Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81753
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊曜宇(Eric Y. Chuang)
dc.contributor.authorChia-Hsin Wuen
dc.contributor.author吳佳興zh_TW
dc.date.accessioned2022-11-24T09:26:46Z-
dc.date.available2022-11-24T09:26:46Z-
dc.date.copyright2021-11-05
dc.date.issued2020
dc.date.submitted2021-10-22
dc.identifier.citation1 Findlay, J. M. et al. Differential clonal evolution in oesophageal cancers in response to neo-adjuvant chemotherapy. Nature communications 7, 11111, doi:10.1038/ncomms11111 (2016). 2 Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. The New England journal of medicine 366, 883-892, doi:10.1056/NEJMoa1113205 (2012). 3 Forbes, S. A. et al. COSMIC: somatic cancer genetics at high-resolution. Nucleic acids research 45, D777-d783, doi:10.1093/nar/gkw1121 (2017). 4 Sondka, Z. et al. The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers. Nature reviews. Cancer 18, 696-705, doi:10.1038/s41568-018-0060-1 (2018). 5 Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 490, 61-70, doi:10.1038/nature11412 (2012). 6 Juhlin, C. C. et al. Whole-exome sequencing characterizes the landscape of somatic mutations and copy number alterations in adrenocortical carcinoma. J Clin Endocrinol Metab 100, E493-502, doi:10.1210/jc.2014-3282 (2015). 7 Poulos, R. C. et al. Analysis of 7,815 cancer exomes reveals associations between mutational processes and somatic driver mutations. PLoS Genet 14, e1007779, doi:10.1371/journal.pgen.1007779 (2018). 8 ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 578, 82-93, doi:10.1038/s41586-020-1969-6 (2020). 9 Rheinbay, E. et al. Analyses of non-coding somatic drivers in 2,658 cancer whole genomes. Nature 578, 102-111, doi:10.1038/s41586-020-1965-x (2020). 10 Cortés-Ciriano, I. et al. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nature genetics 52, 331-341, doi:10.1038/s41588-019-0576-7 (2020). 11 Sieverling, L. et al. Genomic footprints of activated telomere maintenance mechanisms in cancer. Nature communications 11, 733, doi:10.1038/s41467-019-13824-9 (2020). 12 Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94-101, doi:10.1038/s41586-020-1943-3 (2020). 13 Calabrese, C. et al. Genomic basis for RNA alterations in cancer. Nature 578, 129-136, doi:10.1038/s41586-020-1970-0 (2020). 14 Yizhak, K. et al. RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues. Science (New York, N.Y.) 364, doi:10.1126/science.aaw0726 (2019). 15 Drilon, A. et al. Efficacy of Larotrectinib in TRK Fusion-Positive Cancers in Adults and Children. The New England journal of medicine 378, 731-739, doi:10.1056/NEJMoa1714448 (2018). 16 Ding, L. et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481, 506-510, doi:10.1038/nature10738 (2012). 17 Rasche, L. et al. Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing. Nature communications 8, 268, doi:10.1038/s41467-017-00296-y (2017). 18 International Association of Cancer Registries. Cancer Today (powered by GLOBOCAN 2018), Available at: https://gco.iarc.fr/today/home (Accessed: 17th January 2019). 19 Dewhurst, S. M. et al. Tolerance of whole-genome doubling propagates chromosomal instability and accelerates cancer genome evolution. Cancer discovery 4, 175-185, doi:10.1158/2159-8290.Cd-13-0285 (2014). 20 Bielski, C. M. et al. Genome doubling shapes the evolution and prognosis of advanced cancers. Nature genetics 50, 1189-1195, doi:10.1038/s41588-018-0165-1 (2018). 21 Davoli, T. et al. The causes and consequences of polyploidy in normal development and cancer. Annual review of cell and developmental biology 27, 585-610, doi:10.1146/annurev-cellbio-092910-154234 (2011). 22 Ceccaldi, R. et al. Repair Pathway Choices and Consequences at the Double-Strand Break. Trends in cell biology 26, 52-64, doi:10.1016/j.tcb.2015.07.009 (2016). 23 Sfeir, A. et al. Microhomology-Mediated End Joining: A Back-up Survival Mechanism or Dedicated Pathway? Trends in biochemical sciences 40, 701-714, doi:10.1016/j.tibs.2015.08.006 (2015). 24 Lord, C. J. et al. PARP inhibitors: Synthetic lethality in the clinic. Science (New York, N.Y.) 355, 1152-1158, doi:10.1126/science.aam7344 (2017). 25 Heeke, A. L. et al. Prevalence of Homologous Recombination-Related Gene Mutations Across Multiple Cancer Types. JCO precision oncology 2018, doi:10.1200/po.17.00286 (2018). 26 Riaz, N. et al. Pan-cancer analysis of bi-allelic alterations in homologous recombination DNA repair genes. Nature communications 8, 857, doi:10.1038/s41467-017-00921-w (2017). 27 Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Science signaling 6, pl1, doi:10.1126/scisignal.2004088 (2013). 28 Ellrott, K. et al. Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines. Cell systems 6, 271-281.e277, doi:10.1016/j.cels.2018.03.002 (2018). 29 Li, H. et al. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics (Oxford, England) 25, 1754-1760, doi:10.1093/bioinformatics/btp324 (2009). 30 DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature genetics 43, 491-498, doi:10.1038/ng.806 (2011). 31 Sherry, S. T. et al. dbSNP: the NCBI database of genetic variation. Nucleic acids research 29, 308-311, doi:10.1093/nar/29.1.308 (2001). 32 Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nature biotechnology 31, 213-219, doi:10.1038/nbt.2514 (2013). 33 Costello, M. et al. Discovery and characterization of artifactual mutations in deep coverage targeted capture sequencing data due to oxidative DNA damage during sample preparation. Nucleic acids research 41, e67, doi:10.1093/nar/gks1443 (2013). 34 McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome biology 17, 122, doi:10.1186/s13059-016-0974-4 (2016). 35 Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285-291, doi:10.1038/nature19057 (2016). 36 Lin, J. C. et al. Taiwan Biobank: making cross-database convergence possible in the Big Data era. GigaScience 7, 1-4, doi:10.1093/gigascience/gix110 (2018). 37 Martincorena, I. et al. Universal Patterns of Selection in Cancer and Somatic Tissues. Cell 171, 1029-1041.e1021, doi:10.1016/j.cell.2017.09.042 (2017). 38 Tamborero, D. et al. OncodriveCLUST: exploiting the positional clustering of somatic mutations to identify cancer genes. Bioinformatics (Oxford, England) 29, 2238-2244, doi:10.1093/bioinformatics/btt395 (2013). 39 Mularoni, L. et al. OncodriveFML: a general framework to identify coding and non-coding regions with cancer driver mutations. Genome biology 17, 128, doi:10.1186/s13059-016-0994-0 (2016). 40 Tokheim, C. J. et al. Evaluating the evaluation of cancer driver genes. Proceedings of the National Academy of Sciences of the United States of America 113, 14330-14335, doi:10.1073/pnas.1616440113 (2016). 41 Vogelstein, B. et al. Cancer genome landscapes. Science (New York, N.Y.) 339, 1546-1558, doi:10.1126/science.1235122 (2013). 42 Bailey, M. H. et al. Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell 173, 371-385.e318, doi:10.1016/j.cell.2018.02.060 (2018). 43 Uhlen, M. et al. A pathology atlas of the human cancer transcriptome. Science (New York, N.Y.) 357, eaan2507, doi:10.1126/science.aan2507 (2017). 44 Alexandrov, L. B. et al. Deciphering signatures of mutational processes operative in human cancer. Cell reports 3, 246-259, doi:10.1016/j.celrep.2012.12.008 (2013). 45 Gaujoux, R. et al. A flexible R package for nonnegative matrix factorization. BMC bioinformatics 11, 367, doi:10.1186/1471-2105-11-367 (2010). 46 Blokzijl, F. et al. MutationalPatterns: comprehensive genome-wide analysis of mutational processes. Genome medicine 10, 33, doi:10.1186/s13073-018-0539-0 (2018). 47 Bergstrom, E. N. et al. SigProfilerMatrixGenerator: a tool for visualizing and exploring patterns of small mutational events. BMC genomics 20, 685, doi:10.1186/s12864-019-6041-2 (2019). 48 Shen, R. et al. FACETS: allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing. Nucleic acids research 44, e131, doi:10.1093/nar/gkw520 (2016). 49 Mermel, C. H. et al. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome biology 12, R41, doi:10.1186/gb-2011-12-4-r41 (2011). 50 Taylor-Weiner, A. et al. DeTiN: overcoming tumor-in-normal contamination. Nature methods 15, 531-534, doi:10.1038/s41592-018-0036-9 (2018). 51 Carter, S. L. et al. Absolute quantification of somatic DNA alterations in human cancer. Nature biotechnology 30, 413-421, doi:10.1038/nbt.2203 (2012). 52 Amin-Mansour, A. et al. Genomic Evolutionary Patterns of Leiomyosarcoma and Liposarcoma. Clinical cancer research : an official journal of the American Association for Cancer Research 25, 5135–5142, doi:10.1158/1078-0432.Ccr-19-0271 (2019). 53 Pereira, B. et al. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nature communications 7, 11479, doi:10.1038/ncomms11479 (2016). 54 McGranahan, N. et al. Clonal status of actionable driver events and the timing of mutational processes in cancer evolution. Sci Transl Med 7, 283ra254, doi:10.1126/scitranslmed.aaa1408 (2015). 55 Jamal-Hanjani, M. et al. Tracking the Evolution of Non-Small-Cell Lung Cancer. The New England journal of medicine 376, 2109-2121, doi:10.1056/NEJMoa1616288 (2017). 56 Jolly, C. et al. Timing somatic events in the evolution of cancer. Genome biology 19, 95, doi:10.1186/s13059-018-1476-3 (2018). 57 Abkevich, V. et al. Patterns of genomic loss of heterozygosity predict homologous recombination repair defects in epithelial ovarian cancer. British journal of cancer 107, 1776-1782, doi:10.1038/bjc.2012.451 (2012). 58 Birkbak, N. J. et al. Telomeric allelic imbalance indicates defective DNA repair and sensitivity to DNA-damaging agents. Cancer discovery 2, 366-375, doi:10.1158/2159-8290.Cd-11-0206 (2012). 59 Popova, T. et al. Ploidy and large-scale genomic instability consistently identify basal-like breast carcinomas with BRCA1/2 inactivation. Cancer research 72, 5454-5462, doi:10.1158/0008-5472.Can-12-1470 (2012). 60 Telli, M. L. et al. Homologous Recombination Deficiency (HRD) Score Predicts Response to Platinum-Containing Neoadjuvant Chemotherapy in Patients with Triple-Negative Breast Cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 22, 3764-3773, doi:10.1158/1078-0432.Ccr-15-2477 (2016). 61 Sztupinszki, Z. et al. Migrating the SNP array-based homologous recombination deficiency measures to next generation sequencing data of breast cancer. NPJ breast cancer 4, 16, doi:10.1038/s41523-018-0066-6 (2018). 62 Futreal, P. A. et al. A census of human cancer genes. Nature reviews. Cancer 4, 177-183, doi:10.1038/nrc1299 (2004). 63 Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415-421, doi:10.1038/nature12477 (2013). 64 Formisano, L. et al. Association of FGFR1 with ERalpha Maintains Ligand-Independent ER Transcription and Mediates Resistance to Estrogen Deprivation in ER(+) Breast Cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 23, 6138-6150, doi:10.1158/1078-0432.Ccr-17-1232 (2017). 65 Karlsson, E. et al. The mTOR effectors 4EBP1 and S6K2 are frequently coexpressed, and associated with a poor prognosis and endocrine resistance in breast cancer: a retrospective study including patients from the randomised Stockholm tamoxifen trials. Breast cancer research : BCR 15, R96, doi:10.1186/bcr3557 (2013). 66 Mertins, P. et al. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62, doi:10.1038/nature18003 (2016). 67 von Wahlde, M. K. et al. Intratumor Heterogeneity of Homologous Recombination Deficiency in Primary Breast Cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 23, 1193-1199, doi:10.1158/1078-0432.Ccr-16-0889 (2017). 68 Turner, N. et al. Hallmarks of 'BRCAness' in sporadic cancers. Nature reviews. Cancer 4, 814-819, doi:10.1038/nrc1457 (2004). 69 Vollebergh, M. A. et al. Genomic patterns resembling BRCA1- and BRCA2-mutated breast cancers predict benefit of intensified carboplatin-based chemotherapy. Breast cancer research : BCR 16, R47, doi:10.1186/bcr3655 (2014). 70 Alli, E., et al. Defective repair of oxidative dna damage in triple-negative breast cancer confers sensitivity to inhibition of poly(ADP-ribose) polymerase. Cancer research 69, 3589-3596, doi:10.1158/0008-5472.Can-08-4016 (2009). 71 Hastak, K. et al. Synergistic chemosensitivity of triple-negative breast cancer cell lines to poly(ADP-Ribose) polymerase inhibition, gemcitabine, and cisplatin. Cancer research 70, 7970-7980, doi:10.1158/0008-5472.Can-09-4521 (2010). 72 Davies, H. et al. HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat Med 23, 517-525, doi:10.1038/nm.4292 (2017). 73 Patch, A. M. et al. Whole-genome characterization of chemoresistant ovarian cancer. Nature 521, 489-494, doi:10.1038/nature14410 (2015). 74 Nik-Zainal, S. et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 534, 47-54, doi:10.1038/nature17676 (2016). 75 Siegel, R. L. et al. Cancer statistics, 2020. CA: a cancer journal for clinicians 70, 7-30, doi:10.3322/caac.21590 (2020). 76 Polyak, K. Heterogeneity in breast cancer. The Journal of clinical investigation 121, 3786-3788, doi:10.1172/jci60534 (2011). 77 Anderson, S. J. et al. Prognosis after ipsilateral breast tumor recurrence and locoregional recurrences in patients treated by breast-conserving therapy in five National Surgical Adjuvant Breast and Bowel Project protocols of node-negative breast cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 27, 2466-2473, doi:10.1200/jco.2008.19.8424 (2009). 78 Fisher, B. et al. Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. The New England journal of medicine 347, 1233-1241, doi:10.1056/NEJMoa022152 (2002). 79 Neuman, H. B. et al. Risk of Synchronous Distant Recurrence at Time of Locoregional Recurrence in Patients With Stage II and III Breast Cancer (AFT-01). Journal of clinical oncology : official journal of the American Society of Clinical Oncology 36, 975-980, doi:10.1200/jco.2017.75.5389 (2018). 80 Yates, L. R. et al. Genomic Evolution of Breast Cancer Metastasis and Relapse. Cancer cell 32, 169-184.e167, doi:10.1016/j.ccell.2017.07.005 (2017). 81 Ciriello, G. et al. Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell 163, 506-519, doi:10.1016/j.cell.2015.09.033 (2015). 82 Nik-Zainal, S. et al. Mutational Signatures in Breast Cancer: The Problem at the DNA Level. Clinical cancer research : an official journal of the American Association for Cancer Research 23, 2617-2629, doi:10.1158/1078-0432.Ccr-16-2810 (2017). 83 Brown, D. et al. Phylogenetic analysis of metastatic progression in breast cancer using somatic mutations and copy number aberrations. Nature communications 8, 14944, doi:10.1038/ncomms14944 (2017). 84 Ng, C. K. Y. et al. Genetic Heterogeneity in Therapy-Naive Synchronous Primary Breast Cancers and Their Metastases. Clinical cancer research : an official journal of the American Association for Cancer Research 23, 4402-4415, doi:10.1158/1078-0432.Ccr-16-3115 (2017). 85 Schrijver, W. et al. Mutation Profiling of Key Cancer Genes in Primary Breast Cancers and Their Distant Metastases. Cancer research 78, 3112-3121, doi:10.1158/0008-5472.Can-17-2310 (2018). 86 Savas, P. et al. The Subclonal Architecture of Metastatic Breast Cancer: Results from a Prospective Community-Based Rapid Autopsy Program 'CASCADE'. PLoS medicine 13, e1002204, doi:10.1371/journal.pmed.1002204 (2016). 87 Bolger, A. M. et al. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England) 30, 2114-2120, doi:10.1093/bioinformatics/btu170 (2014). 88 Kim, S. et al. Strelka2: fast and accurate calling of germline and somatic variants. Nature methods 15, 591-594, doi:10.1038/s41592-018-0051-x (2018). 89 Fan, Y. et al. MuSE: accounting for tumor heterogeneity using a sample-specific error model improves sensitivity and specificity in mutation calling from sequencing data. Genome biology 17, 178, doi:10.1186/s13059-016-1029-6 (2016). 90 Larson, D. E. et al. SomaticSniper: identification of somatic point mutations in whole genome sequencing data. Bioinformatics (Oxford, England) 28, 311-317, doi:10.1093/bioinformatics/btr665 (2012). 91 Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome research 22, 568-576, doi:10.1101/gr.129684.111 (2012). 92 Diossy, M. et al. Breast cancer brain metastases show increased levels of genomic aberration-based homologous recombination deficiency scores relative to their corresponding primary tumors. Annals of oncology : official journal of the European Society for Medical Oncology 29, 1948-1954, doi:10.1093/annonc/mdy216 (2018). 93 Bertucci, F. et al. Genomic characterization of metastatic breast cancers. Nature 569, 560-564, doi:10.1038/s41586-019-1056-z (2019). 94 Angus, L. et al. The genomic landscape of metastatic breast cancer highlights changes in mutation and signature frequencies. Nature genetics 51, 1450-1458, doi:10.1038/s41588-019-0507-7 (2019). 95 Chakravarty, D. et al. OncoKB: A Precision Oncology Knowledge Base. JCO precision oncology 2017, doi:10.1200/po.17.00011 (2017). 96 Razavi, P. et al. The Genomic Landscape of Endocrine-Resistant Advanced Breast Cancers. Cancer cell 34, 427-438.e426, doi:10.1016/j.ccell.2018.08.008 (2018). 97 Deshwar, A. G. et al. PhyloWGS: reconstructing subclonal composition and evolution from whole-genome sequencing of tumors. Genome biology 16, 35, doi:10.1186/s13059-015-0602-8 (2015). 98 Miller, C. A. et al. Visualizing tumor evolution with the fishplot package for R. BMC genomics 17, 880, doi:10.1186/s12864-016-3195-z (2016). 99 Shannon, C. E. A mathematical theory of communication. Bell system technical journal 27, 379-423 (1948). 100 Simpson, E. H. Measurement of diversity. Nature 163, 688-688 (1949). 101 Benjamini, Y. et al. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological) 57, 289-300 (1995). 102 Knijnenburg, T. A. et al. Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas. Cell reports 23, 239-254.e236, doi:10.1016/j.celrep.2018.03.076 (2018). 103 Lord, C. J. et al. BRCAness revisited. Nature reviews. Cancer 16, 110-120, doi:10.1038/nrc.2015.21 (2016). 104 Turajlic, S. et al. Resolving genetic heterogeneity in cancer. Nat Rev Genet 20, 404-416, doi:10.1038/s41576-019-0114-6 (2019). 105 Espiritu, S. M. G. et al. The Evolutionary Landscape of Localized Prostate Cancers Drives Clinical Aggression. Cell 173, 1003-1013.e1015, doi:10.1016/j.cell.2018.03.029 (2018). 106 Almendro, V. et al. Genetic and phenotypic diversity in breast tumor metastases. Cancer research 74, 1338-1348, doi:10.1158/0008-5472.Can-13-2357-t (2014). 107 Dutta, A. K. et al. Subclonal evolution in disease progression from MGUS/SMM to multiple myeloma is characterised by clonal stability. Leukemia 33, 457-468, doi:10.1038/s41375-018-0206-x (2019). 108 Malone, E. R. et al. Molecular profiling for precision cancer therapies. Genome medicine 12, 8, doi:10.1186/s13073-019-0703-1 (2020). 109 Dees, N. D. et al. MuSiC: identifying mutational significance in cancer genomes. Genome research 22, 1589-1598, doi:10.1101/gr.134635.111 (2012). 110 Mayakonda, A. et al. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome research 28, 1747-1756, doi:10.1101/gr.239244.118 (2018). 111 Tollefson, G. A. et al. VIVA (VIsualization of VAriants): A VCF File Visualization Tool. Sci Rep 9, 12648, doi:10.1038/s41598-019-49114-z (2019). 112 Benjamin, D. et al. Calling Somatic SNVs and Indels with Mutect2. bioRxiv, 861054, doi:10.1101/861054 (2019). 113 Miller, N. A. et al. A 26-hour system of highly sensitive whole genome sequencing for emergency management of genetic diseases. Genome medicine 7, 100, doi:10.1186/s13073-015-0221-8 (2015). 114 Crowdis, J. et al. CoMut: visualizing integrated molecular information with comutation plots. Bioinformatics (Oxford, England) 36, 4348-4349, doi:10.1093/bioinformatics/btaa554 (2020). 115 Chan, T. A. et al. Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Annals of oncology : official journal of the European Society for Medical Oncology 30, 44-56, doi:10.1093/annonc/mdy495 (2019). 116 Blokzijl, F. et al. Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538, 260-264, doi:10.1038/nature19768 (2016). 117 Zitnik, M. et al. NIMFA: A Python Library for Nonnegative Matrix Factorization. arXiv:1808.01743 (2018). <https://ui.adsabs.harvard.edu/abs/2018arXiv180801743Z>. 118 Danecek, P. et al. The variant call format and VCFtools. Bioinformatics (Oxford, England) 27, 2156-2158, doi:10.1093/bioinformatics/btr330 (2011). 119 Huang, P. J. et al. CoMutPlotter: a web tool for visual summary of mutations in cancer cohorts. BMC Med Genomics 12, 99, doi:10.1186/s12920-019-0510-y (2019). 120 Pearce, T. M. et al. Interactive Browser-Based Genomics Data Visualization Tools for Translational and Clinical Laboratory Applications. J Mol Diagn 21, 985-993, doi:10.1016/j.jmoldx.2019.06.005 (2019). 121 Skidmore, Z. L. et al. GenVisR: Genomic Visualizations in R. Bioinformatics (Oxford, England) 32, 3012-3014, doi:10.1093/bioinformatics/btw325 (2016). 122 McGranahan, N. et al. Neoantigen quality, not quantity. Sci Transl Med 11, doi:10.1126/scitranslmed.aax7918 (2019).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81753-
dc.description.abstract次世代定序技術的發展、進階生醫資訊學方法的出現和大量累積的基因體數據,使得癌症基因體學的研究能得以實現,為腫瘤生物學及腫瘤病因學的領域發展開創了新的前景。本論文應用上述癌症基因體學的分析方法,以探討癌症中大片段的體細胞變異事件及癌症的演化軌跡,同時建立一套整合型的生醫資訊學分析套件,以利癌症基因體學的研究及分析。 過去的研究表示,不同乳癌亞型間好發的短片段變異及拷貝數變異皆有所差異,這也使得我們能夠假設更大片段的體細胞變異事件同樣也可能解釋乳癌亞型間的異質性。本論文首先使用116對台灣女性乳癌病人的全外顯子定序資料進行分析,除了找出驅動基因(driver genes)外,更進一步地探討全基因體倍增(whole-genome doubling; WGD)現象在不同乳癌亞型間的差異與影響,從而揭示出其與同源重組缺陷(homologous recombination deficiency; HRD)的關聯。三陰性乳癌最常出現全基因體倍增的現象,進而導致高度染色體不穩定性(chromosomal instability; CIN)。同時與管狀型乳癌相比,第二型人類上皮成長因子接受器蛋白過度表現型(HER2-enriched)乳癌發生全基因體倍增現象的時間相對較早,其腫瘤間染色體不穩定性的差異幅度也較廣泛。綜觀上述結果,染色體倍增現象的差異,同時影響同源重組缺陷的程度,也讓我們更進一步地了解台灣乳癌亞型間的腫瘤異質性,同時能更深入地了解癌症的潛在病因。 儘管對於原發病變進行適當的治療,仍然有5至10%的乳癌病人在發病後的十年內出現同側乳癌復發(ipsilateral breast tumor relapse; IBTR)的現象。因此本研究的第二個目標是對10位同側復發的乳癌病人之原發、復發和正常組織檢體進行全外顯子定序分析,以探討乳癌細胞的演化軌跡如何反映出同側乳癌復發的進展。我們發現原發及其同側復發的腫瘤間具有不同程度的同源重組缺陷、染色體不穩定性及體細胞驅動變異,並且進一步地推論出三種主要的癌症復發演化模型,分別反映出不同的突變過程及亞克隆多樣性(subclonal diversification)。最後此研究將可採取治療措施之生物標記(actionable biomarkers)與克隆結構(clonal architectures)的概念相結合,提出一個治療管理的框架,以期改善未來的治療策略。 本論文最後的研究重點,在於開發一套更加全面的體細胞突變分析套件MutScape,可用於全外顯子、全基因體定序和基因套組(gene panels)的資料上,使研究人員從各類體細胞突變之辨識工具中獲取突變資料時,能輕鬆地探索研究群體的突變特徵。此套件納入多種變異篩選及資料合併的功能,以快速排除錯誤辨識出的突變,並且執行資料註解及轉換。MutScape同時提供9種常見和進階的分析功能,並且能產生相對應的高解析度視覺化圖形,幫助研究人員進一步探索分析結果。最後,我們證明了MutScape能夠從已發表的研究及其定序資料中,正確地再現已知的研究結果,並且可透過進階的分析功能,找出過去癌症基因體學研究中尚未揭露的新發現。 整體而言,本論文的三個研究建立在癌症基因體學的方法架構下,利用次世代定序技術及生醫資訊學的演算法,發現台灣女性乳癌在不同亞型下,受到全基因體倍增的影響程度皆有所差異,同時其現象也與同源重組缺陷有所關聯。另外我們也進一步推論出三個主要的同側乳癌復發演化模型,結合藥物資訊的註解結果,提出一套改善治療管理的架構。最後則是開發出一套癌症基因體學的整合型分析套件,協助研究人員或剛入門的生物資訊分析人員,能輕鬆地進行相關的分析及研究。透過本論文的發現及方法,相信能使臨床研究人員對於台灣女性乳癌有更進一步地了解,以及能更有效率地進行癌症基因體學分析,從而達到精準醫療的目標。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T09:26:46Z (GMT). No. of bitstreams: 1
U0001-2210202101222200.pdf: 17092418 bytes, checksum: 36928821f1d8edb951a66d0d015f073f (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents"中文摘要 i Abstract iii Table of Contents v List of Figures viii List of Tables x Chapter 1. Introduction 1 1.1. Next-generation sequencing applications in cancer genomics 2 1.2. Advanced study designs in cancer genomics 6 1.3. Specific aims 8 1.4. Table 11 Chapter 2. Differential Whole-genome Doubling and Homologous Recombination Deficiencies across Breast Cancer Subtypes from the Taiwanese Population 12 2.1. Abstract 12 2.2. Introduction 13 2.3. Methods 16 2.3.1. Study population and specimens 16 2.3.2. Exome capture, library construction, and sequencing 17 2.3.3. Sequencing data processing 18 2.3.4. Variant calling 18 2.3.5. Discovery strategy for significantly mutated genes 20 2.3.6. Mutational signature analysis 21 2.3.7. Allele-specific copy number profiling 23 2.3.8. Assessment of BCTW sample quality 24 2.3.9. WGD and CIN 25 2.3.10. Clonality of somatic alterations and timing of WGD 26 2.3.11. HRD analysis 27 2.3.12. Statistics and reproducibility 28 2.4. Results 28 2.4.1. Patient characteristics 28 2.4.2. Mutational landscape of BCTW samples 29 2.4.3. WGD and CIN in breast cancer subtypes 32 2.4.4. Clonality and timing of driver events within subtypes 33 2.4.5. WGD with HRD 35 2.4.6. WGD with alternative DSB repair processes 36 2.5. Discussion 37 2.6. Figures 44 2.7. Table 54 Chapter 3. Evolutionary Trajectories and Genomic Divergence in Localized Breast Cancers after Ipsilateral Breast Tumor Recurrence 56 3.1. Abstract 56 3.2. Introduction 57 3-3. Methods 59 3.3.1. Study population and specimens 59 3.3.2. Exome capture, library construction, and sequencing 60 3.3.3. Sequencing data processing and quality assessment 61 3.3.4. Variant calling and post-processing strategies 62 3.3.5. Subclonal copy number assessment 64 3.3.6. Large-scale genomic events analysis 65 3.3.7. Assessment of bi-allelic alterations in HR-related genes 66 3.3.8. Potential driver and actionable gene identification in primary and relapsed lesions 67 3.3.9. Reconstruction of cancer clonal architecture 68 3.3.10. Trunk and branch alteration classification and clonal architecture labeling 68 3.3.11. Subclonal diversity assessment 69 3.3.12. Mutational signature analysis 70 3.3.13. Statistical analysis 71 3.4. Results 71 3.4.1. Overview of patient cohorts 71 3.4.2. HRD and CIN during BC evolution 72 3.4.3. Somatic drivers of relapse 75 3.4.4. Clonal architecture BC progression 76 3.4.5. Evolution of the mutational processes over time 80 3.4.6. Integration of actionability and tumor evolution in therapeutic decisions 81 3.5. Discussion 84 3.6. Figures 91 3.7. Tables 106 Chapter 4. MutScape: an analytical toolkit for probing the mutational landscape in cancer genomics 114 4.1. Abstract 114 4.2. Introduction 115 4-3. Methods 118 4.3.1. Data preprocessing module 118 4.3.2. Analysis and visualization module 122 4.4. Results 126 4.4.1. Mutational landscape discovery with the CoMut plot 126 4.4.2. Mutational signature analysis 128 4.4.3. Large-scale genomic events analysis 130 4.4.4. Actionable biomarker annotation 132 4.5. Discussion 132 4.6. Figures 137 4-7. Table 151 Chapter 5. Future directions 152 References 155 Appendix 166"
dc.language.isoen
dc.subject乳癌zh_TW
dc.subject同側乳癌復發zh_TW
dc.subject癌症基因體學zh_TW
dc.subject體細胞變異zh_TW
dc.subject分析套件zh_TW
dc.subject癌症演化zh_TW
dc.subjectsomatic alterationen
dc.subjectanalytics toolkiten
dc.subjectcancer evolutionen
dc.subjectCancer genomicsen
dc.subjectbreast canceren
dc.subjectipsilateral breast tumor relapseen
dc.title通過突變事件和演化軌跡了解癌症基因體學zh_TW
dc.titleUnderstanding Cancer Genomics through Mutational Events and Evolutionary Trajectoriesen
dc.date.schoolyear109-2
dc.description.degree博士
dc.contributor.oralexamcommittee賴亮全(Hsin-Tsai Liu),蔡孟勳(Chih-Yang Tseng),阮雪芬,張金堅,侯明鋒,黃俊升
dc.subject.keyword癌症基因體學,乳癌,同側乳癌復發,體細胞變異,癌症演化,分析套件,zh_TW
dc.subject.keywordCancer genomics,breast cancer,ipsilateral breast tumor relapse,somatic alteration,cancer evolution,analytics toolkit,en
dc.relation.page167
dc.identifier.doi10.6342/NTU202104007
dc.rights.note未授權
dc.date.accepted2021-10-23
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
U0001-2210202101222200.pdf
  未授權公開取用
16.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved