請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81803完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳耀銘(Yaow-Ming Chen) | |
| dc.contributor.author | Hui-Ying Hsu | en |
| dc.contributor.author | 許蕙瀅 | zh_TW |
| dc.date.accessioned | 2022-11-25T03:03:56Z | - |
| dc.date.available | 2023-09-01 | |
| dc.date.copyright | 2021-11-11 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-21 | |
| dc.identifier.citation | Y. Lu, Q. Wu, Q. Wang, D. Liu, and L. Xiao, 'Analysis of a Novel Zero-Voltage-Switching Bidirectional DC/DC Converter for Energy Storage System,' IEEE Trans. on Power Electron., vol. 33, no. 4, pp. 3169-3179, April 2018. U. R. Prasanna, P. Xuewei, A. K. Rathore, and K. Rajashekara, 'Propulsion System Architecture and Power Conditioning Topologies for Fuel Cell Vehicles,' IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 640-650, Jan.-Feb. 2015. F. Xue, R. Yu and A. Q. Huang, 'A 98.3% Efficient GaN Isolated Bidirectional DC–DC Converter for DC Microgrid Energy Storage System Applications,' IEEE Trans, Ind. Electron., vol. 64, no. 11, pp. 9094-9103, Nov. 2017. N. Swaminathan and Y. Cao, 'An Overview of High-Conversion High-Voltage DC–DC Converters for Electrified Aviation Power Distribution System,' IEEE Trans. on Transp. Electr., vol. 6, no. 4, pp. 1740-1754, Dec. 2020. N. Ullah, Z. Farooq, I. Sami, M. S. Chowdhury, K. Techato, and H. I. Alkhammash, 'Industrial Grade Adaptive Control Scheme for a Micro-Grid Integrated Dual Active Bridge Driven Battery Storage System,' IEEE Access, vol. 8, pp. 210435-210451, 2020. N. A. Dung, H. Chiu, J. Lin, Y. Hsieh, H. Chen, and B. Zeng, 'Novel Modulation of Isolated Bidirectional DC–DC Converter for Energy Storage Systems,' IEEE Trans. Power Electron., vol. 34, no. 2, pp. 1266-1275, Feb. 2019. A. Chub, D. Vinnikov, R. Kosenko, E. Liivik, and I. Galkin, 'Bidirectional DC–DC Converter for Modular Residential Battery Energy Storage Systems,' IEEE Trans. Ind. Electron., vol. 67, no. 3, pp. 1944-1955, March 2020. Y. -E. Wu and Y. -T. Ke, 'A Novel Bidirectional Isolated DC-DC Converter With High Voltage Gain and Wide Input Voltage,' IEEE Trans. Power Electron., vol. 36, no. 7, pp. 7973-7985, July 2021. T. Dragičević, X. Lu, J. C. Vasquez, and J. M. Guerrero, 'DC Microgrids—Part I: A Review of Control Strategies and Stabilization Techniques,' IEEE Trans. Power Electron., vol. 31, no. 7, pp. 4876-4891, July 2016. Q. Xu, F. Blaabjerg, C. Zhang, J. Yang, S. Li, and J. Xiao, 'An Offset-free Model Predictive Controller for DC/DC Boost Converter Feeding Constant Power Loads in DC Microgrids,' in Proc. 45th Annu. Conf. IEEE Ind.Electron. Soc., vol. 1, Oct. 2019, pp. 4045-4049. Q. Xu, N. Vafamand, L. Chen, T. Dragičević, L. Xie, and F. Blaabjerg, 'Review on Advanced Control Technologies for Bidirectional DC/DC Converters in DC Microgrids,' IEEE J. Emerg. Sel. Topics Power Electron., vol. 9, no. 2, pp. 1205-1221, April 2021. H. Wu, K. Sun, L. Chen, L. Zhu, and Y. Xing, 'High Step-Up/Step-Down Soft-Switching Bidirectional DC–DC Converter With Coupled-Inductor and Voltage Matching Control for Energy Storage Systems,' IEEE Trans. Ind. Electron., vol. 63, no. 5, pp. 2892-2903, May 2016. O. Garcia, P. Zumel, A. de Castro, and A. Cobos, 'Automotive DC-DC bidirectional converter made with many interleaved buck stages,' IEEE Trans. Power Electron., vol. 21, no. 3, pp. 578-586, May 2006. H. Matsuo and F. Kurokawa, 'New Solar Cell Power Supply System Using a Boost Type Bidirectinal DC-DC Converter,' IEEE Trans. Ind. Electron., vol. IE-31, no. 1, pp. 51-55, Feb. 1984. Y. Wang, L. Xue, C. Wang, P. Wang, and W. Li, 'Interleaved High-Conversion-Ratio Bidirectional DC–DC Converter for Distributed Energy-Storage Systems—Circuit Generation, Analysis, and Design,' IEEE Trans. Power Electron., vol. 31, no. 8, pp. 5547-5561, Aug. 2016. M. K. Kazimierczuk, D. Q. Vuong, B. T. Nguyen, and J. A. Weimer, 'Topologies of bidirectional PWM dc-dc power converters,' in Proc. IEEE Nat. Aerosp. Electron. Conf., 1993, pp. 435-441 vol.1. R. W. A. A. De Doncker, D. M. Divan, and M. H. Kheraluwala, 'A three-phase soft-switched high-power-density DC/DC converter for high-power applications,' IEEE Trans. Ind. Appl., vol. 27, no. 1, pp. 63-73, Jan.-Feb. 1991. M. Kwon, J. Park, and S. Choi, 'A Bidirectional Three-Phase Push–Pull Converter With Dual Asymmetrical PWM Method,' IEEE Trans. Power Electron., vol. 31, no. 3, pp. 1887-1895, March 2016. X. Sun, X. Wu, Y. Shen, X. Li, and Z. Lu, 'A Current-Fed Isolated Bidirectional DC–DC Converter,' IEEE Trans. Power Electron., vol. 32, no. 9, pp. 6882-6895, Sept. 2017. S. A. Gorji, H. G. Sahebi, M. Ektesabi, and A. B. Rad, 'Topologies and Control Schemes of Bidirectional DC–DC Power Converters: An Overview,' IEEE Access, vol. 7, pp. 117997-118019, 2019. M. N. Kheraluwala, R. W. Gascoigne, D. M. Divan, and E. D. Baumann, 'Performance characterization of a high-power dual active bridge DC-to-DC converter,' IEEE Trans. Ind. Appl., vol. 28, no. 6, pp. 1294-1301, Nov.-Dec. 1992. G. G. Oggier, R. Leidhold, G. O. Garcia, A. R. Oliva, J. C. Balda, and F. Barlow, 'Extending the ZVS operating range of dual active bridge high-power DC-DC converters,' in Proc. 37th IEEE Power Electron. Spec. Conf., Jun. 18–22, 2006, pp. 1–7. D. Costinett, D. Maksimovic, and R. Zane, 'Design and Control for High Efficiency in High Step-Down Dual Active Bridge Converters Operating at High Switching Frequency,' IEEE Trans. Power Electron., vol. 28, no. 8, pp. 3931-3940, Aug. 2013. B. Zhao, Q. Song, W. Liu, and Y. Sun, 'Overview of Dual-Active-Bridge Isolated Bidirectional DC–DC Converter for High-Frequency-Link Power-Conversion System,' IEEE Trans. Power Electron., vol. 29, no. 8, pp. 4091-4106, Aug. 2014. X. Pan, H. Li, Y. Liu, T. Zhao, C. Ju, and A. K. Rathore, 'An Overview and Comprehensive Comparative Evaluation of Current-Fed-Isolated-Bidirectional DC/DC Converter,' IEEE Trans. Power Electron., vol. 35, no. 3, pp. 2737-2763, March 2020. A. K. Rathore, A. K. S. Bhat, and R. Oruganti, 'Analysis, Design and Experimental Results of Wide Range ZVS Active-Clamped L-L Type Current-Fed DC/DC Converter for Fuel Cells to Utility Interface,' IEEE Trans. Ind. Electron., vol. 59, no. 1, pp. 473-485, Jan. 2012. Y. Shi, R. Li, Y. Xue and H. Li, 'Optimized Operation of Current-Fed Dual Active Bridge DC–DC Converter for PV Applications,' IEEE Trans. Ind. Electron., vol. 62, no. 11, pp. 6986-6995, Nov. 2015. D. Sha, X. Wang, K. Liu, and C. Chen, 'A Current-Fed Dual-Active-Bridge DC–DC Converter Using Extended Duty Cycle Control and Magnetic-Integrated Inductors With Optimized Voltage Mismatching Control,' IEEE Trans. Power Electron., vol. 34, no. 1, pp. 462-473, Jan. 2019. D. Sha, J. Zhang, and K. Liu, 'Leakage Inductor Current Peak Optimization for Dual-Transformer Current-Fed Dual Active Bridge DC–DC Converter With Wide Input and Output Voltage Range,' IEEE Trans. Power Electron., vol. 35, no. 6, pp. 6012-6024, June 2020. Y. Miura, M. Kaga, Y. Horita, and T. Ise, 'Bidirectional isolated dual full-bridge dc-dc converter with active clamp for EDLC,' in Proc. IEEE ECCE, 2010, pp. 1136–1143. J. A. Sabate, V. Vlatkovic, R. B. Ridley, and F. C. Lee, 'High-voltage, high-power, ZVS, full-bridge PWM converter employing an active snubber,' in Proc. IEEE APEC, 1991, pp. 158–163. K. Wang, C. Y. Lin, L. Zhu, D. Qu, F. C. Lee, and J. S. Lai, 'Bi-directional DC to DC converters for fuel cell systems,' in Proc. Power Electron. Transport., Oct. 22–23, 1998, pp. 47–51. Jung-Goo Cho, Chang-Yong Jeong, and F. C. Y. Lee, 'Zero-voltage and zero-current-switching full-bridge PWM converter using secondary active clamp,' IEEE Trans. Power Electron., vol. 13, no. 4, pp. 601-607, July 1998. Kunrong Wang, Lizhi Zhu, Dayu Qu, H. Odendaal, J. Lai, and F. C. Lee, 'Design, implementation, and experimental results of bi-directional full-bridge DC/DC converter with unified soft-switching scheme and soft-starting capability,' in Proc. IEEE PESC, 2000, pp. 1058–1063. Kunrong Wang, F. C. Lee, and J. Lai, 'Operation principles of bi-directional full-bridge DC/DC converter with unified soft-switching scheme and soft-starting capability,' in Proc. 15th IEEE APEC, 2000, vol. 1, pp. 111–118. J. Liu, Z. Zheng, and Y. Li, 'Design and Implement of an Active-clamp Isolated Boost Converter for PV Systems,' in Proc. Int. Conf. Elect. Mach. Syst., 2019, pp. 1-5. P. U R and A. K. Rathore, 'Extended Range ZVS Active-Clamped Current-Fed Full-Bridge Isolated DC/DC Converter for Fuel Cell Applications: Analysis, Design, and Experimental Results,' IEEE Trans. Ind. Electron., vol. 60, no. 7, pp. 2661-2672, July 2013. P. Xuewei and A. K. Rathore, 'Novel Bidirectional Snubberless Naturally Commutated Soft-Switching Current-Fed Full-Bridge Isolated DC/DC Converter for Fuel Cell Vehicles,' IEEE Trans. Ind. Electron., vol. 61, no. 5, pp. 2307-2315, May 2014. S. Bal, A. K. Rathore, and D. Srinivasan, 'Comprehensive study and analysis of naturally commutated Current-Fed Dual Active Bridge PWM DC/DC converter,' in Proc. 42nd Annu. Conf. IEEE Ind. Electron. Soc., Oct. 2016, pp. 4382–4388. S. Bal, D. B. Yelaverthi, A. K. Rathore, and D. Srinivasan, 'Improved Modulation Strategy Using Dual Phase Shift Modulation for Active Commutated Current-Fed Dual Active Bridge,' IEEE Trans. Power Electron., vol. 33, no. 9, pp. 7359-7375, Sept. 2018. S. Bal, D. B. Yelaverthi, A. K. Rathore, and D. Srinivasan, 'Novel Active Rectification for Extended ZVS Operation of Bidirectional Full Bridge DC/DC Converter for Energy Storage Application,' in Proc. 44th Annu. Conf. IEEE Ind. Electron. Soc., 2018, pp. 2103-2109. Y. Zhang, Z. Wang, Y. W. Li, N. Hou, and M. Cheng, 'Decoupled Dual-PWM Control for Naturally Commutated Current-Fed Dual-Active-Bridge DC/DC Converter,' IEEE J. Emerg. Sel. Topics Power Electron., vol. 8, no. 4, pp. 4246-4259, Dec. 2020. G. G. Oggier, G. O. GarcÍa, and A. R. Oliva, 'Switching Control Strategy to Minimize Dual Active Bridge Converter Losses,' IEEE Trans. Power Electron., vol. 24, no. 7, pp. 1826-1838, July 2009. B. Zhao, Q. Yu, and W. Sun, 'Extended-Phase-Shift Control of Isolated Bidirectional DC–DC Converter for Power Distribution in Microgrid,' IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4667-4680, Nov. 2012. H. Bai and C. Mi, 'Eliminate Reactive Power and Increase System Efficiency of Isolated Bidirectional Dual-Active-Bridge DC–DC Converters Using Novel Dual-Phase-Shift Control,' IEEE Trans. Power Electron., vol. 23, no. 6, pp. 2905-2914, Nov. 2008. B. Zhao, Q. Song, and W. Liu, 'Efficiency Characterization and Optimization of Isolated Bidirectional DC–DC Converter Based on Dual-Phase-Shift Control for DC Distribution Application,' IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1711-1727, April 2013. B. Zhao, Q. Song, W. Liu, and W. Sun, 'Current-Stress-Optimized Switching Strategy of Isolated Bidirectional DC–DC Converter With Dual-Phase-Shift Control,' IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4458-4467, Oct. 2013. M. Kim, M. Rosekeit, S. Sul, and R. W. A. A. De Doncker, 'A dual-phase-shift control strategy for dual-active-bridge DC-DC converter in wide voltage range,' in Proc. IEEE 8th Int. Conf. Power Electron. ECCE Asia, 2011, pp. 364–371. X. Liu et al., 'Novel Dual-Phase-Shift Control With Bidirectional Inner Phase Shifts for a Dual-Active-Bridge Converter Having Low Surge Current and Stable Power Control,' IEEE Trans. Power Electron., vol. 32, no. 5, pp. 4095-4106, May 2017. S. Chakraborty and S. Chattopadhyay, 'Fully ZVS, Minimum RMS Current Operation of the Dual-Active Half-Bridge Converter Using Closed-Loop Three-Degree-of-Freedom Control,' IEEE Trans. Power Electron., vol. 33, no. 12, pp. 10188-10199, Dec. 2018. S. Wang, Z. Zheng, C. Li, K. Wang, and Y. Li, 'Time Domain Analysis of Reactive Components and Optimal Modulation for Isolated Dual Active Bridge DC/DC Converters,' IEEE Trans. Power Electron., vol. 34, no. 8, pp. 7143-7146, Aug. 2019. F. Wu, F. Feng, and H. B. Gooi, 'Cooperative Triple-Phase-Shift Control for Isolated DAB DC–DC Converter to Improve Current Characteristics,' IEEE Trans. Ind. Electron., vol. 66, no. 9, pp. 7022-7031, Sept. 2019. Z. Guo, K. Sun, T. Wu, and C. Li, 'An Improved Modulation Scheme of Current-Fed Bidirectional DC–DC Converters For Loss Reduction,' IEEE Trans. Power Electron., vol. 33, no. 5, pp. 4441-4457, May 2018. D. Sha, J. Zhang, X. Wang, and W. Yuan, 'Dynamic Response Improvements of Parallel-Connected Bidirectional DC–DC Converters for Electrical Drive Powered by Low-Voltage Battery Employing Optimized Feedforward Control,' IEEE Trans. Power Electron., vol. 32, no. 10, pp. 7783-7794, Oct. 2017. H. Xiao and S. Xie, 'A ZVS Bidirectional DC–DC Converter With Phase-Shift Plus PWM Control Scheme,' IEEE Trans. Power Electron., vol. 23, no. 2, pp. 813-823, March 2008. D. Sha, Q. Lin, F. You, X. Wang, and G. Xu, 'A ZVS Bidirectional Three-Level DC–DC Converter With Direct Current Slew Rate Control of Leakage Inductance Current,' IEEE Trans. Ind. Appl., vol. 52, no. 3, pp. 2368-2377, May-June 2016. H. Park, M. Kim, and J. Jung, 'Investigation of Zero Voltage Switching Capability for Bidirectional Series Resonant Converter Using Phase-Shift Modulation,' IEEE Trans. Power Electron., vol. 34, no. 9, pp. 8842-8858, Sept. 2019. S. Shao, H. Chen, X. Wu, J. Zhang, and K. Sheng, 'Circulating Current and ZVS-on of a Dual Active Bridge DC-DC Converter: A Review,' IEEE Access, vol. 7, pp. 50561-50572, 2019. B. Zhao, Q. Song, W. Liu, G. Liu, and Y. Zhao, 'Universal High-Frequency-Link Characterization and Practical Fundamental-Optimal Strategy for Dual-Active-Bridge DC-DC Converter Under PWM Plus Phase-Shift Control,' IEEE Trans. Power Electron., vol. 30, no. 12, pp. 6488-6494, Dec. 2015. S. Dusmez, A. Hasanzadeh, and A. Khaligh, 'Comparative Analysis of Bidirectional Three-Level DC–DC Converter for Automotive Applications,' IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3305-3315, May 2015 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81803 | - |
| dc.description.abstract | "本論文提出一種應用於主動箝位電流饋入式雙主動橋式(Active Clamped Current-Fed Dual Active Bridge, AC-CFDAB)轉換器之二次側調變方法。由於低壓側電流饋入端的電感電流與漏感電流的不匹配會導致低壓側開關在截止時會有電壓突波,因此藉由增加主動箝位電路來吸收此不匹配電流。然而,在過去文獻中,本電路架構之升降壓操作皆未使用負載側的主動開關,因此本論文基於過去之升降壓操作方法增加二次側調變方法,使全部開關在降壓模式與升壓模式皆能達到零電壓切換,以提升轉換器效率,並藉由改變低壓側開關以及高壓側開關的同步方式來實現雙向功率的傳輸。 另外,在模式轉換的過程中,快速的電感電流變化會使得主動箝位電容電壓急遽變化,連帶導致漏感電流在暫態時變化量過大,容易造成轉換器損壞。因此本論文藉由LC串聯諧振的模型,取其諧振週期的數倍去計算模式轉換時的時間,以達到穩定的雙向功率傳輸。本論文詳細介紹並說明二次側調變方法之降壓模式與升壓模式的操作原理、數學公式推導以及軟切換條件的分析,並藉由1kW的AC-CFDAB轉換器的電腦模擬與實作結果來驗證本論文所提出方法的正確性與表現。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T03:03:56Z (GMT). No. of bitstreams: 1 U0001-0508202121462400.pdf: 9676369 bytes, checksum: 88681215c501bfd4cab0841787b97341 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員審定書 i 致謝 ii 摘要 iii ABSTRACT iv 目錄 v 圖目錄 vii 表目錄 xii 第一章 緒論 1 1-1 研究背景 1 1-2 文獻回顧與動機 2 1-3 章節概要 3 第二章 主動箝位電流饋入式雙主動橋式轉換器 5 2-1 電路架構 5 2-2 降壓模式 6 2-2.1 零電壓切換之電路操作分析 6 2-2.2 零電壓與零電流切換之電路操作分析 9 2-3 升壓模式 12 2-3.1 電路操作分析 12 2-3.2 穩態分析與電路參數設計 15 第三章 二次側調變方法應用於雙向功率傳輸 16 3-1 原理分析 16 3-2 降壓模式 19 3-2.1 電路操作分析 19 3-2.2 穩態分析 23 3-2.3 軟切換條件分析 28 3-3 升壓模式 36 3-3.1 電路操作分析 36 3-3.2 穩態分析 40 3-3.3 軟切換條件分析 42 3-4 控制方法與雙向功率傳輸策略 45 第四章 電腦模擬驗證 48 4-1 降壓模式 49 4-2 升壓模式 54 4-3 雙向功率傳輸 60 第五章 硬體電路設計及控制程式 65 5-1 電力級硬體電路 65 5-2 控制級硬體電路 66 5-2.1 數位信號處理器 66 5-2.2 電壓偵測電路 67 5-2.3 電流偵測電路 68 5-2.4 開關驅動電路 69 5-3 控制程式流程 70 5-3.1 系統主程式 70 5-3.2 中斷副程式 72 第六章 硬體電路實作驗證 74 6-1 實作電路及實驗設置 74 6-2 降壓模式 76 6-3 升壓模式 84 6-4 雙向功率傳輸 92 第七章 結論與未來發展 97 7-1 結論 97 7-2 未來研究方向 97 參考文獻 99 | |
| dc.language.iso | zh-TW | |
| dc.subject | 二次側調變方法 | zh_TW |
| dc.subject | 雙向功率傳輸 | zh_TW |
| dc.subject | 主動箝位 | zh_TW |
| dc.subject | 電流源型雙主動橋 | zh_TW |
| dc.subject | 雙向直流直流轉換器 | zh_TW |
| dc.subject | bidirectional power transmission | en |
| dc.subject | bidirectional DC/DC converter | en |
| dc.subject | current-fed dual active bridge | en |
| dc.subject | active clamp | en |
| dc.subject | secondary-side modulation | en |
| dc.title | 二次側調變方法之主動箝位電流饋入式雙主動橋式轉換器 | zh_TW |
| dc.title | Secondary-Side Modulation Method for Active-Clamped Current-Fed Dual Active Bridge Converters | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳偉倫(Hsin-Tsai Liu),陳景然(Chih-Yang Tseng),唐丞譽 | |
| dc.subject.keyword | 雙向直流直流轉換器,電流源型雙主動橋,主動箝位,二次側調變方法,雙向功率傳輸, | zh_TW |
| dc.subject.keyword | bidirectional DC/DC converter,current-fed dual active bridge,active clamp,secondary-side modulation,bidirectional power transmission, | en |
| dc.relation.page | 107 | |
| dc.identifier.doi | 10.6342/NTU202102129 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-08-23 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-09-01 | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0508202121462400.pdf | 9.45 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
