請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81746完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐善慧(Shan-hui Hsu) | |
| dc.contributor.author | Hung-Chuan Cheng | en |
| dc.contributor.author | 鄭鴻川 | zh_TW |
| dc.date.accessioned | 2022-11-24T09:26:39Z | - |
| dc.date.available | 2022-11-24T09:26:39Z | - |
| dc.date.copyright | 2022-02-16 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-02-11 | |
| dc.identifier.citation | [1] Shukla, V. Review of electromagnetic interference shielding materials fabricated by iron ingredients. Nanoscale Advances 2019, 1, 1640–1671. [2] Al-Falahy, N.; Alani, O. Y. Technologies for 5G networks: Challenges and opportunities. IT Professional 2017, 19 (1), 12–20. [3] Zhao, K.; Ying, Z.; He, S. EMF exposure study concerning mmwave phased array in mobile devices for 5G communication. IEEE Antennas and Wireless Propagation Letters 2016, 15, 1132–1135. [4] Syduzzaman, M.; Patwary, S. U.; Farhana, K.; Ahmed, S. Smart textiles and nano-technology: A general overview. Journal of Textile Science and Engineering 2015, 5 (1), 1000181. [5] Chen, H. C.; Lee, K. C.; Lin, J. H.; Koch, M. Comparison of electromagnetic shielding effectiveness properties of diverse conductive textiles via various measurement techniques. Journal of Materials Processing Technology 2007, 192–193, 549–554. [6] He, L. X.; Tjong, S. C. Internal field emission and conductivity relaxation in carbon nanofiber filled polymer system. Synthetic Metals 2010, 160, 2085–2088. [7] Hashemi, R.; Weng, G. J. A theoretical treatment of graphene nanocomposites with percolation threshold, tunneling-assisted conductivity and microcapacitor effect in AC and DC electrical settings. Carbon 2016, 96, 474–490. [8] Bilotti, E.; Zhang, H.; Deng, H.; Zhang, R.; Fu, Q.; Peijs, T. Controlling the dynamic percolation of carbon nanotube based conductive polymer composites by addition of secondary nanofillers: The effect on electrical conductivity and tuneable sensing behavior. Composites Science and Technology 2013, 74, 85–90. [9] Ozen, M. S.; Sancak, E.; Beyit, A.; Usta, I.; Akalin, M. Investigation of electromagnetic shielding properties of needle-punched nonwoven fabrics with stainless steel and polyester fiber. Textile Research Journal 2013, 83 (8), 849–858. [10] Kim, S. W.; Kwon, S. N.; Na, S. I. Stretchable and electrically conductive polyurethane- silver/graphene composite fibers prepared by wet-spinning process. Composites Part B: Engineering 2019, 167 (15), 573–581. [11] Lee, S.; Shin, S.; Lee, S.; Seo, J.; Lee, J.; Son, S.; Cho, H. J.; Algadi, H.; Al-Sayari, S.; Kim, D. E.; Lee, T. Ag Nanowire reinforced highly stretchable conductive fibers for wearable electronics. Advanced Functional Materials 2015, 25 (21), 3114–3121. [12] Shahzad, A.; Rasheed, A.; Khaliq, Z.; Qadir, M. B.; Khan, M. Q.; Hamdani, S. T. A.; Ali, Z.; Afzal, A.; Irfan, M.; Shafiq, M.; Kim, I. S. Processing of metallic fiber hybrid spun yarns for better electrical conductivity. Materials and Manufacturing Processes 2019, 34 (9), 1008–1015. [13] Partridge, P. G.; Ward-Close, C. M. Processing of advanced continuous fibre composites: Current practice and potential developments. International Materials Reviews 1993, 38 (1), 1–24. [14] Meille, V. Review on methods to deposit catalysts on structured surfaces. Applied Catalysis A: General 2006, 315, 1–17. [15] Shang, S. M.; Zeng, W. Conductive nanofibres and nanocoatings for smart textiles. In Multidisciplinary Know-How for Smart-Textiles Developers, 1st ed.; Kirstein, T., Eds. Woodhead Publishing Limited: Cambridge, 2013; 92–128. [16] Ali, A.; Baheti, V.; Vik, M.; Militky, J. Copper electroless plating of cotton fabrics after surface activation with deposition of silver and copper nanoparticles. Journal of Physics and Chemistry of Solids 2020, 137, 109181. [17] Little, B. K.; Li, Y. F.; Cammarata, V.; Broughton, R.; Mills, G. Metallization of Kevlar fibers with gold. ACS Applied Materials and Interfaces 2011, 3, 1965–1973. [18] Han, E. G.; Kim, E. A.; Oh, K. W. Electromagnetic interference shielding effectiveness of electroless Cu-plated PET fabrics. Synthetic Metals 2001, 123, 469–476. [19] Chun, K. Y.; Oh, Y.; Rho, J.; Ahn, J. H.; Kim, Y. J.; Choi, H. R.; Naik, S. Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nature Nanotechnology 2010, 28, 853–857. [20] Maiti, S.; Suin, S.; Shrivastava, N. K.; Khatua, B. B. A strategy to achieve high electromagnetic interference shielding and ultra low percolation in multiwall carbon nanotube–polycarbonate composites through selective localization of carbon nanotubes. RSC Advances 2014, 4, 7979–7990. [21] Rosca, I. D.; Hoa, S. V. Highly conductive multiwall carbon nanotube and epoxy composites produced by three-roll milling. Carbon 2009, 47 (8), 1958–1968. [22] Ma, R.; Kwon, S.; Zheng, Q.; Kwon, H. Y.; Kim, J. I.; Choi, H. R.; Baik, S. Carbon‐nanotube/silver networks in nitrile butadiene rubber for highly conductive flexible adhesives. Advanced Materials 2012, 24 (25), 3344–3349. [23] Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Reviews of Modern Physics 2009, 81 (1), 109–162. [24] Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321 (5887), 385–388. [25] Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nature Materials 2011, 10, 569–581. [26] Falkovsky, L. A. Optical properties of graphene. Journal of Physics: Conference Series 2008, 129, 012004. [27] Chen, T.; Xue, Y.; Roy, A. K. Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes. ACS Nano 2014, 8 (1), 1039–1046. [28] Iannazzo, D.; Pistone, A.; Salamò, M.; Galvagno, S.; Romeo, R.; Giofré, S. V.; Branca, C.; Visalli, G.; Pietro, A. D. Graphene quantum dots for cancer targeted drug delivery. International Journal of Pharmaceutics 2017, 518 (1-2), 185–192. [29] Wang, H.; Gu, W.; Xiao, N.; Ye, L.; Xu, Q. Chlorotoxin-conjugated graphene oxide for targeted delivery of an anticancer drug. International Journal of Nanomedicine 2014, 9, 1433–1442. [30] Han, Y.; Xu, Z.; Gao, C. Ultrathin graphene nanofiltration membrane for water purification. Advanced Functional Materials 2013, 23 (29), 3693–3700. [31] Belin, T.; Epron, F. Characterization methods of carbon nanotubes: A review. Materials Science and Engineering: B 2005, 119 (2), 105–118. [32] Saifuddin, N.; Raziah, A.; Junizah, A. Carbon Nanotubes: A review on structure and their interaction with proteins. Journal of Chemistry 2013, 2013, 676815. [33] Drakakis, E.; Kymakisa, E.; Tzagkarakis, G.; Louloudakis, D.; Katharakis, M.; Kenanakis, G.; Suchea, M.; Tudose, V.; Koudoumas, E. A study of the electromagnetic shielding mechanisms in the GHz frequency range of graphene based composite layers. Applied Surface Science 2017, 398, 15–18. [34] Zhang, H. B.; Yan, Q.; Zheng, W. G.; He, Z.; Yu, Z. Z. Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Applied Materials and Interfaces 2011, 3 (3), 918–924. [35] Park, J. Y.; Lee, W. J.; Kwon, B. S.; Nam, S. Y.; Choa, S. H. Highly stretchable and conductive conductors based on Ag flakes and polyester composites. Microelectronic Engineering 2018, 199, 16–23. [36] Jabari, E.; Toyserkani, E. Aerosol-Jet printing of highly flexible and conductive graphene/silver patterns. Materials Letters 2016, 174, 40–43. [37] Hassan, M.; Afify, A. S.; Ataalla, M.; Milanese, D.; Tulliani, J. M. New ZnO-based glass ceramic sensor for H2 and NO2 detection. Sensors 2017, 17, 2538. [38] Afify A. S.; Ahmad S.; Khushnood R. A.; Jagdale P.; Tulliani J. M. Elaboration and characterization of novel humidity sensor based on micro-carbonized bamboo particles. Sensors and Actuators B: Chemical 2017, 239, 1251–1256. [39] Erath D.; Filipović A.; Retzlaff M.; Goetz A. K.; Clement F.; Biro D.; Preu R. Advanced screen printing technique for high definition front side metallization of crystalline silicon solar cells. Solar Energy Materials and Solar Cells 2010, 94 (1), 57–61. [40] Hsu C. P.; Guo R. H.; Hua C. C.; Shih C. L.; Chen W. T.; Chang T. I. Effect of polymer binders in screen printing technique of silver pastes. Journal of Polymer Research 2013, 20, 277. [41] Kolanowska, A.; Janas, D.; Herman, A. P.; Je˛drysiak, R. G.; Gi_zewski, T.; Boncel, S. From blackness to invisibility – Carbon nanotubes role in the attenuation of and shielding from radio waves for stealth technology. Carbon 2018, 126, 31–52. [42] Kim, Y. J.; An, K. J.; Suh, K. S.; Member; IEEE; Choi, H. D.; Kwon, J. H.; Chung, Y. C.; Kim, W. N.; Lee, A. K.; Choi, J. I.; Yoon, H. G. Hybridization of oxidized MWNT and silver powder in polyurethane matrix for electromagnetic interference shielding application. IEEE Transactions on Electromagnetic Compatibility 2005, 47 (4), 872–879. [43] Shajari, S.; Arjmand, M.; Pawar, S. P.; Sundararaj, U.; Sudak, L. J. Synergistic effect of hybrid stainless steel fiber and carbon nanotube on mechanical properties and electromagnetic interference shielding of polypropylene nanocomposites. Composites Part B 2019, 165, 662–670. [44] Kwon, S.; Ma, R.; Kim, U.; Choi, H. R.; Baik, S. Flexible electromagnetic interference shields made of silver flakes, carbon nanotubes and nitrile butadiene rubber. Carbon 2014, 68, 118–124. [45] Jiang, D.; Murugadoss, V.; Wang, Y.; Lin, J.; Ding, T.; Wang, Z.; Shao, Q.; Wang, C.; Liu, H.; Lu, N.; Wei, R.; Subramania, A.; Guo, Z. Electromagnetic interference shielding polymers and nanocomposites - A review. Polymer Reviews 2019, 59 (2), 280–337. [46] Kumar, P.; Maiti, U. N.; Sikdar, A.; Das, T. K.; Kumar, A.; Sudarsan, V. Recent advances in polymer and polymer composites for electromagnetic interference shielding: Review and future prospects. Polymer Reviews 2019, 59 (4), 687–738. [47] Lakshmia, N. V.; Tambe, P. EMI shielding effectiveness of graphene decorated with graphene quantum dots and silver nanoparticles reinforced PVDF nanocomposites. Composite Interfaces 2017, 24 (9), 861–882. [48] Li, T. T.; Chen, A. P.; Hwang, P. W.; Pan, Y. J.; Hsing, W. H.; Lou, C. W.; Chen, Y. S.; Lin, J. H. Synergistic effects of micro-/nano-fillers on conductive and electromagnetic shielding properties of polypropylene nanocomposites. Materials and Manufacturing Processes 2018, 33 (2), 149–155. [49] Kandare, E.; Khatibi, A. A.; Yoo, S.; Wang, R.; Ma, J.; Olivier, P.; Gleizes, N.; Wang, C. H. Improving the through-thickness thermal and electrical conductivity of carbon fibre/epoxy laminates by exploiting synergy between graphene and silver nano-inclusions. Composites Part A: Applied Science and Manufacturing 2015, 69, 72–82. [50] Ali, M. M.; Maddipatla, D.; Narakathu, B. B.; Chlaihawi, A. A.; Emamian, S.; Janabi, F.; Bazuin, B. J.; Atashbar, M. Z. Printed strain sensor based on silver nanowire/silver flake composite on flexible and stretchable TPU substrate. Sensors and Actuators A: Physical 2018, 274, 109–115. [51] Kumar, R.; Mohanty, S.; Nayak, S. K. Study on epoxy resin based thermal adhesive composite incorporated with expanded graphite/silver flake hybrids. Materials Today Communications 2019, 20, 100561. [52] Shahil, K. M. F.; Balandin, A. A. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Letters 2012, 12 (2), 861–867. [53] Liu, K.; Chen, S.; Luo, Y.; Jia, D.; Gao, H.; Hu, G.; Liu, L. Edge-functionalized graphene as reinforcement of epoxy-based conductive composite for electrical interconnects. Composites Science and Technology 2013, 88, 84–91. [54] Joo, K.; Kim, T. R.; Hwang, J. W.; Yoon, J. H.; Jeong, S. Y.; Yim, M. J. Package-level EMI shielding technology with silver paste for various applications. 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), Orlando, FL, May 30-Jun 2, 2017, 1736–1741. [55] Lin, M.; Gai, Y.; Xiao, D.; Tan, H.; Zhao, Y. Preparation of pristine graphene paste for screen printing patterns with high conductivity. Chemical Physics Letters 2018, 713, 98–104. [56] Jiang, Y.; Song, H.; Xu, R. Research on the dispersion of carbon nanotubes by ultrasonic oscillation, surfactant and centrifugation respectively and fiscal policies for its industrial development. Ultrasonics - Sonochemistry 2018, 48, 30–38. [57] Komazaki, Y.; Uemura, S. Stretchable, printable, and tunable PDMS-CaCl2 microcomposite for capacitive humidity sensors on textiles. Sensors and Actuators B: Chemical 2019, 297, 126711. [58] Park, B.-G.; Jung, K.-H.; Jung, S.-B. Fabrication of the hybrid Ag paste combined by Ag nanoparticle and micro Ag flake and its flexibility. J. Alloys. Compd. 2017, 699, 1186–1191. [59] Kunpai, C.; Kang, M. G.; Song, H.-E.; Shin, D.-Y. Fine front side metallisation by stretching the dispensed silver paste filament with graphite nanofibers. Sol. Energy Mater. Sol. Cells 2017, 169, 167–176. [60] Lin, M.; Gai, Y.; Xiao, D.; Tan, H.; Zhao, Y. Preparation of pristine graphene paste for screen printing patterns with high conductivity. Chemical Physics Letters 2018, 713, 98–104. [61] Hyun, W. J.; Lim, S.; Ahn, B. Y.; Lewis, J. A.; Frisbie, C. D.; Francis, L. F. Screen printing of highly loaded silver inks on plastic substrates using silicon stencils. ACS Applied Materials and Interfaces 2015, 7 (23), 12619–12624. [62] Leng, T.; Huang, X.; Chang, K.; Chen, J.; Abdalla, M.A.; Hu, Z. Graphene nanoflakes printed flexible meandered-line dipole antenna on paper substrate for low-cost RFID and sensing applications. IEEE Antennas and Wireless Propagation Letters 2016, 15, 1565–1568. [63] Li, W.; Yang, S.; Shamim, A. Screen printing of silver nanowires: balancing conductivity with transparency while maintaining flexibility and stretchability. npj Flexible Electronics 2019, 3, 13. [64] Xu, X.; Luo, M.; He, P.; Guo, X.; Yang, J. Screen printed graphene electrodes on textile for wearable electrocardiogram monitoring. Applied Physics A 2019, 125, 714. [65] Kirkpatrick, S. Percolation and Conduction. Review of Modern Physics 1973, 45 (4), 574. [66] Choi, J. H.; Lee, K. Y.; Kim, S. W. Ultra-bendable and durable Graphene– Urethane composite/silver nanowire film for flexible transparent electrodes and electromagnetic -interference shielding. Composites Part B: Engineering 2019, 177 (15), 107406. [67] Leterrier, Y. 1-Mechanics of curvature and strain in flexible organic electronic devices. Handbook of Flexible Organic Electronics: Materials Manufacturing and Applications, Woodhead Publishing 2015, 3. [68] Hewlett-Packard Co, HP 8752 Operation Manual, Performance Tests, 1996, 4. [69] Cheng, K. B.; Ramakrishna, S.; Ueng, T. H.; Lee, M. L. Electromagnetic shielding effectiveness of the stainless steel/polyester woven fabrics. Textile Research Journal 2001, 71 (1), 42–49. [70] Hes, L.; Araujo, M. D.; Djulay, V. V. Effect of Mutual Bonding of Textile Layers on Thermal Insulation and Thermal Contact Properties of Fabric Assemblies. Textile Research Journal 1996, 66 (4), 245–250. [71] Banerjee, D.; Chattopadhyay, S. K.; Tuli, S. Infrared thermography in material research – A review of textile applications. Indian Journal of Fibre and Textile Research 2013, 38, 427–437. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81746 | - |
| dc.description.abstract | 歷經數十年數位電子資訊產業的蓬勃發展,電子產品迅速地進入人們的生活中,到處都充滿著電磁波發射源。大量電子資訊產品的使用,所產生各種不同波長的電磁波進一步導致新的環境汙染-電磁波干擾,亦會危害人體的健康。所以,改善電磁波屏蔽效率 (Electromagnetic shielding effectiveness,EMSE) 的材料或產品設計一直是眾所矚目的焦點。隨著電子產品對於多頻率同時運作的需求及對於效能的要求,高功率通訊元件運作時發射的電磁波及產生的熱量將成為產品推行的一大阻力。如何解決電磁波干擾及模組散熱問題,提升商品工作穩定性及壽命成為了新的課題。 本研究先以高分子型導電銀漿加入稀釋劑調配成適合手動網版印刷之條件後,印於聚四氟乙烯 (Polytetrafluoroethene,PTFE) 微多孔薄膜上,進行四點探針、EMSE、熱性質及機械性能等測試,並對其測試數據間之相互關係進行探討。之後進行銀漿改質導入多壁奈米碳管 (Multi-wall carbon nanotube,MWCNT) 及石墨烯片 (Graphene nanosheets,GNS),觀察導電性、導熱性、可撓性及穩定性與抗電磁波屏蔽效率的關係。最後將 PTFE/Ag/MWCNT 以及 PU HMF/Ag/GNS 導電薄膜貼合於梭織布上,成功製備出製程簡單、低成本、高電磁波遮蔽效率及具熱傳導性之可撓性抗電磁波遮蔽布。這樣的設計架構亦可應用於感測元件、穿戴裝置、家用智慧紡織品、以及所有需要導電材料的產品上。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T09:26:39Z (GMT). No. of bitstreams: 1 U0001-1002202213342400.pdf: 4855421 bytes, checksum: fbe5f86b038cdab16a6900c1e97d8db8 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | "Contents 口試委員會審定書 ......................................................................................................... I Acknowledgement ........................................................................................................... II Chinese Abstract ............................................................................................................ IV English Abstract .............................................................................................................. V Contents ........................................................................................................................ VII Figures ............................................................................................................................ X Tables .......................................................................................................................... XIV Schemes ...................................................................................................................... XVI Chapter 1:Overview ........................................................................................................ 1 1.1 Introduction ....................................................................................................... 1 1.2 Motivation ....................................................................................................... 11 Chapter 2:Materials and Methods ................................................................................. 14 2.1 Preparation of the composite conductive paste ............................................... 14 2.1.1 Introduction of the conductive paste ..................................................... 14 2.1.2 Preparation of Ag/MWCNT hybrid conductive paste .......................... 14 2.1.3 Preparation of Ag/GNS hybrid conductive paste .................................. 17 2.2 Production of conductive laminated fabrics .................................................... 19 2.2.1 Production of PTFE/Ag conductive laminated fabrics ......................... 19 2.2.2 Production of PTFE/Ag/MWCNT conductive laminated fabrics ........ 20 2.2.3 Production of PU HMF/Ag/GNS conductive laminated fabrics .......... 21 2.3 Characterization ............................................................................................... 22 2.3.1 Surface resistivity, volume resistivity and electrical conductivityMeasurements........................................................................................ 22 2.3.2 Morphology of the conductive composite film ..................................... 22 2.3.3 Measurement of laminated fabric of the conductive composite film ... 22 Chapter 3:Results and Discussions ............................................................................... 24 3.1 Results of the PTFE/Ag composite film .......................................................... 24 3.1.1 Morphological analysis of the PTFE/Ag composite film ..................... 24 3.1.2 Electrical and mechanical properties of the PTFE/Ag conductive film ....................................................................................................... 25 3.1.3 EMSE analysis of the PTFE/Ag conductive laminated fabrics ............ 26 3.2 Results of the PTFE/Ag/MWCNT composite film ......................................... 31 3.2.1 Morphological analysis of the PTFE/Ag/MWCNT composite film ..... 31 3.2.2 Electrical and mechanical properties of the PTFE/Ag/MWCNT conductive film ..................................................................................... 33 3.2.3 EMSE analysis of the PTFE/Ag/MWCNT conductive laminated fabrics .............................................................................................................. 36 3.2.4 Thermal analysis of the PTFE/Ag/MWCNT conductive laminated fabrics .................................................................................................. 37 3. 3 Results of the PU HMF/Ag/GNS composite film .......................................... 39 3.3.1 Morphological analysis of the PU HMF/Ag/GNS conductive film ....................................................................................................... 39 3.3.2 Electrical and mechanical properties of the PU HMF/Ag/GNS conductive film .................................................................................... 41 3.3.3 EMSE analysis of the PU HMF/Ag/GNS conductive laminated fabrics .............................................................................................................. 44 3.3.4 Thermal analysis of the PU HMF/Ag/GNS conductive laminated fabrics .............................................................................................................. 45 Chapter 4:Conclusion ................................................................................................... 48 Copyright Notice ............................................................................................................. 51 Reference ....................................................................................................................... 52 Appendix .......................................................................................................................... a" | |
| dc.language.iso | en | |
| dc.subject | 奈米碳管 | zh_TW |
| dc.subject | 石墨烯微片 | zh_TW |
| dc.subject | 導電銀漿 | zh_TW |
| dc.subject | 網版印刷 | zh_TW |
| dc.subject | 梭織物 | zh_TW |
| dc.subject | 電磁波屏蔽效率 | zh_TW |
| dc.subject | Electromagnetic shielding effectiveness (EMSE) | en |
| dc.subject | Screen printing | en |
| dc.subject | Woven fabrics | en |
| dc.subject | Graphene nanosheet (GNS) | en |
| dc.subject | Carbon nanotube (CNT) | en |
| dc.subject | polytetrafluoroethylene (PTFE) | en |
| dc.subject | Conductive silver paste | en |
| dc.title | 高分子微、奈米複合材料之電性及物性探討 | zh_TW |
| dc.title | A Study on the Electrical and Mechanical Properties of Micro/nano Polymer Composite Materials | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.author-orcid | 0000-0003-4215-4123 | |
| dc.contributor.oralexamcommittee | 鄭如忠(Meng-Lin Tsai),王宗櫚(Mei-Hsin Chen),童世煌(Chao-Hsin Wu),葉伊純,劉培毅 | |
| dc.subject.keyword | 電磁波屏蔽效率,導電銀漿,奈米碳管,石墨烯微片,梭織物,網版印刷, | zh_TW |
| dc.subject.keyword | Electromagnetic shielding effectiveness (EMSE),Conductive silver paste,polytetrafluoroethylene (PTFE),Carbon nanotube (CNT),Graphene nanosheet (GNS),Woven fabrics,Screen printing, | en |
| dc.relation.page | 69 | |
| dc.identifier.doi | 10.6342/NTU202200523 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2022-02-12 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1002202213342400.pdf 未授權公開取用 | 4.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
