Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81735
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor董致韡(Chih-Wei Tung)
dc.contributor.authorChih-Yung Tengen
dc.contributor.author鄧執庸zh_TW
dc.date.accessioned2022-11-24T09:26:28Z-
dc.date.available2022-11-24T09:26:28Z-
dc.date.copyright2022-03-07
dc.date.issued2022
dc.date.submitted2022-02-14
dc.identifier.citation1. Ahakpaz, F., Abdi, H., Neyestani, E., Hesami, A., Mohammadi, B., Mahmoudi, K. N., . . . Alipour, H. (2021). Genotype-by-environment interaction analysis for grain yield of barley genotypes under dryland conditions and the role of monthly rainfall. Agricultural Water Management, 245, 106665. 2. Babel, M., Turyatunga, E. (2015). Evaluation of climate change impacts and adaptation measures for maize cultivation in the western Uganda agro-ecological zone. Theoretical and applied climatology, 119(1), 239-254. 3. Balakrishnan, D., Subrahmanyam, D., Badri, J., Raju, A. K., Rao, Y. V., Beerelli, K., . . . Padmavathi, G. (2016). Genotype× environment interactions of yield traits in backcross introgression lines derived from Oryza sativa cv. Swarna/Oryza nivara. Frontiers in plant science, 7, 1530. 4. Bao, J. (2012). Toward understanding the genetic and molecular bases of the eating and cooking qualities of rice. Cereal foods world, 57(4), 148. 5. Bao, J., Kong, X., Xie, J., Xu, L. (2004). Analysis of genotypic and environmental effects on rice starch. 1. Apparent amylose content, pasting viscosity, and gel texture. Journal of Agricultural and Food Chemistry, 52(19), 6010-6016. 6. Becker, H., Leon, J. (1988). Stability analysis in plant breeding. Plant breeding, 101(1), 1-23. 7. Beckles, D. M., Thitisaksakul, M. (2014). How environmental stress affects starch composition and functionality in cereal endosperm. Starch‐Stärke, 66(1-2), 58-71. 8. Boonwichai, S., Shrestha, S., Babel, M. S., Weesakul, S., Datta, A. (2019). Evaluation of climate change impacts and adaptation strategies on rainfed rice production in Songkhram River Basin, Thailand. Science of the Total Environment, 652, 189-201. 9. Bridges Jr, W. (1989). Analysis of a plant breeding experiment with heterogeneous variances using mixed model equations. Applications of mixed models in agriculture and related disciplines, 145-151. 10. Cagampang, G. B., Perez, C. M., Juliano, B. O. (1973). A gel consistency test for eating quality of rice. Journal of the Science of Food and Agriculture, 24(12), 1589-1594. 11. Carter, A., Rajcan, I., Woodrow, L., Navabi, A., Eskandari, M. (2018). Genotype, environment, and genotype by environment interaction for seed isoflavone concentration in soybean grown in soybean cyst nematode infested and non-infested environments. Field crops research, 216, 189-196. 12. Cho, Y. G., Kang, H. J., Lee, J. S., Lee, Y. T., Lim, S. J., Gauch, H., . . . McCouch, S. R. (2007). Identification of quantitative trait loci in rice for yield, yield components, and agronomic traits across years and locations. Crop Science, 47(6), 2403-2417. 13. Core Team, R. (2013). R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna. 14. Denis, J. B., Gower, J. C. (1996). Asymptotic confidence regions for biadditive models: Interpreting genotype‐environment interactions. Journal of the Royal Statistical Society: Series C (Applied Statistics), 45(4), 479-493. 15. Desiraju, S., Rao, R., Reddy, P. M. V., Voleti, S. (2010). Climate change and its impact on rice. Rice Knowledge Management Portal (RKMP). 16. Dharmarathna, W., Herath, S., Weerakoon, S. (2014). Changing the planting date as a climate change adaptation strategy for rice production in Kurunegala district, Sri Lanka. Sustainability science, 9(1), 103-111. 17. Eberhart, S. t., Russell, W. (1966). Stability parameters for comparing varieties 1. Crop Science, 6(1), 36-40. 18. Elias, A. A., Robbins, K. R., Doerge, R., Tuinstra, M. R. (2016). Half a century of studying genotype× environment interactions in plant breeding experiments. Crop Science, 56(5), 2090-2105. 19. Fahad, S., Adnan, M., Hassan, S., Saud, S., Hussain, S., Wu, C., . . . Turan, V. (2019). Rice responses and tolerance to high temperature. In Advances in rice research for abiotic stress tolerance (pp. 201-224): Elsevier. 20. Fasahat, P., Muhammad, K., Abdullah, A., Rahman, B., Siing, N., Gauch, J., Ratnam, W. (2014). Genotype× environment assessment for grain quality traits in rice. Communications in Biometry and Crop Science, 9(2), 71-82. 21. Finlay, K., Wilkinson, G. (1963). The analysis of adaptation in a plant-breeding programme. Australian journal of agricultural research, 14(6), 742-754. 22. Gauch, H. G., Zobel, R. W. (1988). Predictive and postdictive success of statistical analyses of yield trials. Theoretical and applied genetics, 76(1), 1-10. 23. Gauch Jr, H. (1992). Statistical analysis of regional yield trials: AMMI analysis of factorial designs: Elsevier Science Publishers. 24. Gauch Jr, H. G. (2006). Statistical analysis of yield trials by AMMI and GGE. Crop Science, 46(4), 1488-1500. 25. Gauch Jr, H. G., Piepho, H. P., Annicchiarico, P. (2008). Statistical analysis of yield trials by AMMI and GGE: Further considerations. Crop Science, 48(3), 866-889. 26. Gomez, K. (1979). Effect of environment on protein and amylose content of rice. Paper presented at the Proceedings of the workshop on chemical aspects of rice grain quality. 27. Hori, K., Matsubara, K., Yano, M. (2016). Genetic control of flowering time in rice: integration of Mendelian genetics and genomics. Theoretical and applied genetics, 129(12), 2241-2252. 28. Hori, K., Nonoue, Y., Ono, N., Shibaya, T., Ebana, K., Matsubara, K., . . . Taguchi-Shiobara, F. (2015). Genetic architecture of variation in heading date among Asian rice accessions. BMC plant biology, 15(1), 1-16. 29. Huang, X., Jang, S., Kim, B., Piao, Z., Redona, E., Koh, H.-J. (2021). Evaluating Genotype× Environment Interactions of Yield Traits and Adaptability in Rice Cultivars Grown under Temperate, Subtropical and Tropical Environments. Agriculture, 11(6), 558. 30. Hussain, S., Huang, J., Huang, J., Ahmad, S., Nanda, S., Anwar, S., . . . Cao, X. (2020). Rice production under climate change: Adaptations and mitigating strategies. In Environment, Climate, Plant and Vegetation Growth (pp. 659-686): Springer. 31. Inoue, H., Nishida, H., Okumoto, Y., Tanisaka, T. (1998). Identification of an early heading time gene found in the Taiwanese rice cultivar Taichung 65. Japanese Journal of Breeding, 48(2), 103-108. 32. Islam, M., Sarker, M., Sharma, N., Rahman, M., Collard, B., Gregorio, G., Ismail, A. (2016). Assessment of adaptability of recently released salt tolerant rice varieties in coastal regions of South Bangladesh. Field crops research, 190, 34-43. 33. Juliano, B. O., Pascual, C. G. (1980). Quality characteristics of milled rice grown in different countries. IRRI research paper series(48). 34. Kang, M., Gorman, D. (1989). Genotype× environment interaction in maize. Agronomy Journal, 81(4), 662-664. 35. Kang, M. S. (1997). Using genotype-by-environment interaction for crop cultivar development. Advances in agronomy, 62, 199-252. 36. Katsura, K., Tsujimoto, Y., Oda, M., Matsushima, K.-i., Inusah, B., Dogbe, W., Sakagami, J.-I. (2016). Genotype-by-environment interaction analysis of rice (Oryza spp.) yield in a floodplain ecosystem in West Africa. European Journal of Agronomy, 73, 152-159. 37. Koundinya, A., Ajeesh, B., Hegde, V., Sheela, M., Mohan, C., Asha, K. (2021). Genetic parameters, stability and selection of cassava genotypes between rainy and water stress conditions using AMMI, WAAS, BLUP and MTSI. Scientia Horticulturae, 281, 109949. 38. Krishnamurthy, S., Sharma, P., Sharma, D., Ravikiran, K., Singh, Y., Mishra, V., . . . Sarangi, S. (2017). Identification of mega-environments and rice genotypes for general and specific adaptation to saline and alkaline stresses in India. Scientific reports, 7(1), 1-14. 39. Krishnan, P., Ramakrishnan, B., Reddy, K. R., Reddy, V. (2011). High-temperature effects on rice growth, yield, and grain quality. Advances in agronomy, 111, 87-206. 40. Lakew, T., Dessie, A., Tariku, S., Abebe, D. (2017). Evaluation of performance and yield stability analysis based on AMMI and GGE models in introduced upland rice genotypes tested across Northwest Ethiopia. International Journal of Research Studies in Agricultural Sciences (IJRSAS) Volume, 3, 17-24. 41. Li, K., Bao, J., Corke, H., Sun, M. (2017). Genotypic diversity and environmental stability of starch physicochemical properties in the USDA rice mini-core collection. Food Chemistry, 221, 1186-1196. 42. Li, Z.-K., Yu, S.-B., Lafitte, H., Huang, N., Courtois, B., Hittalmani, S., . . . Shashidhar, H. (2003). QTL× environment interactions in rice. I. Heading date and plant height. Theoretical and applied genetics, 108(1), 141-153. 43. Little, R. R. (1958). Differential effect of dilute alkali on 25 varieties of milled white rice. Cereal Chem., 35, 111-126. 44. Liu, G., Yang, J., Xu, H., Zhu, J. (2007). Influence of epistasis and QTL× environment interaction on heading date of rice (Oryza sativa L.). Journal of Genetics and Genomics, 34(7), 608-615. 45. Lou, J., Chen, L., Yue, G., Lou, Q., Mei, H., Xiong, L., Luo, L. (2009). QTL mapping of grain quality traits in rice. Journal of Cereal Science, 50(2), 145-151. 46. Lv, Z., Zhu, Y., Liu, X., Ye, H., Tian, Y., Li, F. (2018). Climate change impacts on regional rice production in China. Climatic Change, 147(3), 523-537. 47. Matsubara, K., Yano, M. (2018). Genetic and Molecular Dissection of Flowering Time Control in Rice. In T. Sasaki M. Ashikari (Eds.), Rice Genomics, Genetics and Breeding (pp. 177-190). Singapore: Springer Singapore. 48. Mitin, A. (2009). Documentation of selected adaptation strategies to climate change in rice cultivation. East Asia rice working group, 8. 49. Mooers, C. (1921). agronomic placement of varieties. Agronomy Journal. 50. Mwiinga, B., Sibiya, J., Kondwakwenda, A., Musvosvi, C., Chigeza, G. (2020). Genotype x environment interaction analysis of soybean (Glycine max (L.) Merrill) grain yield across production environments in Southern Africa. Field crops research, 256, 107922. 51. Olivoto, T., Lúcio, A. D. C. (2020). metan: An R package for multi‐environment trial analysis. Methods in Ecology and Evolution, 11(6), 783-789. 52. Olivoto, T., Lúcio, A. D., da Silva, J. A., Marchioro, V. S., de Souza, V. Q., Jost, E. (2019). Mean performance and stability in multi‐environment trials I: Combining features of AMMI and BLUP techniques. Agronomy Journal, 111(6), 2949-2960. 53. Parry, M. L., Rosenzweig, C., Iglesias, A., Livermore, M., Fischer, G. (2004). Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global environmental change, 14(1), 53-67. 54. Rosenzweig, C., Tubiello, F. N. (2007). Adaptation and mitigation strategies in agriculture: an analysis of potential synergies. Mitigation and adaptation strategies for global change, 12(5), 855-873. 55. Saito, H., Yuan, Q., Okumoto, Y., Doi, K., Yoshimura, A., Inoue, H., . . . Tanisaka, T. (2009). Multiple alleles at Early flowering 1 locus making variation in the basic vegetative growth period in rice (Oryza sativa L.). Theoretical and applied genetics, 119(2), 315-323. 56. Samonte, S. O. P., Wilson, L. T., McClung, A. M., Medley, J. C. (2005). Targeting cultivars onto rice growing environments using AMMI and SREG GGE biplot analyses. Crop Science, 45(6), 2414-2424. 57. Senguttuvel, P., Sravanraju, N., Jaldhani, V., Divya, B., Beulah, P., Nagaraju, P., . . . Gireesh, C. (2021). Evaluation of genotype by environment interaction and adaptability in lowland irrigated rice hybrids for grain yield under high temperature. Scientific reports, 11(1), 1-13. 58. Shrestha, S. (2014). Adaptation strategies for rice cultivation under climate change in Central Vietnam. In Climate Change Impacts and Adaptation in Water Resources and Water Use Sectors (pp. 93-119): Springer. 59. Shukla, G. (1972). Some statistical aspects of partitioning genotype environmental components of variability. Heredity, 29(2), 237-245. 60. Singamsetti, A., Shahi, J., Zaidi, P., Seetharam, K., Vinayan, M., Kumar, M., . . . Madankar, K. (2021). Genotype× environment interaction and selection of maize (Zea mays L.) hybrids across moisture regimes. Field crops research, 270, 108224. 61. Tong, C., Chen, Y., Tang, F., Xu, F., Huang, Y., Chen, H., Bao, J. (2014). Genetic diversity of amylose content and RVA pasting parameters in 20 rice accessions grown in Hainan, China. Food Chemistry, 161, 239-245. 62. Torres, R. O., Henry, A. (2018). Yield stability of selected rice breeding lines and donors across conditions of mild to moderately severe drought stress. Field crops research, 220, 37-45. 63. Tripathy, R., Ray, S., Singh, A. (2009). Analyzing the impact of rising temperature and CO2 on growth and yield of major cereal crops using simulation model. ISPRS archives, 38(8), W3. 64. Tsai, K.-H. (1976). Studies on earliness genes in rice, with special reference to analysis of isoalleles at the E locus. The Japanese Journal of Genetics, 51(2), 115-128. 65. Vergara, B. S., Chang, T.-T. (1985). The flowering response of the rice plant to photoperiod: a review of the literature. 66. Xing, Y., Zhang, Q. (2010). Genetic and molecular bases of rice yield. Annual review of plant biology, 61, 421-442. 67. Yan, W., Kang, M. S. (2002). GGE biplot analysis: A graphical tool for breeders, geneticists, and agronomists: CRC press. 68. Yan, W., Kang, M. S., Ma, B., Woods, S., Cornelius, P. L. (2007). GGE biplot vs. AMMI analysis of genotype‐by‐environment data. Crop Science, 47(2), 643-653. 69. Yan, W., Tinker, N. A. (2006). Biplot analysis of multi-environment trial data: Principles and applications. Canadian journal of plant science, 86(3), 623-645. 70. Yang, R. C., Crossa, J., Cornelius, P. L., Burgueño, J. (2009). Biplot analysis of genotype× environment interaction: Proceed with caution. Crop Science, 49(5), 1564-1576. 71. Yates, F., CocHRAN, W. G. (1938). The analysis of groups of experiments. The Journal of Agricultural Science, 28(4), 556-580. 72. Yun-Ying, C., Hua, D., Li-Nian, Y., Zhi-Qing, W., Li-Jun, L., Jian-Chang, Y. (2009). Effect of high temperature during heading and early filling on grain yield and physiological characteristics in indica rice. Acta Agronomica Sinica, 35(3), 512-521. 73. Zhu, C., Kobayashi, K., Loladze, I., Zhu, J., Jiang, Q., Xu, X., . . . Drewnowski, A. (2018). Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. Science advances, 4(5), eaaq1012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81735-
dc.description.abstract"有鑑於近年臺灣稻作生產受到氣候變遷劇烈地影響,本研究提出有別於臺灣慣行兩期作生產的新栽培模式-中間作單期水稻栽培模式,中間作栽培模式的優勢在於可避開臺灣一期作 (二月到六月) 於生育前期可能碰到的乾旱,並充分利用臺灣雨季進行稻作生產 (五月到十月)。為針對水稻品系在此新興栽培期作的表現進行探討,同時透過瞭解基因與環境的交感作用 (genotype-by-environment interaction, GEI) 以篩選具廣泛適應於三個期作或特殊適應於中間作的品系,本研究於臺灣一期作、中間作及二期作的環境栽培共140個品系以瞭解各品系在抽穗、產量構成要素與米質相關性狀的表現,並利用Genotype main effect plus GEI biplot (GGE biplot)、additive main effect and multiplicative interaction model (AMMI model)、weighted average of absolute scores (WAAS) 與Roemer’s environmental variance (Roemer’s EV)等敘述統計方法進行討論分析。 結果顯示,不同分析方法的結果可互相呼應,不論是在抽穗日數、單株粒重還是直鏈澱粉含量,各方法所呈現具最高性狀表現量的品系及其穩定度都是一致的。進一步探討抽穗日數、單株粒重及直鏈澱粉含量的表現,可以發現各性狀在變方組成上都有很大的不同,抽穗日數及直鏈澱粉含量的變方中,GEI所佔的比例相對較少,而單株粒重的GEI在變方中佔有最高的比例。透過不同方法分析各性狀符合本研究目標的品系,在抽穗日數部分本研究著重在穩定性的篩選,動態穩定性(dynamic stability) 與靜態穩定性 (static stability) 分別篩選到G95 (TH) 與G102 (Vandana) 兩品系;在單株粒重部分,GGE biplot發現中間作的最佳表現品系與一期作及二期作不同,G109 (星豐, Hsing Feng) 在中間作有最高的單株粒重而AMMI model也顯示其在中間作具特殊適應性,G50 (黃廣油占, Huang Kuang Yu Chan) 則具有廣泛適應性並適合栽培於一期作及二期作;在直鏈澱粉含量部分,G64 (臺南11號, Tainan 11) 為同時具有穩定性與符合目標直鏈澱粉含量 (直鏈澱粉含量近G38 (臺稉9號, Taikung 9) ) 的品系,其綜合表現不論在動態穩定性還是靜態穩定性都是最佳的品系。 整體而言,雖然本研究所使用的視覺化工具都呈現一致的結果,在解讀時仍須注意此結果為敘述統計,並非假設檢定後具顯著性的結果,然而此等工具仍提供簡潔明瞭的結果供研究者迅速獲悉品系於各期作的表現,而本研究所篩選到符合條件目標的品系亦可作為後續開發具廣泛適應性或具特殊適應性品系的基礎,達到減緩氣候變遷對水稻影響的目的。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T09:26:28Z (GMT). No. of bitstreams: 1
U0001-1002202215511700.pdf: 3371097 bytes, checksum: a29a2ef3a3d03503f376f40883d3b021 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents"致謝 i 摘要 ii Abstract iv Table of contents vi Figure index viii Table index x Abbreviation xi Chapter 1. Introduction 1 1.1 Rice production under climate change and proposed adaptation strategy 1 1.2 Phenotypic performance of rice is affected by genotype-by-environment interaction… 2 1.3 Using genotype main effect plus GEI (GGE) biplot, additive main effect and multiplicative interaction (AMMI) model and a new quantitative genotypic stability measure named weighted average of absolute scores (WAAS) to study GEI 5 1.4 Combining different methods to analyze GEI effect in rice 6 Chapter 2. Materials and methods 8 2.1 Plant materials 8 2.2 Field trial environments 8 2.3 Field experimental design and management 9 2.4 Traits evaluation 10 2.5 Statistical analysis 12 Chapter 3. Results 16 3.1 Performance of DTH, yield component traits and grain quality traits in the first (E1), the middle (E2) and the second cropping seasons (E3). 16 3.2 Analysis of variance (ANOVA) for traits in rice accessions in different seasons. 17 3.3 Using GGE biplot to visualize the GGE effects of traits. 18 3.4 Using AMMI model to dissect the GEI effects of traits. 22 3.5 Measuring stability by WAAS and simultaneously selecting performance and stability by WAASY. 25 Chapter 4. Discussion 32 4.1 Population constitution and traits performance in three seasons 32 4.2 Variation structure of different traits 34 4.3 Comparison between GGE biplot and AMMI model 36 4.4 WAAS is an improved stability index to select favorable accessions with targeted trait performance 40 Reference 44 Figures 50 Tables 78 Appendix 94"
dc.language.isoen
dc.subject動態與靜態穩定性zh_TW
dc.subject水稻zh_TW
dc.subject氣候變遷zh_TW
dc.subject水稻中間作zh_TW
dc.subject基因與環境的交感作用 (GEI)zh_TW
dc.subjectGGE雙軸圖zh_TW
dc.subjectAMMI模型zh_TW
dc.subjectWAASzh_TW
dc.subjectAMMI modelen
dc.subjectWAASen
dc.subjectRiceen
dc.subjectClimate changeen
dc.subjectNew cultivation systemen
dc.subjectGenotype-by-environment interaction (GEI)en
dc.subjectGGE biploten
dc.subjectDynamic and static stabilityen
dc.title評估水稻抽穗、產量構成要素與米質相關性狀在臺灣同年三個期作的基因與環境交感效應zh_TW
dc.title"Evaluating Genotype-by-Environment Interaction of Traits Related to Heading, Yield Component and Grain Quality in Rice under Three Cropping Seasons of the Same Year in Taiwan"en
dc.date.schoolyear110-1
dc.description.degree碩士
dc.contributor.oralexamcommittee劉力瑜(Yi-Sheng Cheng),蔡育彰(Yi-Chun Yeh),許志聖,楊嘉凌
dc.subject.keyword水稻,氣候變遷,水稻中間作,基因與環境的交感作用 (GEI),GGE雙軸圖,AMMI模型,WAAS,動態與靜態穩定性,zh_TW
dc.subject.keywordRice,Climate change,New cultivation system,Genotype-by-environment interaction (GEI),GGE biplot,AMMI model,WAAS,Dynamic and static stability,en
dc.relation.page97
dc.identifier.doi10.6342/NTU202200534
dc.rights.note未授權
dc.date.accepted2022-02-14
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
U0001-1002202215511700.pdf
  未授權公開取用
3.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved