Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 基因體暨蛋白體醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81781
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張以承(Yi-Cheng Chang)
dc.contributor.authorTung-Yuan Leeen
dc.contributor.author李東原zh_TW
dc.date.accessioned2022-11-25T03:03:28Z-
dc.date.available2026-08-25
dc.date.copyright2021-09-16
dc.date.issued2021
dc.date.submitted2021-08-25
dc.identifier.citation1. Ozkok, A. and C.L. Edelstein, Pathophysiology of cisplatin-induced acute kidney injury. BioMed research international, 2014. 2014: p. 967826-967826. 2. Bellomo, R., J.A. Kellum, and C. Ronco, Acute kidney injury. The Lancet, 2012. 380(9843): p. 756-766. 3. Ronco, C., R. Bellomo, and J.A. Kellum, Acute kidney injury. The Lancet, 2019. 394(10212): p. 1949-1964. 4. Zuk, A. and J.V. Bonventre, Acute Kidney Injury. Annual Review of Medicine, 2016. 67(1): p. 293-307. 5. Pabla, N., et al., The copper transporter Ctr1 contributes to cisplatin uptake by renal tubular cells during cisplatin nephrotoxicity. American journal of physiology. Renal physiology, 2009. 296(3): p. F505-F511. 6. Wang, D. and S.J. Lippard, Cellular processing of platinum anticancer drugs. Nature Reviews Drug Discovery, 2005. 4(4): p. 307-320. 7. Martinho, N., et al., Cisplatin-Membrane Interactions and Their Influence on Platinum Complexes Activity and Toxicity. Frontiers in Physiology, 2019. 9(1898). 8. Jiang, M., et al., Cisplatin-induced apoptosis in p53-deficient renal cells via the intrinsic mitochondrial pathway. American journal of physiology. Renal physiology, 2009. 296(5): p. F983-F993. 9. Suliman, F.A., et al., Renoprotective effect of the isoflavonoid biochanin A against cisplatin induced acute kidney injury in mice: Effect on inflammatory burden and p53 apoptosis. International Immunopharmacology, 2018. 61: p. 8-19. 10. Tsuruya, K., et al., Direct involvement of the receptor-mediated apoptotic pathways in cisplatin-induced renal tubular cell death. Kidney International, 2003. 63(1): p. 72-82. 11. Wei, Q., et al., Activation and involvement of p53 in cisplatin-induced nephrotoxicity. Am J Physiol Renal Physiol, 2007. 293(4): p. F1282-91. 12. Gavathiotis, E., et al., BH3-Triggered Structural Reorganization Drives the Activation of Proapoptotic BAX. Molecular Cell, 2010. 40(3): p. 481-492. 13. Ramesh, G. and W.B. Reeves, TNF-α mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. The Journal of Clinical Investigation, 2002. 110(6): p. 835-842. 14. Razzaque, M.S., et al., Cisplatin-induced apoptosis in human proximal tubular epithelial cells is associated with the activation of the Fas/Fas ligand system. Histochemistry and Cell Biology, 1999. 111(5): p. 359-365. 15. Wang, X. and A.R. Parrish, Loss of α(E)-catenin promotes Fas mediated apoptosis in tubular epithelial cells. Apoptosis, 2015. 20(7): p. 921-929. 16. Jiang, M., et al., Regulation of PUMA-α by p53 in cisplatin-induced renal cell apoptosis. Oncogene, 2006. 25(29): p. 4056-4066. 17. Perše, M. and Ž. Večerić-Haler, Cisplatin-Induced Rodent Model of Kidney Injury: Characteristics and Challenges. BioMed Research International, 2018. 2018: p. 1462802. 18. Sánchez-González, P.D., et al., An integrative view of the pathophysiological events leading to cisplatin nephrotoxicity. Critical Reviews in Toxicology, 2011. 41(10): p. 803-821. 19. Kang, K.P., et al., Alpha-lipoic acid attenuates cisplatin-induced acute kidney injury in mice by suppressing renal inflammation. Nephrology Dialysis Transplantation, 2009. 24(10): p. 3012-3020. 20. McSweeney, K.R., et al., Mechanisms of Cisplatin-Induced Acute Kidney Injury: Pathological Mechanisms, Pharmacological Interventions, and Genetic Mitigations. Cancers, 2021. 13(7): p. 1572. 21. Tusgaard, B., et al., Cisplatin decreases renal cyclooxygenase-2 expression and activity in rats. Acta Physiologica, 2011. 202(1): p. 79-90. 22. Li, W., et al., Ginsenoside Rg5 Ameliorates Cisplatin-Induced Nephrotoxicity in Mice through Inhibition of Inflammation, Oxidative Stress, and Apoptosis. Nutrients, 2016. 8(9): p. 566. 23. Potočnjak, I., et al., Stevia and stevioside protect against cisplatin nephrotoxicity through inhibition of ERK1/2, STAT3, and NF-κB activation. Food and Chemical Toxicology, 2017. 107: p. 215-225. 24. Mukhopadhyay, P., et al., Mitochondrial-targeted antioxidants represent a promising approach for prevention of cisplatin-induced nephropathy. Free radical biology medicine, 2012. 52(2): p. 497-506. 25. Reyes-Fermín, L.M., et al., The Protective Effect of Alpha-Mangostin against Cisplatin-Induced Cell Death in LLC-PK1 Cells is Associated to Mitochondrial Function Preservation. Antioxidants (Basel, Switzerland), 2019. 8(5): p. 133. 26. Yu, X., et al., Celastrol ameliorates cisplatin nephrotoxicity by inhibiting NF-κB and improving mitochondrial function. EBioMedicine, 2018. 36: p. 266-280. 27. Ma, Q., et al., Astragalus Polysaccharide Attenuates Cisplatin-Induced Acute Kidney Injury by Suppressing Oxidative Damage and Mitochondrial Dysfunction. BioMed Research International, 2020. 2020: p. 2851349. 28. Zsengellér, Z.K., et al., Cisplatin Nephrotoxicity Involves Mitochondrial Injury with Impaired Tubular Mitochondrial Enzyme Activity. Journal of Histochemistry Cytochemistry, 2012. 60(7): p. 521-529. 29. Yimit, A., et al., Differential damage and repair of DNA-adducts induced by anti-cancer drug cisplatin across mouse organs. Nature Communications, 2019. 10(1): p. 309. 30. Lu, Q., et al., Rheb1 protects against cisplatin-induced tubular cell death and acute kidney injury via maintaining mitochondrial homeostasis. Cell Death Disease, 2020. 11(5): p. 364. 31. Malik, S., et al., Telmisartan ameliorates cisplatin-induced nephrotoxicity by inhibiting MAPK mediated inflammation and apoptosis. European Journal of Pharmacology, 2015. 748: p. 54-60. 32. Fang, C.-y., et al., Natural products: potential treatments for cisplatin-induced nephrotoxicity. Acta Pharmacologica Sinica, 2021. 33. Marchitti, S.A., et al., Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Expert Opin Drug Metab Toxicol, 2008. 4(6): p. 697-720. 34. Larson, H.N., H. Weiner, and T.D. Hurley, Disruption of the Coenzyme Binding Site and Dimer Interface Revealed in the Crystal Structure of Mitochondrial Aldehyde Dehydrogenase #x201c;Asian #x201d; Variant *. Journal of Biological Chemistry, 2005. 280(34): p. 30550-30556. 35. Larson, H.N., et al., Structural and Functional Consequences of Coenzyme Binding to the Inactive Asian Variant of Mitochondrial Aldehyde Dehydrogenase: ROLES OF RESIDUES 475 AND 487*. Journal of Biological Chemistry, 2007. 282(17): p. 12940-12950. 36. Steinmetz, C.G., et al., Structure of mitochondrial aldehyde dehydrogenase: the genetic component of ethanol aversion. Structure, 1997. 5(5): p. 701-711. 37. Zhong, H. and H. Yin, Role of lipid peroxidation derived 4-hydroxynonenal (4-HNE) in cancer: Focusing on mitochondria. Redox Biology, 2015. 4: p. 193-199. 38. Nene, A., et al., Aldehyde dehydrogenase 2 activation and coevolution of its εPKC-mediated phosphorylation sites. Journal of Biomedical Science, 2017. 24(1): p. 3. 39. Joshi, A.U., et al., Aldehyde dehydrogenase 2 activity and aldehydic load contribute to neuroinflammation and Alzheimer’s disease related pathology. Acta Neuropathologica Communications, 2019. 7(1): p. 190. 40. Li, H., et al., Refined geographic distribution of the oriental ALDH2*504Lys (nee 487Lys) variant. Annals of human genetics, 2009. 73(Pt 3): p. 335-345. 41. Perez-Miller, S., et al., Alda-1 is an agonist and chemical chaperone for the common human aldehyde dehydrogenase 2 variant. Nature structural molecular biology, 2010. 17(2): p. 159-164. 42. Zhang, T., et al., Alda-1, an ALDH2 activator, protects against hepatic ischemia/reperfusion injury in rats via inhibition of oxidative stress. Free Radical Research, 2018. 52(6): p. 629-638. 43. Hua, Y., et al., Alda‑1, an aldehyde dehydrogenase‑2 agonist, improves long‑term survival in rats with chronic heart failure following myocardial infarction. Molecular medicine reports, 2018. 18(3): p. 3159-3166. 44. Sidramagowda Patil, S., et al., Alda-1 Attenuates Hyperoxia-Induced Acute Lung Injury in Mice. Frontiers in Pharmacology, 2021. 11(1868). 45. Chen, C.-H., et al., Activation of Aldehyde Dehydrogenase-2 Reduces Ischemic Damage to the Heart. Science, 2008. 321(5895): p. 1493. 46. Yang, W., Y.-T. Yu, and C. Jiang, Mitochondrial aldehyde dehydrogenase-2 binding compounds and methods of use thereof. 2018, Google Patents. 47. Lee, H.-L., et al., A Novel ALDH2 Activator AD-9308 Improves Diastolic and Systolic Myocardial Functions in Streptozotocin-Induced Diabetic Mice. Antioxidants, 2021. 10(3): p. 450. 48. Okada, Y., et al., Meta-analysis identifies multiple loci associated with kidney function-related traits in east Asian populations. Nature genetics, 2012. 44(8): p. 904-909. 49. Zhang, H. and H.J. Forman, Signaling by 4-hydroxy-2-nonenal: Exposure protocols, target selectivity and degradation. Archives of Biochemistry and Biophysics, 2017. 617: p. 145-154. 50. Csala, M., et al., On the role of 4-hydroxynonenal in health and disease. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2015. 1852(5): p. 826-838. 51. Dalleau, S., et al., Cell death and diseases related to oxidative stress:4-hydroxynonenal (HNE) in the balance. Cell Death Differentiation, 2013. 20(12): p. 1615-1630. 52. Huang, H., et al., DNA cross-link induced by trans-4-hydroxynonenal. Environmental and molecular mutagenesis, 2010. 51(6): p. 625-634. 53. Breitzig, M., et al., 4-Hydroxy-2-nonenal: a critical target in oxidative stress? American journal of physiology. Cell physiology, 2016. 311(4): p. C537-C543. 54. Pabla, N. and Z. Dong, Cisplatin nephrotoxicity: Mechanisms and renoprotective strategies. Kidney International, 2008. 73(9): p. 994-1007. 55. Katsuda, H., et al., Protecting Cisplatin-Induced Nephrotoxicity with Cimetidine Does Not Affect Antitumor Activity. Biological and Pharmaceutical Bulletin, 2010. 33(11): p. 1867-1871. 56. Townsend, D.M. and M.H. Hanigan, Inhibition of gamma-glutamyl transpeptidase or cysteine S-conjugate beta-lyase activity blocks the nephrotoxicity of cisplatin in mice. The Journal of pharmacology and experimental therapeutics, 2002. 300(1): p. 142-148. 57. Ramesh, G. and W.B. Reeves, TNF-alpha mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J Clin Invest, 2002. 110(6): p. 835-42. 58. Kulbe, H., et al., The inflammatory cytokine tumor necrosis factor-alpha generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer research, 2007. 67(2): p. 585-592. 59. Tikoo, K., P. Kumar, and J. Gupta, Rosiglitazone synergizes anticancer activity of cisplatin and reduces its nephrotoxicity in 7, 12-dimethyl benz{a}anthracene (DMBA) induced breast cancer rats. BMC Cancer, 2009. 9: p. 107. 60. Capizzi, R.L., Amifostine reduces the incidence of cumulative nephrotoxicity from cisplatin: laboratory and clinical aspects. Semin Oncol, 1999. 26(2 Suppl 7): p. 72-81. 61. Park, J.Y., et al., Protective Effects of Processed Ginseng and Its Active Ginsenosides on Cisplatin-Induced Nephrotoxicity: In Vitro and in Vivo Studies. Journal of Agricultural and Food Chemistry, 2015. 63(25): p. 5964-5969. 62. Janssen, A.J., et al., Spectrophotometric assay for complex I of the respiratory chain in tissue samples and cultured fibroblasts. Clin Chem, 2007. 53(4): p. 729-34. 63. Spinazzi, M., et al., Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nature Protocols, 2012. 7(6): p. 1235-1246. 64. Hu, Z., et al., VDR activation attenuate cisplatin induced AKI by inhibiting ferroptosis. Cell Death Disease, 2020. 11(1): p. 73. 65. Mukhopadhyay, P., et al., Poly(ADP-ribose) polymerase-1 is a key mediator of cisplatin-induced kidney inflammation and injury. Free Radical Biology and Medicine, 2011. 51(9): p. 1774-1788. 66. Santos, N.A.G., et al., Cisplatin-induced nephrotoxicity is associated with oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria. Archives of Toxicology, 2007. 81(7): p. 495-504. 67. Chiou, Y.-Y., et al., Kidney-based in vivo model for drug-induced nephrotoxicity testing. Scientific Reports, 2020. 10(1): p. 13640. 68. Yang, Y., et al., Ursodeoxycholic acid protects against cisplatin-induced acute kidney injury and mitochondrial dysfunction through acting on ALDH1L2. Free Radical Biology and Medicine, 2020. 152: p. 821-837. 69. Brooks, C., et al., Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. The Journal of Clinical Investigation, 2009. 119(5): p. 1275-1285. 70. Zhan, M., et al., Mitochondrial dynamics: regulatory mechanisms and emerging role in renal pathophysiology. Kidney International, 2013. 83(4): p. 568-581. 71. Yang, Y., et al., Mitochondrial dysregulation and protection in cisplatin nephrotoxicity. Archives of toxicology, 2014. 88(6): p. 1249-1256. 72. Mapuskar, K.A., et al., Persistent increase in mitochondrial superoxide mediates cisplatin-induced chronic kidney disease. Redox Biology, 2019. 20: p. 98-106. 73. Gunness, P., et al., Acyclovir-induced nephrotoxicity: the role of the acyclovir aldehyde metabolite. Transl Res, 2011. 158(5): p. 290-301. 74. Hu, J.-F., et al., Inhibition of ALDH2 expression aggravates renal injury in a rat sepsis syndrome model. Experimental and therapeutic medicine, 2017. 14(3): p. 2249-2254. 75. Kim, J., et al., Aldehyde dehydrogenase 2*2 knock-in mice show increased reactive oxygen species production in response to cisplatin treatment. Journal of biomedical science, 2017. 24(1): p. 33-33. 76. Lindgren, D., et al., Isolation and Characterization of Progenitor-Like Cells from Human Renal Proximal Tubules. The American Journal of Pathology, 2011. 178(2): p. 828-837. 77. Tang, S., et al., Aldehyde dehydrogenase-2 acts as a potential genetic target for renal fibrosis. Life Sciences, 2019. 239: p. 117015. 78. Xu, T., et al., Aldehyde dehydrogenase 2 protects against acute kidney injury by regulating autophagy via Beclin-1 pathway. JCI Insight, 2021.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81781-
dc.description.abstract急性腎損傷,是常見疾病,全世界每年約有1300萬的病患,其中甚至有170萬導致死亡,致病原因有失血、大量缺血、敗血症、尿路阻塞、腎毒性物質。順鉑(cisplatin),為一種常用癌症化學治療藥物,但卻具腎毒性。 在腎臟中,順鉑透過進入腎小管上皮細胞,與核酸的鹼基結合,導致細胞下游的凋亡機制啟動,腎小管上皮細胞也可釋放TNF-ɑ引發發炎反應,最終都將導致細胞死亡,腎絲球過濾率下降,引發急性腎損傷。過去文獻中發現順鉑誘發之急性腎損傷,也會導致腎小管上皮細胞的氧化壓力提高,包含細胞膜脂肪酸過氧化生成的有毒醛類4-hydroxynonenal (4-HNE)含量上升,4-HNE具有高生物反應活性,可以和核酸結合導致雙股斷裂,也可以和蛋白質結合修飾造成功能缺損。此外,在急性腎損傷的腎小管上皮細胞也發現有粒線體機能與能量代謝能力受損的情況。 Acetaldehyde dehydrogenase 2 (ALDH2)是位於粒線體中負責代謝醛類的酵素。AD-9308,是一個具有高度專一性新型水溶性ALDH2促進劑,可以改善原先酵素活性的缺損,降低4-HNE含量,並促進能量代謝。本篇研究建立順鉑誘發之急性腎損傷小鼠模式,發現給予AD-9308可以減緩腎臟損傷,改善腎功能與提高小鼠存活率,提高ALDH2酵素活性並降低4-HNE含量與氧化壓力、減少細胞凋亡路徑的活化、改善粒線體的缺損。急性腎損傷目前的治療主要是支持性治療,無有效治療,本研究利用活化ALDH2減緩急性腎損傷,提供順鉑誘發之急性腎損傷治療上的契機。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T03:03:28Z (GMT). No. of bitstreams: 1
U0001-2108202123492000.pdf: 15011026 bytes, checksum: 908ce16b446daa8ec1878483a4a937f8 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員審定書 i 誌謝 ii 中文摘要 iii ABSTRACT iv CONTENTS vi List of Figures viii List of Tables ix Chapter I ― Introduction 1 1. Pathophysiology of cisplatin-induced acute kidney injury (AKI) 1 2. Characteristics of Aldehyde dehydrogenase 2 (ALDH2) and application of its agonist 5 3. Properties of 4-Hydroxynonenal (4-HNE) 7 4. Renoprotective approaches and current treatments of cisplatin-induced AKI 8 5. Rationale of this study 9 Chapter II ― Materials and Methods 11 1. Animal model 11 2. Western blot analysis 11 3. IHC and HE stain 12 4. ALDH2 enzymatic activity assay 13 5. Mitochondria isolation 14 6. Mitochondrial respiratory chain complexes enzymatic activity assay 15 7. Serum biochemical parameters 15 8. 4-HNE measurement 15 9. Kidney injury markers measurement 16 10. Transmission electron microscopy (TEM) scanning 16 11. Cell culture and treatments 17 12. Statistics 17 Chapter III ― Results 18 1. Therapeutic effect of ALDH2 agonist AD-9308 on kidney-related phenotypes in cisplatin-AKI mice 18 2. AD-9308 alleviates renal tubule injury in cisplatin-AKI model 18 3. AD-9308 reduces apoptosis pathway activation in cisplatin-AKI model 19 4. AD-9308 enhances ALDH2 enzymatic activity and reduces the levels of 4-HNE in cisplatin-AKI mice 20 5. AD-9308 enhances mitochondrial functions in cisplatin-AKI mice 21 Chapter IV ― Discussion 23 FIGURES 27 REFERENCES 47 APPENDIX 53
dc.language.isoen
dc.subject粒線體zh_TW
dc.subject細胞凋亡zh_TW
dc.subject4-羥基壬烯醛zh_TW
dc.subject乙醛脫氫酶zh_TW
dc.subject急性腎損傷zh_TW
dc.subject順鉑zh_TW
dc.subjectapoptosisen
dc.subjectmitochondriaen
dc.subjectALDH2en
dc.subjectacute kidney injuryen
dc.subjectcisplatinen
dc.subject4-HNEen
dc.titleALDH2促進劑AD-9308減緩順鉑誘發之小鼠急性腎損傷模式zh_TW
dc.title"AD-9308, an ALDH2 agonist alleviates cisplatin-induced acute kidney injury in mice"en
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.advisor-orcid張以承(0000-0002-8077-5011)
dc.contributor.oralexamcommittee莊立民(Hsin-Tsai Liu),姜文智(Chih-Yang Tseng),黃祥博
dc.subject.keyword順鉑,急性腎損傷,乙醛脫氫酶,4-羥基壬烯醛,細胞凋亡,粒線體,zh_TW
dc.subject.keywordcisplatin,acute kidney injury,ALDH2,4-HNE,apoptosis,mitochondria,en
dc.relation.page55
dc.identifier.doi10.6342/NTU202102576
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-08-25
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept基因體暨蛋白體醫學研究所zh_TW
dc.date.embargo-lift2026-08-25-
顯示於系所單位:基因體暨蛋白體醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-2108202123492000.pdf
  此日期後於網路公開 2026-08-25
14.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved