請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/817完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 裴思達(Stathes Paganis) | |
| dc.contributor.author | Chia-Hung Chien | en |
| dc.contributor.author | 簡嘉泓 | zh_TW |
| dc.date.accessioned | 2021-05-11T05:07:46Z | - |
| dc.date.available | 2019-02-19 | |
| dc.date.available | 2021-05-11T05:07:46Z | - |
| dc.date.copyright | 2019-02-19 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-02-14 | |
| dc.identifier.citation | [1] Rende Steerenberg (15 May, 2018) LHC Report: The LHC is full! Retrieved from https://home.cern/tags/lhc-report
[2] CMS Collaboration,“The CMS experiment at the CERN LHC”, JINST 3,S08004 (2008). [3] CMS Collaboration, ”CMS Technical Design Report for the Pixel Detector Upgrade”CERN-LHCC-2012-016 ; CMS-TDR-11 [4] DetectorPlot, http://cms-project-ecal-p5.web.cern.ch/cms-project-ECAL-P5/approved/detector.htm [5] P. Paolucci, R. Hadjiiska et al. ”Cms resistive plate chamber overview, from the present system to the upgrade phase I” arXiv: 1209.1941[physics.ins-det]. doi: 10.1088/1748-0221/8/04/P04005. [6] HGCAL Beam test group, ”First beam tests of prototype silicon modules for the CMS High Granularity Endcap Calorimeter” [7] CMS collaboration, ”The Phase-2 Upgrade of the CMS Endcap Calorimeter Technical Design Report”, CERN-LHCC-2017-023 [8] GEANT4 reference physics lists, http://geant4.web.cern.ch/support [9] S. Callier et al., ”SKIROC2, front end chip designed to readout the Electromagnetic CALorimeter at the ILC”, 2011 JINST 6 C12040. [10] H2 beam line, http://sba.web.cern.ch/sba/BeamsAndAreas/h2/H2manual.html. [11] J. Spanggaard, ”Delay wire chambers — A users guide”, SL-Note-98-023 (1998). [12] S. Paganis, A. Psallidas and A. Steen, ”Optimizing the performance of a high-granularity silicon-pad EM calorimeter” JINST 12 (2017) no. 06, P06013 [13] J. Kvasnicka, on behalf of the CALICE collaboration, ”Data Acquisition System for the CALICE AHCAL Calorimeter” arXiv:1701.02232 [physics.ins-det] [14] https://project-hl-lhc-industry.web.cern.ch/content/project-schedule, visited on (27 December, 2018) [15] CMS Collaboration, “Technical Prorosal for the upgrade of the CMS Detector through 2020”, CMS UG–TP–1 [16] CMS Collaboration, “Technical Proposal for the Phase-II Upgrade of the Compact Muon Solenoid”, Technical Report CERN-LHCC-2015-010, LHCC-P-008, 2015. [17] T. T. Bo¨hlen et al., “The FLUKA Code: Developments and Challenges for High Energy and Medical Applications”, Nucl. Data Sheets 120 (2014) 211, doi:10.1016/j.nds.2014.07.049. [18] Mukund Gupta, ”Calculation of radiation length in materials”, PH-EP-Tech-Note-2010-013. [19] Particle Data Group collaboration, Phys. Rev. D 98, 030001 (2018). [20] CMSSW software for CMS, https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookCMSSWFramework. [21] GEANT4 collaboration, S. Agostinelli et al., GEANT4: A Simulation toolkit, Nucl.Instrum. Meth. A506 (2003) 250. [22] Richard C. Fernow, ”Introduction to experimental particle physics”(1986) [23] William R. Leo, ”Techniques for Nuclear and Particle Physics Experiment”(1987) [24] N. Abgrall et all, ”NA61/SHINE facility at the CERN SPS: beams and detector system”, arXiv:1401.4699v1 [25] A. Benaglia, ”The CMS ECAL performance with examples”, doi:10.1088/1748-0221/9/02/C02008 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/handle/123456789/817 | - |
| dc.description.abstract | 世界上最大且能量最高的粒子加速器–大型強子對撞機(LHC),正邁向「高亮度」(high luminosity)的運行階段,在下個階段,LHC會產生現階段10倍的累積亮度(integrated luminosity),這會使偵測器面臨兩個重大的挑戰:輻射損傷(尤其是偵測器前緣)以及源於碰撞點產生的事件數上升使得單一事件的分析變得困難。
高粒度量能器(HGCAL)是緊湊秒子線圈實驗(CMS)的其中一項升級計畫,HGCAL將會取代現有的量能器兩端,包含電磁量能器與強子量能器的部分。其中電磁量能器與一大部分強子量能器會採用0.5到1平方公分大小的矽感應器,而其他部分則會以小的閃爍體探測器並運用矽光電倍增器做讀出,其中矽感應器精確的時間量測能幫助分辨短時間內產生的大量事件。 在2016年,以現存CALICE實驗開發的Skiroc2前端積體電路製程的第一個六角形矽偵測模組(module)已投入測試,而新的前端積體電路–Skiroc2cms也在2017及2018年投入測試。 本篇論文會以2016的測試粒子資料為主體進行2項研究,第一項是電子能量的回推(重建),有兩種方法會被運用並比較;第二項研究則是運用射叢粒子(particle shower)在偵測器內的型態所定義的變數分辨電子與π介子。 本篇將詳細說明2016年所進行的粒子測試以及其實驗裝置、訊號重建與蒙地卡羅(Monte carlo)模擬的方法,而2017/2018年所進行的粒子測試之資料重建方法也將被大略提及。 | zh_TW |
| dc.description.abstract | The world's largest and most powerful particle accelerator, Large Hadron Collider(LHC), is proceeding to the High Luminosity phase. LHC will deliver 10 times more integrated luminosity than now. It will lead to significant challenges for radiation damage and event pileup on detectors, especially in the endcap part of the detector.
High-Granularity Calorimeter(HGCAL) is the chosen technology by the Compact Muon Solenoid(CMS) experiment as part of the phase 2 upgrading program. Consisting of the electron-magnetic and hadronic sections, HGCAL will replace the existing endcap calorimeters. The electromagnetic section and a large fraction of the hadronic section will be based on hexagonal silicon sensors of 0.5–1 $cm^{2}$ cell size, while the rest of the hadronic section will use small scintillator with silicon photomultiplier(SiPM) readout. The high-precision in timing capabilities of silicon will be helpful to pileup rejection. First hexagonal silicon modules using the existing Skiroc2 front-end ASIC developed for CALICE has been tested in 2016. New front-end ASIC named Skiroc2cms is tested in 2017 and 2018. This thesis will provide 2 studies based on one of the beam test data in 2016. The first study is the energy calibration of the electron. Two different methods will be explained and compared. The second study is the electron pion separation by the shower-shape variable. The test beam setup, data reconstruction and Monte Carlo generation of the 2016 test beam will be mentioned. Furthermore, the studies of the data reconstruction in 2017/2018 beam tests will be briefly explained. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-11T05:07:46Z (GMT). No. of bitstreams: 1 ntu-108-R05222051-1.pdf: 18756024 bytes, checksum: 4c59f54b4b5b3cf8ff86770a0e883c5e (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 1 Introduction 1
1.1 Energy loss in the material . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Minimum ionizing particle (MIP) . . . . . . . . . . . . . . . . . . . 3 1.1.2 Landau fluctuation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Calorimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Particle shower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.2 Electromagnetic shower . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.3 Hadronic shower . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 EM calorimeter performance . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 The large hadron collider (LHC) and the compact muon solenoid (CMS) 8 2.1 The large hadron collider . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 The compact muon solenoid detector . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 Coordinate system in the CMS detector . . . . . . . . . . . . . . . 9 2.2.2 Magnet configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.3 Tracking system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.4 Electromagnetic calorimeter(ECAL) . . . . . . . . . . . . . . . . . . 12 2.2.5 Hadronic calorimeter(HCAL) . . . . . . . . . . . . . . . . . . . . . 14 2.2.6 The muon detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.7 Trigger system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 The CMS phase 2 upgrading and the high granularity calorimeter (HG- CAL) 17 3.1 Silicon as active material in sampling calorimeter . . . . . . . . . . . . . . 18 3.2 Overview to HGCAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3 Motivation for beam test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4 Test beams and the H2 beam line 22 4.1 SPS and the target 2 (T2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2 H2 beam line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.3 Beam generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5 Beam test prototypes 24 5.1 Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.1.1 Module in 2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.1.2 Module in 2017/2018 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.2 Trigger system of beam test . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.3 Delayed wire chamber (DWC) . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.4 Setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.4.1 2016 CERN beam test - configuration 2 . . . . . . . . . . . . . . . . 29 5.4.2 2017 July beam test . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.4.3 2018 June beam test . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6 Readout chips 33 6.1 Skiroc2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6.2 Skiroc2cms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6.2.1 Skiroc2cms single moudule data taking . . . . . . . . . . . . . . . . 34 6.2.2 Skiroc2cms CHIP configuration . . . . . . . . . . . . . . . . . . . . 35 6.2.3 Skiroc2cms readout chain and DAQ . . . . . . . . . . . . . . . . . . 41 7 Data reconstruction 42 7.1 Data reconstruction in 2016 . . . . . . . . . . . . . . . . . . . . . . . . . . 42 7.1.1 Pedestal and noise study . . . . . . . . . . . . . . . . . . . . . . . . 43 7.1.2 MIP calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 7.1.3 Gain calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 7.2 Data reconstruction in 2017/2018 . . . . . . . . . . . . . . . . . . . . . . . 47 8 Monte Carlo (MC) sample generation 50 8.1 Data/MC comparison in 2016 . . . . . . . . . . . . . . . . . . . . . . . . . 51 9 Performance of the prototypes 58 9.1 Electron energy calibration by 2016 CERN 8-module data . . . . . . . . . 58 9.1.1 Data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 9.1.2 dEdx method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 9.1.3 Sampling fraction (SF) method . . . . . . . . . . . . . . . . . . . . 59 9.1.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 9.2 Pi/e separation from shower-shape variable by 2016 CERN 8-module data 66 9.2.1 Data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 9.2.2 2D re-weighting of MC beam profile . . . . . . . . . . . . . . . . . . 67 9.2.3 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 9.2.4 Electron contamination in pion data . . . . . . . . . . . . . . . . . 70 9.2.5 Lateral shower-shape variables . . . . . . . . . . . . . . . . . . . . . 70 9.3 Brief look to 2018 CE-E prototype performance . . . . . . . . . . . . . . . 75 10 Conclusion and outlook 76 | |
| dc.language.iso | en | |
| dc.subject | 粒子辨識 | zh_TW |
| dc.subject | 粒子物理 | zh_TW |
| dc.subject | 高能物理 | zh_TW |
| dc.subject | 量能器 | zh_TW |
| dc.subject | 偵測器 | zh_TW |
| dc.subject | 量能方法 | zh_TW |
| dc.subject | 能量重建 | zh_TW |
| dc.subject | High energy physics | en |
| dc.subject | Detector | en |
| dc.subject | Calorimeter | en |
| dc.subject | Calorimeter methods | en |
| dc.subject | Particle physics | en |
| dc.subject | Particle identification | en |
| dc.subject | Energy reconstruction | en |
| dc.title | 研究CMS高粒度量能器之原型於CERN SPS測試粒子束下的表現 | zh_TW |
| dc.title | Performance of a Novel CMS High Granularity Calorimeter(HGCAL) Prototype in Beam Tests at the CERN SPS | en |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 呂榮祥(Rong-Shyang Lu),陳凱風(Kai-Feng Chen),余欣珊(Shin-Shan Yu) | |
| dc.subject.keyword | 粒子物理,高能物理,量能器,偵測器,量能方法,能量重建,粒子辨識, | zh_TW |
| dc.subject.keyword | Particle physics,High energy physics,Calorimeter methods,Calorimeter,Detector,Energy reconstruction,Particle identification, | en |
| dc.relation.page | 79 | |
| dc.identifier.doi | 10.6342/NTU201900520 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2019-02-14 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf | 18.32 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
