請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81733完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂宥蓉(Yu-Jung Lu) | |
| dc.contributor.author | Jing-Wei Yang | en |
| dc.contributor.author | 楊景崴 | zh_TW |
| dc.date.accessioned | 2022-11-24T09:26:26Z | - |
| dc.date.available | 2022-11-24T09:26:26Z | - |
| dc.date.copyright | 2022-01-17 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-29 | |
| dc.identifier.citation | (1) Corak, W. S.; Goodman, B. B.; Satterthwaite, C. B.; Wexler, A. Atomic Heats of Normal and Superconducting Vanadium. Physical Review 1956, 102 (3), 656-661. (2) Bardeen, J.; Cooper, L. N.; Schrieffer, J. R. Theory of Superconductivity. Physical Review 1957, 108 (5), 1175-1204. (3) Bardeen, J.; Cooper, L. N.; Schrieffer, J. R. Microscopic Theory of Superconductivity. Physical Review 1957, 106 (1), 162-164. (4) Richards, P. L.; Tinkham, M. Far-Infrared Energy Gap Measurements in Bulk Superconducting In, Sn, Hg, Ta, V, Pb, and Nb. Physical Review 1960, 119 (2), 575-590. (5) Gol’tsman, G. N.; Okunev, O.; Chulkova, G.; Lipatov, A.; Semenov, A.; Smirnov, K.; Voronov, B.; Dzardanov, A.; Williams, C.; Sobolewski, R. Picosecond superconducting single-photon optical detector. Applied Physics Letters 2001, 79 (6), 705-707. (6) Hadfield, R. H. Single-photon detectors for optical quantum information applications. Nature Photonics 2009, 3 (12), 696-705. (7) Hadfield, R. H.; Johansson, G. Superconducting Devices in Quantum Optics. 2016. (8) Shibata, H. Review of Superconducting Nanostrip Photon Detectors using Various Superconductors. IEICE Transactions on Electronics 2021, advpub. (9) You, L. Superconducting nanowire single-photon detectors for quantum information. Nanophotonics 2020, 9 (9), 2673-2692. (10) Korneeva, Y. P.; Vodolazov, D. Y.; Semenov, A. V.; Florya, I. N.; Simonov, N.; Baeva, E.; Korneev, A. A.; Goltsman, G. N.; Klapwijk, T. M. Optical Single-Photon Detection in Micrometer-Scale NbN Bridges. Physical Review Applied 2018, 9 (6). (11) Karl, P.; Ubl, M.; Flad, P.; Giessen, H.; Mennle, S.; Yang, J. W.; Lu, Y.-J.; Peng, T.-Y. Niobium nitride plasmonic perfect absorbers for tunable infrared superconducting nanowire photodetection. Opt. Express 2021. (12) Kittel, C. Introduction to Solid State Physics, Wiley: 2004. (13) Martienssen, W.; Warlimont, H. Springer Handbook of Condensed Matter and Materials Data by Werner Martienssen, Hans Warlimont. 2005. (14) London, F.; London, H. The Electromagnetic Equations of the Supraconductor. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 1935, 149 (866), 71-88. (15) Kamlapure, A.; Mondal, M.; Chand, M.; Mishra, A.; Jesudasan, J.; Bagwe, V.; Benfatto, L.; Tripathi, V.; Raychaudhuri, P. Measurement of magnetic penetration depth and superconducting energy gap in very thin epitaxial NbN films. Applied Physics Letters 2010, 96 (7), 072509. (16) Ginzburg, V. L.; Landau, L. D. On the Theory of Superconductivity. In On Superconductivity and Superfluidity: A Scientific Autobiography; Ginzburg, V. L., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2009; pp 113-137. (17) Zhang, C.; Zhang, W.; Huang, J.; You, L.; Li, H.; lv, C.; Sugihara, T.; Watanabe, M.; Zhou, H.; Wang, Z.; Xie, X. NbN superconducting nanowire single-photon detector with an active area of 300 μm-in-diameter. AIP Advances 2019, 9 (7), 075214. (18) Kerman, A. J.; Rosenberg, D.; Molnar, R. J.; Dauler, E. A. Readout of superconducting nanowire single-photon detectors at high count rates. Journal of Applied Physics 2013, 113 (14), 144511. (19) Il’in, K. S.; Lindgren, M.; Currie, M.; Semenov, A. D.; Gol’tsman, G. N.; Sobolewski, R.; Cherednichenko, S. I.; Gershenzon, E. M. Picosecond hot-electron energy relaxation in NbN superconducting photodetectors. Applied Physics Letters 2000, 76 (19), 2752-2754. (20) Superconductors at the Nanoscale, De Gruyter: 2017. (21) Korneeva, Y. P.; Vodolazov, D. Y.; Semenov, A. V.; Florya, I. N.; Simonov, N.; Baeva, E.; Korneev, A. A.; Goltsman, G. N.; Klapwijk, T. M. Optical Single-Photon Detection in Micrometer-Scale NbN Bridges. Physical Review Applied 2018, 9 (6), 064037. (22) Lusche, R.; Semenov, A.; Ilin, K.; Siegel, M.; Korneeva, Y.; Trifonov, A.; Korneev, A.; Goltsman, G.; Vodolazov, D.; Hübers, H. W. Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors. Journal of Applied Physics 2014, 116 (4), 043906. (23) Zotova, A. N.; Vodolazov, D. Y. Photon detection by current-carrying superconducting film: A time-dependent Ginzburg-Landau approach. Physical Review B 2012, 85 (2), 024509. (24) Vodolazov, D. Y. Single-Photon Detection by a Dirty Current-Carrying Superconducting Strip Based on the Kinetic-Equation Approach. Physical Review Applied 2017, 7 (3), 034014. (25) Maier, S. A. Plasmonics: fundamentals and applications, Springer Science Business Media: 2007. (26) Raether, H. Surface plasmons on smooth surfaces. In Surface Plasmons on Smooth and Rough Surfaces and on Gratings; Raether, H., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 1988; pp 4-39. (27) Economou, E. N. Surface Plasmons in Thin Films. Physical Review 1969, 182 (2), 539-554,Bozhevolnyi, S. I.; Søndergaard, T. General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators. Opt. Express 2007, 15 (17), 10869-10877. (28) Ding, F.; Yang, Y.; Deshpande, R. A.; Bozhevolnyi, S. I. A review of gap-surface plasmon metasurfaces: fundamentals and applications. Nanophotonics 2018, 7 (6), 1129-1156. (29) Chikkaraddy, R.; de Nijs, B.; Benz, F.; Barrow, S. J.; Scherman, O. A.; Rosta, E.; Demetriadou, A.; Fox, P.; Hess, O.; Baumberg, J. J. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 2016, 535 (7610), 127-130. (30) Hecht, E. Optics, Fourth edition. Reading, Mass. : Addison-Wesley, [2002] ©2002: 2002. (31) Kubo, S.; Asahi, M.; Hikita, M.; Igarashi, M. Magnetic penetration depths in superconducting NbN films prepared by reactive dc magnetron sputtering. Applied Physics Letters 1984, 44 (2), 258-260. (32) 喬宗毅. 過渡金屬氮化物薄膜的電漿子特性研究. 國立臺灣大學, 2020. (33) Dhakal, P.; Ciovati, G.; Pudasaini, U.; Chetri, S.; Balachandran, S.; Lee, P. J. Surface characterization of nitrogen-doped high purity niobium coupons compared with superconducting rf cavity performance. Physical Review Accelerators and Beams 2019, 22 (12), 122002. (34) Jouve, G.; Sévérac, C.; Cantacuzène, S. M. XPS study of NbN and (NbTi)N superconducting coatings. Elsevier 1996, 287. (35) Yang, Z.; Lu, X.; Tan, W.; Zhao, J.; Yang, D.; Yang, Y.; He, Y.; Zhou, K. XPS studies of nitrogen doping niobium used for accelerator applications. Applied Surface Science 2018, 439, 1119-1126. (36) Ermolieff, A.; Girard, M.; C.Raoul; Bertrand, C.; Duc, T. An XPS Comparative Study on Thermal Oxide Barrier. Applications of Surface Science 1985, 21, 65-79. (37) Shy, Y. M.; Toth, L. E.; Somasundaram, R. Superconducting properties, electrical resistivities, and structure of NbN thin films. Journal of Applied Physics 1973, 44 (12), 5539-5545. (38) Kang, L.; Wu, P. H.; Sh, J. R.; Cai, W. X.; Yang, S. Z.; Ji, Z. M.; Wang, Z. Fabrication and characterization of NbN, AlN and NbN/AlN/NbN on MgO substrates. Superconductor Science and Technology 2003, 16 (12), 1417-1421. (39) 陳家雯. 等向三維裂環共振器應用於環境感測. 國立臺灣大學, 2020. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81733 | - |
| dc.description.abstract | 超導光偵測器由於有極低的暗計數及極短的時間抖動,因此擁有卓越的偵測表現。然而大多數文獻探討的偵測器僅在優化近紅外光波段,可見光的研究鮮少被研究。另一方面,超導奈米線單光子偵測器由於具有高於微米線的內秉偵測效率,在過去十年已被廣泛研究,但考量到低動感與光纖耦合率高等特性,微米線亦有發展的必要。 在本論文中,我們利用超高真空射頻磁控濺鍍機,並在800 ºC 的基板溫度下成長出以氧化鎂為基板的氮化鈮薄膜,其具有高品質的晶相。此外,我們發現由於在濺鍍過程中,氮化鈮薄膜超導性會受到氬氮氣流比、靶材種類、射頻功率、成長溫度以及成長基板影響,藉由調整以上參數,我們優化氮化鈮的金屬性及超導性(相變溫度達到15.5 K)。我們利用橢圓偏光儀、X射線光電子光譜、原子力顯微鏡、穿透式電子顯微鏡、X射線干涉圖形以及超導量子干涉元件來測定氮化鈮薄膜的品質。 為了增加光偵測力,我們在氮化鈮微米線上加上5奈米的氧化鋁及銀的奈米立方共振器形成隙電漿子,其共振波段設定在可見光區域,超導態在可見光入射下,將因為被局域強場的破壞,而提高光偵測力。此外我們利用時域有限差分計算奈米立方的場分布,並發現為入射光波長532奈米時,邊長40奈米、厚度30 奈米的銀顆粒在邊緣有很強的電漿共振。因此,藉由增加有隙電漿共振的奈米結構,光子的響應在9 K被推廣至可見光波段,特別在入射光波長為532奈米,其中最小可偵測到的光強為4.4奈瓦特。最後我們將進一步討論其機制及在氮化鈮超導單光子偵測器上應用的潛力,如大偵測面積及偏振無關性等。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T09:26:26Z (GMT). No. of bitstreams: 1 U0001-2810202108343300.pdf: 5639025 bytes, checksum: a86dc10f906daad66968bd4836b54a71 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "口試委員審定書 I 中文摘要 III Abstract IV Contents VI List of Figures VIII List of Tables XI Chapter 1. Introduction 1 1.1 Literature Review and Motivation 1 1.2 Introduction to the Superconductors 4 1.2.1 Phase Transition at Critical Temperature, Tc 4 1.2.2 Perfect Diamagnetism ─ Meissner effect 6 1.2.3 London Equation and London Penetration Depth, λ_L 7 1.2.4 Ginzburg-Landau theory and GL Coherence Length, ξ_GL 10 1.2.5 Bardeen-Cooper-Schrieffer Theory and Energy Gap, 'Δ' 13 1.3 Introduction to Superconducting Photon Detectors 16 1.3.1 Detection Efficiency 16 1.3.2 Dark Count Rate 18 1.3.3 Time Jitter 18 1.3.4 Recovery Time 20 1.3.5 Photodetection Mechanism of the SPDs 21 1.4 Classical Theory of Light-Matter Interaction 24 1.4.1 Free Electrons and Drude Model 24 1.4.2 Bounded Electrons and Lorentz Model 28 1.4.3 Complex Dielectric Function 30 1.4.4 Surface Plasmon 31 1.4.5 Gap Plasmon Mode 33 Chapter 2. NbN Samples Preparation and Material Analysis 37 2.1 Physical Vapor Deposition ─ Magnetron Sputter 37 2.2 Optical Properties and Ellipsometer 40 2.2.1 RF Sputtering Power Dependency 45 2.2.2 Substrates Dependency 47 2.2.3 Argon/Nitrogen Ratio Dependency 48 2.3 Atomic Content and X-ray Photoelectron Spectroscopy 49 2.4 Surface Roughness and Atomic Force Microscope 52 2.5 Crystal structure 54 2.5.1 Transmission Electron Microscopy and Selected Area Diffraction 54 2.5.2 X-ray Diffractometer 57 2.6 Superconductivity and Superconducting Quantum Interference Device 58 Chapter 3. Gap Plasmon Enhanced NbN Superconducting Photodetector 59 3.1 Fabrication of the Device 59 3.2 Low Temperature Ohm Measurement 64 3.2.1 Wavelength Dependency 65 3.2.3 Width of Strip Dependency 67 3.2.4 Polarization Independency 68 3.3 Numerical Simulation 69 Chapter 4. Conclusion and Future Prospects 72 References 73 " | |
| dc.language.iso | en | |
| dc.subject | 可見光偵測 | zh_TW |
| dc.subject | 超導性氮化鈮薄膜 | zh_TW |
| dc.subject | 超導微米線光子偵測器 | zh_TW |
| dc.subject | 奈米製程 | zh_TW |
| dc.subject | 隙電漿子 | zh_TW |
| dc.subject | uperconducting NbN thin films | en |
| dc.subject | detection in visible range | en |
| dc.subject | gap plasmon | en |
| dc.subject | nanofabrication | en |
| dc.subject | superconducting microstrip photon detectors | en |
| dc.title | 隙電漿子增強之氮化鈮超導光子偵測器的開發與應用 | zh_TW |
| dc.title | Development of Gap-Plasmon-Enhanced NbN Superconducting Photodetectors and Its Applications | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.author-orcid | 0000-0002-3063-4085 | |
| dc.contributor.oralexamcommittee | 梁啟德(Hsin-Tsai Liu),王立民(Chih-Yang Tseng),張亞中,褚志崧 | |
| dc.subject.keyword | 超導性氮化鈮薄膜,超導微米線光子偵測器,奈米製程,隙電漿子,可見光偵測, | zh_TW |
| dc.subject.keyword | uperconducting NbN thin films,superconducting microstrip photon detectors,nanofabrication,gap plasmon,detection in visible range, | en |
| dc.relation.page | 75 | |
| dc.identifier.doi | 10.6342/NTU202104393 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-10-31 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 應用物理研究所 | zh_TW |
| 顯示於系所單位: | 應用物理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2810202108343300.pdf 未授權公開取用 | 5.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
