請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81794完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 傅立成(Li-Chen Fu) | |
| dc.contributor.author | Chih-Wei Chen | en |
| dc.contributor.author | 陳至瑋 | zh_TW |
| dc.date.accessioned | 2022-11-25T03:03:45Z | - |
| dc.date.available | 2024-09-01 | |
| dc.date.copyright | 2021-11-06 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-19 | |
| dc.identifier.citation | [1]Z. Lin, L. Wang, Z. Han, and M. Fu, “Distributed formation control of multi-agent systems using complex laplacian,”IEEE Transactions on Automatic Control, vol.59, no. 7, pp. 1765–1777, 2014. [2]S. Zhao, “Affine formation maneuver control of multiagent systems,”IEEE Transactions on Automatic Control, vol. 63, no. 12, pp. 4140–4155, 2018. [3]H. Ebel and P. Eberhard, “A comparative look at two formation control approaches based on optimization and algebraic graph theory,”Robotics and Autonomous Systems, vol. 136, p. 103686, 2021. [4]H.Rezaee and F.Abdollahi, “Pursuit formation control scheme for double-integrator multi-agent systems,” IFAC Proceedings Volumes, vol. 47, no. 3, pp. 10054–10059,2014.[5]M.H.Trinh, C.VanNguyen, Y.H.Lim, and H.S.Ahn, “Matrix-weighted consensus and its applications,” Automatica, vol. 89, pp. 415–419, 2018. [6]D. R. Foight, M. H. de Badyn, and M. Mesbahi, “Performance and design of consensus on matrix-weighted and time-scaled graphs,” IEEE Transactions on Control of Network Systems, vol. 7, no. 4, pp. 1812–1822, 2020 [7]W. Ren and R. W. Beard, “Consensus seeking in multiagent systems under dynamically changing interaction topologies,” IEEE Transactions on automatic control,vol. 50, no. 5, pp. 655–661, 2005. [8]W. Ren, “Consensus seeking in multi-vehicle systems with a time-varying reference state,” in 2007 American Control Conference, pp. 717–722, 2007. [9]W.Ren,“Secondorder consensus algorithm with extensions to switching topologies and reference models,” in 2007 American Control Conference, pp.1431–1436, 2007. [10]Y.W. Chen, M.L. Chiang, and L.C. Fu, “Ordered formation control and affine transformation of multi-agent systems without global reference frame,” in 2019 American Control Conference (ACC), pp. 45–50, 2019. [11]X. Li, F. Liu, M. Buss, and S. Hirche, “Fully distributed consensus control for linear multiagent systems: A reduced order adaptive feedback approach,” IEEE Transactions on Control of Network Systems, vol. 7, no. 2, pp. 967–976, 2019. [12]C. Yan, W. Zhang, H. Su, and X. Li, “Adaptive bipartite time-varying output formation control for multiagent systems on signed directed graphs,” IEEE Transactions on Cybernetics, 2021. [13]M. Ille and T. Namerikawa, “Collision avoidance between multi-uav-systems considering formation control using mpc,” in 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp. 651–656, IEEE, 2017. [14]A.Mondal, C.Bhowmick, L.Behera, and M.Jamshidi, “Trajectory tracking by multiple agents in formation with collision avoidance and connectivity assurance, ”IEEE Systems Journal, vol. 12, no. 3, p. 2449, 2018. [15]Q. Zhang, M. Jiang, Z. Feng, W. Li, W. Zhang, and M. Pan, “Iot enabled uav: Network architecture and routing algorithm, ”IEEE Internet of Things Journal, vol. 6,no. 2, pp. 3727–3742, 2019. [16]S. Zhao, D. V. Dimarogonas, Z. Sun, and D. Bauso, “A general approach to coordination control of mobile agents with motion constraints, ”IEEE Transactions on Automatic Control, vol. 63, no. 5, pp. 1509–1516, 2017. [17]X. Li, C. Wen, and C. Chen, “Adaptive formation control of networked robotic systems with bearing only measurements,”IEEE transactions on cybernetics, 2020. [18]K. Fathian, S. Safaoui, T. H. Summers, and N. R. Gans, “Robust 3d distributed formation control with collision avoidance and application to multirotor aerial vehicles,” in 2019 International Conference on Robotics and Automation (ICRA), pp. 9209–9215, IEEE, 2019. [19]R. Tron, J. Thomas, G. Loianno, K. Daniilidis, and V. Kumar, “Bearing-only formation control with auxiliary distance measurements, leaders, and collision avoidance, ”in 2016 IEEE 55th Conference on Decision and Control (CDC), pp. 1806–1813,2016. [20]Y. Xu, S. Zhao, D. Luo, and Y. You, “Affine formation maneuver control of highorder multiagent systems over directed networks, ”Automatica, vol.118, p.109004, 2020. [21]G. Wen, Z. Peng, A. Rahmani, and Y. Yu, “Distributed leader-following consensus for second-order multi-agent systems with nonlinear inherent dynamics, ”International Journal of Systems Science, vol. 45, no. 9, pp. 1892–1901, 2014. [22]S. Ghapani, J. Mei, W. Ren, and Y. Song, “Fully distributed flocking with a moving leader for lagrange networks with parametric uncertainties,” Automatica, vol. 67, pp. 67–76, 2016. [23]L. Chen, J. Mei, C. Li, and G. Ma, “Distributed leader–follower affine formation maneuver control for high-order multiagent systems,” IEEE Transactions on Automatic Control, vol. 65, no. 11, pp. 4941–4948, 2020. [24]X. Dong, B. Yu, Z. Shi, and Y. Zhong, “Time-varying formation control for unmanned aerial vehicles: Theories and applications,” IEEE Transactions on Control Systems Technology, vol. 23, no. 1, pp. 340–348, 2014. [25]Z. Sun, B. Li, W. Cai, X. Liao, and Y. Song, “Virtual leader based robust adaptive formation control of multi-unmanned ground vehicles (ugvs),” in 2007 American Control Conference (ACC), pp. 1876–1881, 2007. [26]D. Lee, A. Franchi, H. I. Son, C. Ha, H. H. Bülthoff, and P. R. Giordano, “Semiautonomous haptic teleoperation control architecture of multiple unmanned aerial vehicles,” IEEE/ASME Transactions on Mechatronics, vol. 18, no. 4, pp. 1334–1345, 2013. [27]B. Q. Nguyen, Y. L. Chuang, D. Tung, C. Hsieh, Z. Jin, L. Shi, D. Marthaler, A. Bertozzi, and R. M. Murray, “Virtual attractive repulsive potentials for cooperative control of second order dynamic vehicles on the caltech mvwt,” in Proceedings of American Control Conference, pp. 1084–1089, 2005. [28]N. E. Leonard and E. Fiorelli, “Virtual leaders, artificial potentials and coordinated control of groups,” in Proceedings of the 40th IEEE Conference on Decision and Control, vol. 3, pp. 2968–2973, 2001. [29]S. Zhao, Z. Li, and Z. Ding, “Bearing-only formation tracking control of multiagent systems,” IEEE Transactions on Automatic Control, vol. 64, no. 11, pp. 4541–4554, 2019. [30]A. Karimian and R. Tron, “Bearing-only consensus and formation control under directed topologies,” in 2020 American Control Conference (ACC), pp. 3503–3510, 2020. [31]S. M. Kang and H. S. Ahn, “Shape and orientation control of moving formation in multi-agent systems without global reference frame,” Automatica, vol. 92, pp. 210–216, 2018. [32]Y. Wang, T. Shen, C. Song, and Y. Zhang, “Circle formation control of secondorder multi-agent systems with bounded measurement errors,” Neurocomputing, vol. 397, pp. 160–167, 2020. [33]V. Gazi, “Swarm aggregations using artificial potentials and sliding mode control,” IEEE Transactions on Robotics, vol. 21, no. 6, pp. 1208–1214, 2005. [34]R. Sepulchre, D. A. Paley, and N. E. Leonard, “Stabilization of planar collective motion: All to all communication,” IEEE Transactions on Automatic Control, vol. 52, no. 5, pp. 811–824, 2007. [35]A. Belabbas, S. Mou, A. S. Morse, and B. D. Anderson, “Robustness issues with undirected formations,” in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pp. 1445–1450, 2012. [36]T. H. Summers, C. Yu, S. Dasgupta, and B. D. Anderson, “Control of minimally persistent leader-remote-follower and coleader formations in the plane,” IEEE Transactions on Automatic Control, vol. 56, no. 12, pp. 2778–2792, 2011. [37]L. Dai, Q. Cao, Y. Xia, and Y. Gao, “Distributed mpc for formation of multi-agent systems with collision avoidance and obstacle avoidance,”Journal of the Franklin Institute, vol. 354, no. 4, pp. 2068–2085, 2017. [38]T. Baca, D. Hert, G. Loianno, M. Saska, and V. Kumar, “Model predictive trajectory tracking and collision avoidance for reliable outdoor deployment of unmanned aerial vehicles,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6753–6760, 2018. [39]J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-body collision avoidance,” in Robotics research, pp. 3–19, 2011. [40]H. Niu, C. Ma, and P. Han, “Directional optimal reciprocal collision avoidance,”Robotics and Autonomous Systems, vol. 136, p. 103705, 2021. [41]L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates for collisions free multirobot systems,” IEEE Transactions on Robotics, vol. 33, no. 3, pp. 661–674, 2017. [42]J. Fu, G. Wen, X. Yu, and Z. G. Wu, “Distributed formation navigation of constrained second-order multiagent systems with collision avoidance and connectivity maintenance,” IEEE Transactions on Cybernetics, 2020. [43]T. Ibuki, S. Wilson, J. Yamauchi, M. Fujita, and M. Egerstedt, “Optimization-based distributed flocking control for multiple rigid bodies,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1891–1898, 2020. [44]Y. Lin, M. Wang, X. Zhou, G. Ding, and S. Mao, “Dynamic spectrum interaction of uav flight formation communication with priority: A deep reinforcement learning approach,” IEEE Transactions on Cognitive Communications and Networking, vol. 6, no. 3, pp. 892–903, 2020. [45]Z. Sui, Z. Pu, J. Yi, and S. Wu, “Formation control with collision avoidance through deep reinforcement learning using model guided demonstration,” IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 6, pp. 2358–2372,2020. [46]Y. Lyu, J. Hu, B. M. Chen, C. Zhao, and Q. Pan, “Multivehicle flocking with collision avoidance via distributed model predictive control,” IEEE Transactions on Cybernetics, vol. 51, no. 5, pp. 2651–2662, 2021. [47]Y. Kuriki and T. Namerikawa, “Consensus-based cooperative formation control with collision avoidance for a multi-uav system,” in 2014 American Control Conference (ACC), pp. 2077–2082, 2014. [48]Q. Shi, T. Li, J. Li, C. P. Chen, Y. Xiao, and Q. Shan, “Adaptive leader-following formation control with collision avoidance for a class of second-order nonlinear multiagent systems,” Neurocomputing, vol. 350, pp. 282–290, 2019. [49]G. Xia, X. Xia, and X. Sun, “Formation control with collision avoidance for underactuated surface vehicles,” Asian Journal of Control, 2021. [50]G. Freudenthaler and T. Meurer, “Pde-based multi-agent formation control using flatness and backstepping: Analysis, design and robot experiments,” Automatica, vol. 115, p. 108897, 2020. [51]J. AlonsoMora, A. Breitenmoser, M. Rufli, R. Siegwart, and P. Beardsley, “Multirobot system for artistic pattern formation,” in 2011 IEEE international conference on robotics and automation, pp. 4512–4517, 2011. [52]J. Seo, Y. Kim, S. Kim, and A. Tsourdos, “Collision avoidance strategies for unmanned aerial vehicles in formation flight,” IEEE Transactions on aerospace and electronic systems, vol. 53, no. 6, pp. 2718–2734, 2017. [53]S. Shao, Y. Peng, C. He, and Y. Du, “Efficient path planning for uav formation via comprehensively improved particle swarm optimization,” ISA transactions, vol. 97, pp. 415–430, 2020. [54]J. P. Hespanha, D. Liberzon, and A. R. Teel, “Lyapunov conditions for input-to-state stability of impulsive systems,” Automatica, vol. 44, no. 11, pp. 2735–2744, 2008. [55]G. M. Atınç, D. M. Stipanović, and P. G. Voulgaris, “A swarm-based approach to dynamic coverage control of multi-agent systems,” Automatica, vol. 112, p. 108637, 2020. [56]J. Hu, H. Zhang, L. Liu, X. Zhu, C. Zhao, and Q. Pan, “Convergent multiagent formation control with collision avoidance,” IEEE Transactions on Robotics, vol. 36, no. 6, pp. 1805–1818, 2020. [57]F. D’Urso, C. Santoro, and F. F. Santoro, “Integrating heterogeneous tools for physical simulation of multi-unmanned aerial vehicles.,” in WOA, pp. 10–15, 2018. [58]I. A. Mason, V. Nigam, C. Talcott, and A. Brito, “A framework for analyzing adaptive autonomous aerial vehicles,” in International Conference on Software Engineering and Formal Methods, pp. 406–422, 2017. [59]W. Yao, W. Dai, J. Xiao, H. Lu, and Z. Zheng, “A simulation system based on ros and gazebo for robocup middle size league,” in 2015 IEEE international conference on robotics and biomimetics (ROBIO), pp. 54–59, 2015. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81794 | - |
| dc.description.abstract | 本論文旨在研究多代理人系統(MAS)的三維編隊調控,這些代理人以分散式之通訊方式,透過特定的通信連結進行控制,我們的控制器設計主要針對微型無人機(UAV),因此對於代理人之動態模型採用了二階積分器系統。近年來因無人機之性能提升與價格下降,使得其應用廣泛,如資料探勘、地圖建設及搜救任務等,而相關控制研究也備受關注。本論文的控制目標是實現編排幾何隊形與追蹤參考軌跡,同時確保在任何時刻無人機能避免碰撞。目前關於編隊控制文獻中,處理大量機群仍多以考慮全域通訊關係為主,在避碰演算法上,大多以兩兩互相避碰為主要策略,因此當運用於真實的多無人機群中會遇到相當大的障礙。在本研究中,我們所考慮之多無人機系統在編隊過程中只使用来自其鄰域且有通訊關係之無人機資訊,並在追蹤參考軌跡時會保持通訊連接以維持整體系統之通訊關係。而控制器之避碰演算法是基於鄰域機間的相對距離、相對速度與系統內的優先權,來達成避碰,可有效降低機載電腦之計算負擔,與解決死結(deadlock)問題。此外,透過我們所提出的隊形描述方法與適應性控制架構,本論文之控制器亦能使無人機群以給定之順序關係排成所需要之隊形。最後,我們提供一些模擬場景與結果以驗證理論推導。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T03:03:45Z (GMT). No. of bitstreams: 1 U0001-1608202114472600.pdf: 4815727 bytes, checksum: 018dbf8b657bc6ad7ef095e69a3ba33e (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 摘要 iii Abstract iv Contents vi List of Figures viii Chapter 1 Introduction 1 1.1 Motivation. . . . . . 1 1.2 Literature Review . . . . . . . . . . . . . . . . . 3 1.3 Contribution. . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Thesis Organization. . . . . . . . . . . . . . . . . . . . . . 8 Chapter 2 Preliminaries 9 2.1 Related Notations in Algebraic Graph Theory. . . . . . 9 2.2 The Consensus Algorithm. . . . . . . . . . . . . . . . . . 11 2.3 The Switching Communication. . . . . . . . . . . . . . . . . . . . 12 2.4 Lyapunov Stability with Switching Communication. . . . . . . . . . 13 Chapter 3 Maneuver Control System in 3D Space 14 3.1 Descriptions of the Desired Geometric Pattern in 3D Space. . . . . . 14 3.2 Problem Formulation for Maneuver Control. . . . . . . . . . . . . . 16 3.3 Maneuver Controller Design and Stability Analysis. . . . . . . . . . 18 3.3.1 Estimation Law for Desired Geometric Pattern Vectorh∗k. . . . . . 19 3.3.2 Estimation of desired position error and Consensus Algorithm. . . 21 3.3.3 Maneuver Controller Design. . . . . . . . . . . . . . . . . . . . . 23 3.3.4 Maneuver Algorithm with Extensions to Switching Communications 25 3.4 Discussion on Existing Works. . . . . . . . . . . . . . . . . . . . . 29 Chapter 4 Collision Avoidance 30 4.1 Problem Formulation for Collision Avoidance. . . . . . . . . . . . . 30 4.2 Algorithm Design for Collision Avoidance. . . . . . . . . . . . . . 32 4.2.1 Collision Avoidance Algorithm with Priority. . . . . . . . . . . . 33 4.2.2 Maneuver Controller with Collision Avoidance Design. . . . . . . 38 4.3 Discussion on Existing Works. . . . . . . . . . . . . . . . . . . . . 40 Chapter 5 Simulation Results 42 5.1 Results of Formation and Maneuver Control. . . . . . . . . . . . . . 42 5.2 Results of Maneuver Control with Collision Avoidance. . . . . . . . 50 5.3 Software In The Loop Simulation. . . . . . . . . . . . . . . . . . . 61 Chapter 6 Conclusion 65 References 66 | |
| dc.language.iso | en | |
| dc.subject | 多代理人系統 | zh_TW |
| dc.subject | 無人機 | zh_TW |
| dc.subject | 編隊控制 | zh_TW |
| dc.subject | 避免碰撞 | zh_TW |
| dc.subject | multi-agent system | en |
| dc.subject | unmanned aerial vehicle | en |
| dc.subject | maneuver control | en |
| dc.subject | collision avoidance | en |
| dc.title | 二階多無人機系統於三維空間中之分散式編隊避碰控制 | zh_TW |
| dc.title | Distributed Maneuver Control with Collision Avoidance for Second-Order Multiple UAV System in Three-Dimensional Space | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江明理(Hsin-Tsai Liu),詹景裕(Chih-Yang Tseng),李蔡彥,劉吉軒 | |
| dc.subject.keyword | 編隊控制,避免碰撞,多代理人系統,無人機, | zh_TW |
| dc.subject.keyword | maneuver control,collision avoidance,multi-agent system,unmanned aerial vehicle, | en |
| dc.relation.page | 73 | |
| dc.identifier.doi | 10.6342/NTU202102396 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-08-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-09-01 | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1608202114472600.pdf | 4.7 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
