1 1.1.2 Keratin-associated proteins (KAPs) 2 1.1.3 Keratinous materials in biomedical applications 4 1.2 Methods 6 1.2.1 Extraction of KAPs and keratin from human hair 6 1.2.2 Gel electrophoresis analysis 8 1.2.3 Characterization 9 1.2.3.1 Fourier transform infrared (FTIR) spectrometry analysis 9 1.2.3.2 Dynamic light scattering analyzer (DLS) analysis 9 1.2.3.3 Circular dichroism (CD) analysis 10 1.2.4 Statistical analysis 10 1.3 Results and discussions 10 1.3.1 SDS-PAGE analysis 10 1.3.2 Solubility of lyophilized powder 12 1.3.3 Protein size and zeta potential measurement 14 1.3.4 FTIR spectrum 16 1.3.5 CD spectrum 17 1.4 Conclusions 18 Chapter 2 Development of KAPs nanoparticles and assessment of their hemostatic performance 20 2.1 Literature review 20 2.1.1 Hemorrhage 20 2.1.2 Hemostatic mechanism 21 2.1.3 Hemostatic material 24 2.1.4 Research motivation 27 2.2 Methods 30 2.2.1 Preparation of KAPs nanoparticles 30 2.2.2 Characterization 31 2.2.2.1 Fourier transform infrared (FTIR) spectrometry analysis 31 2.2.2.2 Dynamic light scattering analyzer (DLS) analysis 32 2.2.2.3 Circular dichroism (CD) analysis 32 2.2.2.4 Scanning electron microscopy (SEM) image 32 2.2.3 Hemostatic evaluation of KAPs nanoparticles 33 2.2.3.1 Whole blood clotting time 33 2.2.3.2 Whole blood clotting observation 34 2.2.4 Hemocompatibility assay in vitro 34 2.2.5 Statistical analysis 35 2.3 Results and discussions 36 2.3.1 Characterization of KAPs nanoparticles 36 2.3.1.1 Size and morphology 36 2.3.1.2 Zeta potential measurement 39 2.3.1.3 Chemical structure analysis 40 2.3.2 Hemostatic evaluation of KAPs nanoparticles 42 2.3.2.1 In vitro whole blood clotting time measurement 42 2.3.2.2 Whole blood clotting observation 43 2.3.3 Hemocompatibility assay in vitro 44 2.3.4 Effects of nanoparticles on blood coagulation mechanism 46 2.4 Conclusions and future work 48 Chapter 3 Development of methylene blue loaded keratin/alginate composite scaffolds with antibacterial photodynamic activity and hemostatic function 50 3.1 Literature review 50 3.1.1 Bacterial infectious disease 50 3.1.2 Antimicrobial photodynamic therapy 51 3.1.3 Alginate 52 3.1.4 Research motivation 54 3.2 Methods 57 3.2.1 Fabrication of methylene blue loaded keratin/alginate composite scaffolds 57 3.2.2 Characterization of composite scaffolds 59 3.2.2.1 Scanning electron microscopy (SEM) image 59 3.2.2.2 Porosity measurement 59 3.2.2.3 Liquid absorption capacity 60 3.2.2.4 Compressive mechanical test 60 3.2.2.5 Degradation analysis 61 3.2.2.6 Photosensitizer loading capacity evaluation 62 3.2.2.7 In vitro photosensitizer release 63 3.2.2.8 Reactive oxygen species detection 63 3.2.3 Biocompatibility–cell viability assay 64 3.2.3.1 Cell culture of NIH3T3 64 3.2.3.2 In vitro cytotoxicity assay 64 3.2.4 Antimicrobial photoinactivation assay in vitro 65 3.2.5 Statistical analysis 67 3.3 Results and discussions 67 3.3.1 Characterization of composite scaffolds 67 3.3.1.1 Morphological analysis and scaffold porosity 67 3.3.1.2 Liquid absorption capacity 70 3.3.1.3 Compressive strength 72 3.3.1.4 Degradation in vitro 73 3.3.1.5 In vitro photosensitizer release 75 3.3.1.6 Generation of reactive oxygen species after irradiation 76 3.3.2 Biocompatibility–cell viability assay 77 3.3.3 In vitro antimicrobial photoinactivation assay 78 3.4 Conclusions and future work 82 Appendix 83 a. Materials 83 b. Equipment 84 c. Solution formula 85 References 89 | |
| dc.language.iso | en | |
| dc.subject | 抗菌材料 | zh_TW |
| dc.subject | 角蛋白 | zh_TW |
| dc.subject | 角蛋白相關蛋白(KAPs) | zh_TW |
| dc.subject | 止血材料 | zh_TW |
| dc.subject | 抗菌光動力療法 | zh_TW |
| dc.subject | 亞甲基藍 | zh_TW |
| dc.subject | 海藻酸鹽 | zh_TW |
| dc.subject | Keratin | en |
| dc.subject | Antibacterial material | en |
| dc.subject | Alginate | en |
| dc.subject | Methylene blue | en |
| dc.subject | Antimicrobial photodynamic therapy | en |
| dc.subject | Hemostatic material | en |
| dc.subject | Keratin-associated proteins (KAPs) | en |
| dc.title | 人髮角蛋白的萃取及其止血和抗菌材料上之應用 | zh_TW |
| dc.title | Extraction of Human Hair Keratin Proteins and Their Hemostatic and Antibacterial Applications | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊凱強(Hsin-Tsai Liu),簡秀紋(Chih-Yang Tseng),魏暘 | |
| dc.subject.keyword | 角蛋白,角蛋白相關蛋白(KAPs),止血材料,抗菌光動力療法,亞甲基藍,海藻酸鹽,抗菌材料, | zh_TW |
| dc.subject.keyword | Keratin,Keratin-associated proteins (KAPs),Hemostatic material,Antimicrobial photodynamic therapy,Methylene blue,Alginate,Antibacterial material, | en |
| dc.relation.page | 103 | |
| dc.identifier.doi | 10.6342/NTU202102015 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-08-04 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-07-27 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0208202122462800.pdf | 3.56 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
