Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81711
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor袁小琀(Hanna S. Yuan)
dc.contributor.authorChun-Jung Linen
dc.contributor.author林羣融zh_TW
dc.date.accessioned2022-11-24T09:26:06Z-
dc.date.available2022-11-24T09:26:06Z-
dc.date.copyright2022-01-26
dc.date.issued2022
dc.date.submitted2022-01-13
dc.identifier.citation1. Zhang, L., Q. Lu, and C. Chang, Epigenetics in Health and Disease. Adv Exp Med Biol, 2020. 1253: p. 3-55. 2. Riggs, A.D., X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet, 1975. 14(1): p. 9-25. 3. Holliday, R. and J.E. Pugh, DNA modification mechanisms and gene activity during development. Science, 1975. 187(4173): p. 226-32. 4. Greenberg, M.V.C. and D. Bourc'his, The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol, 2019. 20(10): p. 590-607. 5. Gardiner-Garden, M. and M. Frommer, CpG islands in vertebrate genomes. J Mol Biol, 1987. 196(2): p. 261-82. 6. Larsen, F., et al., CpG islands as gene markers in the human genome. Genomics, 1992. 13(4): p. 1095-107. 7. Jaenisch, R. and A. Bird, Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet, 2003. 33 Suppl: p. 245-54. 8. Reik, W., Stability and flexibility of epigenetic gene regulation in mammalian development. Nature, 2007. 447(7143): p. 425-32. 9. Smith, Z.D. and A. Meissner, DNA methylation: roles in mammalian development. Nat Rev Genet, 2013. 14(3): p. 204-20. 10. Bestor, T.H., J.R. Edwards, and M. Boulard, Notes on the role of dynamic DNA methylation in mammalian development. Proc Natl Acad Sci U S A, 2015. 112(22): p. 6796-9. 11. Schubeler, D., Function and information content of DNA methylation. Nature, 2015. 517(7534): p. 321-6. 12. Jin, B., Y. Li, and K.D. Robertson, DNA methylation: superior or subordinate in the epigenetic hierarchy? Genes Cancer, 2011. 2(6): p. 607-17. 13. Bestor, T., et al., Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol, 1988. 203(4): p. 971-83. 14. Cheng, X. and R.M. Blumenthal, Mammalian DNA methyltransferases: a structural perspective. Structure, 2008. 16(3): p. 341-50. 15. Yoder, J.A. and T.H. Bestor, A candidate mammalian DNA methyltransferase related to pmt1p of fission yeast. Hum Mol Genet, 1998. 7(2): p. 279-84. 16. Okano, M., S. Xie, and E. Li, Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet, 1998. 19(3): p. 219-20. 17. Bestor, T.H., The DNA methyltransferases of mammals. Hum Mol Genet, 2000. 9(16): p. 2395-402. 18. Goll, M.G., et al., Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science, 2006. 311(5759): p. 395-8. 19. Yen, R.W., et al., Isolation and characterization of the cDNA encoding human DNA methyltransferase. Nucleic Acids Res, 1992. 20(9): p. 2287-91. 20. Xie, S., et al., Cloning, expression and chromosome locations of the human DNMT3 gene family. Gene, 1999. 236(1): p. 87-95. 21. Pradhan, S., et al., Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J Biol Chem, 1999. 274(46): p. 33002-10. 22. Ramsahoye, B.H., et al., Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci U S A, 2000. 97(10): p. 5237-42. 23. Song, J., et al., Structure of DNMT1-DNA complex reveals a role for autoinhibition in maintenance DNA methylation. Science, 2011. 331(6020): p. 1036-40. 24. Leonhardt, H., et al., A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell, 1992. 71(5): p. 865-73. 25. Hermann, A., R. Goyal, and A. Jeltsch, The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. J Biol Chem, 2004. 279(46): p. 48350-9. 26. Gowher, H. and A. Jeltsch, Mammalian DNA methyltransferases: new discoveries and open questions. Biochem Soc Trans, 2018. 46(5): p. 1191-1202. 27. Jeltsch, A. and R.Z. Jurkowska, Allosteric control of mammalian DNA methyltransferases - a new regulatory paradigm. Nucleic Acids Res, 2016. 44(18): p. 8556-8575. 28. Okano, M., et al., DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 1999. 99(3): p. 247-57. 29. Li, E. and Y. Zhang, DNA methylation in mammals. Cold Spring Harb Perspect Biol, 2014. 6(5): p. a019133. 30. Norvil, A.B., et al., Effect of Disease-Associated Germline Mutations on Structure Function Relationship of DNA Methyltransferases. Genes (Basel), 2019. 10(5). 31. Aapola, U., et al., Isolation and initial characterization of a novel zinc finger gene, DNMT3L, on 21q22.3, related to the cytosine-5-methyltransferase 3 gene family. Genomics, 2000. 65(3): p. 293-8. 32. Hata, K., et al., Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development, 2002. 129(8): p. 1983-93. 33. Suetake, I., et al., DNMT3L stimulates the DNA methylation activity of Dnmt3a and Dnmt3b through a direct interaction. J Biol Chem, 2004. 279(26): p. 27816-23. 34. Jia, D., et al., Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature, 2007. 449(7159): p. 248-51. 35. Lin, C.C., et al., Structural insights into CpG-specific DNA methylation by human DNA methyltransferase 3B. Nucleic Acids Res, 2020. 48(7): p. 3949-3961. 36. Feinberg, A.P. and B. Vogelstein, Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature, 1983. 301(5895): p. 89-92. 37. Lin, R.K., et al., Alteration of DNA methyltransferases contributes to 5'CpG methylation and poor prognosis in lung cancer. Lung Cancer, 2007. 55(2): p. 205-13. 38. Mizuno, S., et al., Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood, 2001. 97(5): p. 1172-9. 39. Qu, Y., et al., Overexpression of DNA methyltransferases 1, 3a, and 3b significantly correlates with retinoblastoma tumorigenesis. Am J Clin Pathol, 2010. 134(5): p. 826-34. 40. Etoh, T., et al., Increased DNA methyltransferase 1 (DNMT1) protein expression correlates significantly with poorer tumor differentiation and frequent DNA hypermethylation of multiple CpG islands in gastric cancers. Am J Pathol, 2004. 164(2): p. 689-99. 41. Girault, I., et al., Expression analysis of DNA methyltransferases 1, 3A, and 3B in sporadic breast carcinomas. Clin Cancer Res, 2003. 9(12): p. 4415-22. 42. Saito, Y., et al., Increased protein expression of DNA methyltransferase (DNMT) 1 is significantly correlated with the malignant potential and poor prognosis of human hepatocellular carcinomas. Int J Cancer, 2003. 105(4): p. 527-32. 43. Rhee, I., et al., DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature, 2002. 416(6880): p. 552-6. 44. Robert, M.F., et al., DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat Genet, 2003. 33(1): p. 61-5. 45. Gnyszka, A., Z. Jastrzebski, and S. Flis, DNA methyltransferase inhibitors and their emerging role in epigenetic therapy of cancer. Anticancer Res, 2013. 33(8): p. 2989-96. 46. Hollenbach, P.W., et al., A comparison of azacitidine and decitabine activities in acute myeloid leukemia cell lines. PLoS One, 2010. 5(2): p. e9001. 47. Santi, D.V., A. Norment, and C.E. Garrett, Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine. Proc Natl Acad Sci U S A, 1984. 81(22): p. 6993-7. 48. Kelly, A.D. and J.J. Issa, The promise of epigenetic therapy: reprogramming the cancer epigenome. Curr Opin Genet Dev, 2017. 42: p. 68-77. 49. Daskalakis, M., et al., Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-Aza-2'-deoxycytidine (decitabine) treatment. Blood, 2002. 100(8): p. 2957-64. 50. Gore, S.D., et al., Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms. Cancer Res, 2006. 66(12): p. 6361-9. 51. Issa, J.P., et al., Phase II study of low-dose decitabine in patients with chronic myelogenous leukemia resistant to imatinib mesylate. J Clin Oncol, 2005. 23(17): p. 3948-56. 52. Karahoca, M. and R.L. Momparler, Pharmacokinetic and pharmacodynamic analysis of 5-aza-2'-deoxycytidine (decitabine) in the design of its dose-schedule for cancer therapy. Clin Epigenetics, 2013. 5(1): p. 3. 53. Qin, T., et al., Mechanisms of resistance to 5-aza-2'-deoxycytidine in human cancer cell lines. Blood, 2009. 113(3): p. 659-67. 54. Yang, X., et al., Targeting DNA methylation for epigenetic therapy. Trends Pharmacol Sci, 2010. 31(11): p. 536-46. 55. Lyko, F. and R. Brown, DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J Natl Cancer Inst, 2005. 97(20): p. 1498-506. 56. Yoo, J., et al., Molecular modeling of inhibitors of human DNA methyltransferase with a crystal structure: discovery of a novel DNMT1 inhibitor. Adv Protein Chem Struct Biol, 2012. 87: p. 219-47. 57. Suzuki, T., et al., Design, synthesis, inhibitory activity, and binding mode study of novel DNA methyltransferase 1 inhibitors. Bioorg Med Chem Lett, 2010. 20(3): p. 1124-7. 58. Kuck, D., et al., Novel and selective DNA methyltransferase inhibitors: Docking-based virtual screening and experimental evaluation. Bioorg Med Chem, 2010. 18(2): p. 822-9. 59. Medina-Franco, J.L., et al., Natural products as DNA methyltransferase inhibitors: a computer-aided discovery approach. Mol Divers, 2011. 15(2): p. 293-304. 60. Yoo, J. and J.L. Medina-Franco, Inhibitors of DNA methyltransferases: insights from computational studies. Curr Med Chem, 2012. 19(21): p. 3475-87. 61. Siedlecki, P., et al., Establishment and functional validation of a structural homology model for human DNA methyltransferase 1. Biochem Biophys Res Commun, 2003. 306(2): p. 558-63. 62. Brueckner, B., et al., Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res, 2005. 65(14): p. 6305-11. 63. Saldivar-Gonzalez, F.I., et al., Inhibitors of DNA Methyltransferases From Natural Sources: A Computational Perspective. Front Pharmacol, 2018. 9: p. 1144. 64. Akone, S.H., et al., Natural Products Impacting DNA Methyltransferases and Histone Deacetylases. Front Pharmacol, 2020. 11: p. 992. 65. Stresemann, C., et al., Functional diversity of DNA methyltransferase inhibitors in human cancer cell lines. Cancer Res, 2006. 66(5): p. 2794-800. 66. Graca, I., et al., Anti-tumoral effect of the non-nucleoside DNMT inhibitor RG108 in human prostate cancer cells. Curr Pharm Des, 2014. 20(11): p. 1803-11. 67. Tanaka, H., et al., Nanaomycins, new antibiotics produced by a strain of Streptomyces. III. A new component, nanaomycin C, and biological activities of nanaomycin derivatives. J Antibiot (Tokyo), 1975. 28(12): p. 925-30. 68. Caulfield, T. and J.L. Medina-Franco, Molecular dynamics simulations of human DNA methyltransferase 3B with selective inhibitor nanaomycin A. J Struct Biol, 2011. 176(2): p. 185-91. 69. Kuck, D., et al., Nanaomycin A selectively inhibits DNMT3B and reactivates silenced tumor suppressor genes in human cancer cells. Mol Cancer Ther, 2010. 9(11): p. 3015-23. 70. Lee, W.J., J.Y. Shim, and B.T. Zhu, Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol, 2005. 68(4): p. 1018-30. 71. Fang, M.Z., et al., Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res, 2003. 63(22): p. 7563-70. 72. Sharma, C., et al., (-)-Epigallocatechin-3-gallate induces apoptosis and inhibits invasion and migration of human cervical cancer cells. Asian Pac J Cancer Prev, 2012. 13(9): p. 4815-22. 73. Khan, M.A., et al., (-)-Epigallocatechin-3-gallate reverses the expression of various tumor-suppressor genes by inhibiting DNA methyltransferases and histone deacetylases in human cervical cancer cells. Oncol Rep, 2015. 33(4): p. 1976-84. 74. Kim, H., S.O. Sablin, and R.R. Ramsay, Inhibition of monoamine oxidase A by beta-carboline derivatives. Arch Biochem Biophys, 1997. 337(1): p. 137-42. 75. Ceccaldi, A., et al., Identification of novel inhibitors of DNA methylation by screening of a chemical library. ACS Chem Biol, 2013. 8(3): p. 543-8. 76. Iurlo, M., et al., Effects of harmine on dopamine output and metabolism in rat striatum: role of monoamine oxidase-A inhibition. Psychopharmacology (Berl), 2001. 159(1): p. 98-104. 77. Glennon, R.A., et al., Binding of beta-carbolines and related agents at serotonin (5-HT(2) and 5-HT(1A)), dopamine (D(2)) and benzodiazepine receptors. Drug Alcohol Depend, 2000. 60(2): p. 121-32. 78. Oodi, A., et al., Harmine, a Novel DNA Methyltransferase 1 Inhibitor in the Leukemia Cell Line. Indian J Hematol Blood Transfus, 2017. 33(4): p. 509-515. 79. Selvakumar, P., et al., Flavonoids and Other Polyphenols Act as Epigenetic Modifiers in Breast Cancer. Nutrients, 2020. 12(3). 80. Qin, W., et al., Methylation and miRNA effects of resveratrol on mammary tumors vs. normal tissue. Nutr Cancer, 2014. 66(2): p. 270-7. 81. Wu, J.M.A.H., Tze-chen, Resveratrol: State-of-the-Art Science and Health Applications. Resveratrol: State-of-the-Art Science and Health Applications. 82. Rondelet, G., et al., Inhibition studies of DNA methyltransferases by maleimide derivatives of RG108 as non-nucleoside inhibitors. Future Med Chem, 2017. 9(13): p. 1465-1481. 83. Laskowski, R.A. and M.B. Swindells, LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model, 2011. 51(10): p. 2778-86. 84. Laskowski, R.A., et al., PDBsum: Structural summaries of PDB entries. Protein Sci, 2018. 27(1): p. 129-134.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81711-
dc.description.abstract哺乳類的 DNA甲基化是表觀遺傳中關鍵的調控機制,而其建立和維持由 DNA 甲基轉移酶 (DNMT)負責,酵素成員包括 DNMT1、DNMT3A 和 DNMT3B。所有 DNMT 都包含一個甲基轉移酶結構域,用於將甲基從輔助因子 SAM 轉移到 CpG 位點的胞嘧啶 C5 位置。 DNMT 的失調和突變與疾病有關,包括各種癌症。目前有兩種 DNMT 抑制劑阿扎胞苷 (azacitidine) 和地西他濱 (decitabine) 被批准用於癌症的治療,然而,這兩種抑制劑會與所有 DNMT 共價結合,並不具有特異性而導致嚴重的副作用。目前已發現許多非以共價鍵結的 DNMT 抑制劑,但它們對每種 DNMT 的抑制活性、特異性以及抑制機轉仍不清楚。在本篇研究中,我們選擇了幾種結構相異的非共價鍵結 DNMT 抑製劑,並測試它們對重組人類 DNMT1、DNMT3A 和 DNMT3B 的抑制活性。從我們測試的結果得知,harmine和nanaomycin最能有效抑制DNMT3A和DNMT3B,其IC50數值介於5-12 M範圍內,而白藜蘆醇 (resveratrol) 和EGCG對於三個 DNMT的抑制活性較低,IC50數值介於40-200 M範圍內。 為了細究harmine的抑制機轉,我們獲得解析度達3.09 Å 的DNMT3B-3L催化結構域與harmine結合的晶體結構,我們從中發現harmine 結合在輔助因子SAM 結合位點,解釋了為什麼harmine 能夠抑制三種DNMT ,並由酵素動力學分析證實harmine 在抑制 DNMT3B 活性方面與 SAM 競爭。我們的研究提供harmine對DNMT3B於分子層面下的抑制機轉,根據這個結果,未來,我們將優化此非共價抑制劑以設計出對其中一種 DNMT 具有特異性的新一代非共價抑製劑,期望將其應用於癌症治療上。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T09:26:06Z (GMT). No. of bitstreams: 1
U0001-1101202216402500.pdf: 7274965 bytes, checksum: b57988b52016f5960d13d4ac9c49736c (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents中文摘要 I Abstract II Table of Contents III List of Figures V List of Tables VI Chapter 1. Introduction 1 1.1 Epigenetics modification: DNA methylation and its cellular events 1 1.2 The mechanism of CpG methylation and the roles of DNA methyltransferases (DNMTs) in mammals 1 1.2.1 Crystal structure of DNMT3B-3L catalytic domain complex 3 1.3 Expression dysregulation and carcinogenic mechanisms of DNMTs 4 1.4 FDA-approved DNMT inhibitors 4 1.5 The reported potential DNMT inhibitors 5 1.5.1 RG108 6 1.5.2 Nanaomycin A 6 1.5.3 EGCG 7 1.5.4 Harmine 7 1.5.5 Resveratrol 8 1.6 Specific aims 8 Chapter 2. Materials and methods 9 2.1 Chemicals 9 2.2 Plasmid constructs 9 2.3 Protein expression and purification 10 2.4 Protein crystallization and structure refinement 11 2.5 Determination of half maximum inhibitory concentration (IC50) 12 2.6 Differential scanning fluorimetry assay (DSF) 13 2.7 Circular dichroism (CD) spectroscopy 13 2.8 Intrinsic tryptophan fluorescence spectroscopy 14 2.9 Enzyme kinetics 14 Chapter 3. Results 16 3.1 DNMTs protein expression and purification. 16 3.2 Measurement of IC50 for non-covalent inhibitors 16 3.3 Harmine directly binds DNMT3B-3L complex 17 3.4 Crystal structure of DNMT3B-3L-harmine complex reveals harmine is bound at SAM-binding site 19 3.5 Confirmation of the competitive inhibition mechanism of harmine with SAM by kinetic assays. 20 Chapter 4. Discussion 22 Chapter 5. References 25
dc.language.isoen
dc.subjectDNA甲基轉移酶zh_TW
dc.subjectDNA甲基化zh_TW
dc.subjectDNA甲基轉移酶抑制劑zh_TW
dc.subjectDNA methyltransferaseen
dc.subjectDNA methylationen
dc.subjectDNMT inhibitorsen
dc.title人類DNA甲基轉移酶抑制劑之生化特性與結構分析zh_TW
dc.titleBiochemical and structural insights into the inhibitors of human DNA methyltransferasesen
dc.date.schoolyear110-1
dc.description.degree碩士
dc.contributor.oralexamcommittee詹迺立(Jing-Fa Tsai),李明學(Chih-Wei Chang),曾秀如(Shashidhar Siddagangaiah),(Chiao-Ming Peng)
dc.subject.keywordDNA甲基化,DNA甲基轉移酶,DNA甲基轉移酶抑制劑,zh_TW
dc.subject.keywordDNA methylation,DNA methyltransferase,DNMT inhibitors,en
dc.relation.page58
dc.identifier.doi10.6342/NTU202200042
dc.rights.note未授權
dc.date.accepted2022-01-13
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
U0001-1101202216402500.pdf
  未授權公開取用
7.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved