Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81706
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉如熹(Ru-Shi Liu)
dc.contributor.authorHsi-Ping Hsuehen
dc.contributor.author薛希平zh_TW
dc.date.accessioned2022-11-24T09:26:01Z-
dc.date.available2022-11-24T09:26:01Z-
dc.date.copyright2022-02-21
dc.date.issued2022
dc.date.submitted2022-01-20
dc.identifier.citation1. Höppe, H. A. Recent Developments in the Field of Inorganic Phosphors. Angew. Chem. Int. Ed. 2009, 48, 3572–3582. 2. Daicho, H.; Iwasaki, T.; Enomoto, K.; Sasaki, Y.; Maeno, Y.; Shinomiya, Y.; Aoyagi, S.; Nishibori, E.; Sakata, M.; Sawa, H. A Novel Phosphor for Glareless White Light-Emitting Diodes. Nat. Commun. 2012, 3, 1–8. 3. US Department of Energy Savings Forecast of Solid-State Lighting in General Illumination Applications. 2019. 4. Pust, P.; Schmidt, P. J.; Schnick, W. A Revolution in Lighting. Nat. Mater. 2015, 14, 454–458. 5. Vogel, S. J. Structural Changes in Agriculture: Production Linkages and Agricultural Demand-LED Industrialization. Oxf. Econ. Pap. 1994, 46, 136–156. 6. De Broglie, L. Waves and Quanta. Nature 1923, 112, 540–540. 7. Basuk, M. Improving the Performance of Human Body with Far Infra-Red Rays Reflecting Textiles. CTFTTE. 2018, 4, 51–59. 8. Sankaran, S.; Ehsani, R. Introduction to the Electromagnetic Spectrum. Springer. 2014. 9. Goldstein, E. B.; Brockmole, J. Sensation and Perception. Cengage Learning. 2016. 10. Valeur, B.; Berberan-Santos, M. N. A Brief History of Fluorescence and Phosphorescence Before the Emergence of Quantum Theory. J. Chem. Educ. 2011, 88, 731–738. 11. Virk, H. S. In History of Luminescence from Ancient to Modern Times; Virk, H. S.; Defect and Diffusion Forum, Trans Tech Publ: Switzerland, 2015; Volume 361, pp 1–13. 12. Shinde, K. N.; Dhoble, S.; Swart, H.; Park, K. Phosphate Phosphors for Solid-State Lighting; Springer Science Business Media: Berlin, Heidelberg,‎ 2012. 13. McKittrick, J.; Shea‐Rohwer, L. E. Down Conversion Materials for Solid‐State Lighting. J. Am. Ceram. Soc. 2014, 97, 1327–1352. 14. Nakamura, S. Zn-Doped InGaN Growth and InGaN/AlGaN Double-Heterostructure Blue-Light-Emitting Diodes. J. Cryst. Growth 1994, 145, 911–917. 15. Miessler, G. L.; Fischer, P. J.; Tarr, D. A. Inorganic Chemistry. Pearson: London, 2014. 16. Salehpour, F.; Gholipour-Khalili, S.; Farajdokht, F.; Kamari, F.; Walski, T.; Hamblin, M. R.; DiDuro, J. O.; Cassano, P. Therapeutic Potential of Intranasal Photobiomodulation Therapy for Neurological and Neuropsychiatric Disorders: A Narrative Review. Rev. Neurosci. 2020, 31, 269–286. 17. Ruan, Y.; Kato, H.; Taguchi, Y.; Yamauchi, N.; Umeda, M. Irradiation by High-Intensity Red Light-Emitting Diode Enhances Human Bone Marrow Mesenchymal Stem Cells Osteogenic Differentiation and Mineralization Through Wnt/β-Catenin Signaling Pathway. Lasers Med. Sci. 2021, 36, 55–65. 18. Schmidt, M. H.; Bajic, D. M.; Reichert, K. W.; Martin, T. S.; Meyer, G. A.; Whelan, H. T. Light-Emitting Diodes as a Light Source for Intraoperative Photodynamic Therapy. Neurosurg. 1996, 38, 552–557. 19. Hsueh, H. P.; Fang, M. H.; Vasudevan, T.; Huang, W. S.; Majewska, N.; Lazarowska, A.; Mahlik, S.; Sheu, H. S.; Lee, F.; Liu, R. S. Synergetic Effect-Triggered Performance Promotion of Sr3-xBaxP5N10Cl:Eu2+ Phosphors. J. Mater. Chem. C 2021, 9, 12063–12067. 20. Shionoya, S.; Yen, W. M.; Yamamoto, H. Phosphor Handbook. CRC press: Boca Raton, ‎Florida, 2018. 21. Ropp, R. C. Luminescence and the Solid State. Elsevier: Amsterdam, 2013. 22. Tsai, Y. T.; Chiang, C. Y.; Zhou, W.; Lee, J. F.; Sheu, H. S.; Liu, R. S. Structural Ordering and Charge Variation Induced by Cation Substitution in (Sr, Ca) AlSiN3:Eu Phosphor. J. Am. Chem. Soc. 2015, 137, 8936–8939. 23. Li, S.; Wang, L.; Tang, D.; Cho, Y.; Liu, X.; Zhou, X.; Lu, L.; Zhang, L.; Takeda, T.; Hirosaki, N. Achieving High Quantum Efficiency Narrow-Band β-Sialon:Eu2+ Phosphors for High-Brightness LCD Backlights by Reducing the Eu3+ Luminescence killer. Chem. Mater. 2018, 30, 494–505. 24. De Jong, M.; Seijo, L.; Meijerink, A.; Rabouw, F. T. Resolving the Ambiguity in the Relation Between Stokes Shift and Huang–Rhys Parameter. Phys. Chem. Chem. Phys. 2015, 17, 16959–16969. 25. Tchougréeff, A. L.; Dronskowski, R. Nephelauxetic Effect Revisited. Int. J. Quantum Chem. 2009, 109, 2606–2621. 26. Xia, Z.; Liu, Q. Progress in Discovery and Structural Design of Color Conversion Phosphors for LEDs. Prog. Mater Sci. 2016, 84, 59–117. 27. Takeda, T.; Xie, R. J.; Suehiro, T.; Hirosaki, N. Nitride and Oxynitride Phosphors for White LEDs: Synthesis, New Phosphor Discovery, Crystal Structure. Prog. Solid State Chem. 2018, 51, 41–51. 28. Wang, L.; Xie, R. J.; Suehiro, T.; Takeda, T.; Hirosaki, N. Down-Conversion Nitride Materials for Solid State Lighting: Recent Advances and Perspectives. Chem. Rev. 2018, 118, 1951–2009. 29. Fang, M. H.; Leaño, J. L.; Liu, R.S. Control of Narrow-Band Emission in Phosphor Materials for Application in Light-Emitting Diodes. ACS Energy Lett. 2018, 3, 2573–2586. 30. Mueller‐Mach, R.; Mueller, G.; Krames, M. R.; Höppe, H. A.; Stadler, F.; Schnick, W.; Juestel, T.; Schmidt, P. Highly Efficient All‐Nitride Phosphor‐Converted White Light Emitting Diode. Phys. Status Solidi A 2005, 202, 1727–1732. 31. Uheda, K.; Hirosaki, N.; Yamamoto, Y.; Naito, A.; Nakajima, T.; Yamamoto, H. Luminescence Properties of a Red Phosphor, CaAlSiN3:Eu2+, for White Light-Emitting Diodes. Electrochem. Solid-State Lett. 2006, 9, H22. 32. Pust, P.; Weiler, V.; Hecht, C.; Tücks, A.; Wochnik, A. S.; Henß, A.-K.; Wiechert, D.; Scheu, C.; Schmidt, P. J.; Schnick, W. Narrow-Band Red-Emitting Sr[LiAl3N4]:Eu2+ as a Next-Generation LED-Phosphor Material. Nat. Mater. 2014, 13, 891–896. 33. Schnick, W.; Schultz-Coulon, V. Ca2PN3: A New Phosphorus(V) Nitride with One-Dimensional Infinite Chains of Corner-Sharing PN4 Tetrahedra. Angew. Chem. Int. Ed. 1993, 32, 280–281. 34. Kloß, S. D.; Schnick, W. Nitridophosphates: A Success Story of Nitride Synthesis. Angew. Chem. Int. Ed. 2019, 58, 7933–7944. 35. Pucher, F. J.; Marchuk, A.; Schmidt, P. J.; Wiechert, D.; Schnick, W. Luminescent Nitridophosphates CaP2N4:Eu2+, SrP2N4:Eu2+, BaP2N4:Eu2+, and BaSr2P6N12:Eu2+. Chem. Eur. J. 2015, 21, 6443–6448. 36. Marchuk, A.; Wendl, S.; Imamovic, N.; Tambornino, F.; Wiechert, D.; Schmidt, P. J.; Schnick, W. Nontypical Luminescence Properties and Structural Relation of Ba3P5N10X:Eu2+ (X = Cl, I): Nitridophosphate Halides with Zeolite-Like Structure. Chem. Mater. 2015, 27, 6432–6441. 37. Marchuk, A.; Schnick, W., Ba3P5N10Br:Eu2+: A Natural‐White‐Light Single Emitter with a Zeolite Structure Type. Angew. Chem. 2015, 127, 2413–2417. 38. Wendl, S.; Eisenburger, L.; Strobel, P.; Günther, D.; Wright, J. P.; Schmidt, P. J.; Oeckler, O.; Schnick, W. Nitridophosphate‐Based Ultra‐Narrow‐Band Blue‐Emitters: Luminescence Properties of AEP8N14:Eu2+ (AE = Ca, Sr, Ba). Chemistry 2020, 26, 7292. 39. Wendl, S.; Schnick, W. SrH4P6N12 and SrP8N14: Insights into the Condensation Mechanism of Nitridophosphates under High Pressure. Chem. Eur. J. 2018, 24, 15889–15896. 40. Hashimoto, T.; Wu, F.; Speck, J. S.; Nakamura, S. A GaN Bulk Crystal with Improved Structural Quality Grown by the Ammonothermal Method. Nat. Mater. 2007, 6, 568–571. 41. Jacobs, H.; Nymwegen, R. Darstellung und Kristallstruktur eines Kaliumnitridophosphats, K3P6N11. Z. Anorg. Allg. Chem. 1997, 623, 429–433. 42. Mallmann, M.; Wendl, S.; Strobel, P.; Schmidt, P. J.; Schnick, W. Sr3P3N7: Complementary Approach by Ammonothermal and High‐Pressure Syntheses. Chem. Eur. J. 2020, 26, 6257–6263. 43. Mallmann, M.; Wendl, S.; Schnick, W. Crystalline Nitridophosphates by Ammonothermal Synthesis. Chemistry 2020, 26, 2067. 44. Watanabe, H.; Yamane, H.; Kijima, N., Crystal Structure and Luminescence of Sr0.99Eu0.01AlSiN3. J. Solid State Chem. 2008, 181, 1848–1852. 45. Watanabe, H.; Kijima, N., Crystal Structure and Luminescence Properties of SrxCa1−xAlSiN3:Eu2+ Mixed Nitride Phosphors. J. Alloys Compd. 2009, 475, 434–439. 46. Ekström, T.; Käli, P. O.; Nygren, M.; Olsson, P. O. Dense Single-Phase β-Sialon Ceramics by Glass-Encapsulated Hot Isostatic Pressing. J. Mater. Sci. 1989, 24, 1853–1861. 47. Wendl, S.; Mardazad, S.; Strobel, P.; Schmidt, P. J.; Schnick, W. HIP to Be Square: Simplifying Nitridophosphate Synthesis in a Hot Isostatic Press. Angew. Chem. Int. Ed. 2020, 59, 18240–18243. 48. Wendl, S.; Zipkat, M.; Strobel, P.; Schmidt, P. J.; Schnick, W. Synthesis of Nitride Zeolites in a Hot Isostatic Press. Angew. Chem. Int. Ed. 2021, 60, 4470–4473. 49. Schultz‐Coulon, V.; Schnick, W. Mg2PN3 und Ca2PN3–Phosphor (V)‐Nitride mit Eindimensional Unendlichen Ketten Eckenverknüpfter PN4‐Tetraeder. Z. Anorg. Allg. Chem. 1997, 623, 69–74. 50. Horstmann, S.; Irran, E.; Schnick, W. Synthese und Kristallstruktur von Phosphor (v)‐Nitrid α‐P3N5. Angew. Chem. 1997, 109, 1938–1940. 51. Schnick, W.; Lücke, J., Nitrido-Sodalithe. I Synthese, Struktur und Eigenschaften von Zn7–xH2x[P12N24]Cl2 mit 0 ⩽ x ⩽ 3. Z. Anorg. Allg. Chem. 1994, 620, 2014–2019. 52. Jacobs, H.; Nymwegen, R.; Doyle, S.; Wroblewski, T.; Kockelmann, W. Kristallines Phoshor(V)-Nitrid-Imid, HPN2 bzw. DPN2 – Strukturbestimmung mit Röntgen-, Synchrotron- und Neutronenstrahlung. Z. Anorg. Allg. Chem. 1997, 623, 1467–1474. 53. Sedlmaier, S. J.; Döblinger, M.; Oeckler, O.; Weber, J.; Schmedt auf der Günne, J.; Schnick, W. Unprecedented Zeolite-Like Framework Topology Constructed from Cages with 3-Rings in a Barium Oxonitridophosphate. J. Am. Chem. Soc. 2011, 133, 12069–12078. 54. Hashimoto, T.; Wu, F.; Speck, J. S.; Nakamura, S. A GaN Bulk Crystal with Improved Structural Quality Grown by the Ammonothermal Method. Nat. Mater. 2007, 6, 568–571. 55. Richter, T. M. M.; Niewa, R. Chemistry of Ammonothermal Synthesis. Inorganics 2014, 2, 29–78. 56. Rubie, D. C. Characterising the Sample Environment in Multianvil High-Pressure Experiments. Ph. Transit. 1999, 68, 431–451. 57. Kawai, N.; Endo, S. The Generation of Ultrahigh Hydrostatic Pressures by a Split Sphere Apparatus. Rev. Sci. Instrum. 1970, 41, 1178–1181. 58. Huppertz, H. Multianvil High-Pressure / High-Temperature Synthesis in Solid State Chemistry. Z. Kristallogr. Cryst. Mater. 2004, 219, 330. 59. Swinkels, F. B.; Wilkinson, D. S.; Arzt, E.; Ashby, M. F. Mechanisms of Hot-Isostatic Pressing. Acta Metall. 1983, 31, 1829–1840. 60. Tanaka, I.; Pezzotti, G.; Okamoto, T.; Miyamoto, Y.; Koizumi, M. Hot Isostatic Press Sintering and Properties of Silicon Nitride without Additives. J. Am. Ceram. Soc. 1989, 72, 1656–1660. 61. Loh, N.; Sia, K. An Overview of Hot Isostatic Pressing. J. Mater. Process. Technol. 1992, 30, 45–65. 62. Eckert, M. Max von Laue and the Discovery of X-ray Diffraction in 1912. Ann. Phys. 2012, 524, A83–A85. 63. Pecharsky, V.; Zavalij, P. Fundamentals of Powder Diffraction and Structural Characterization of Materials. Springer Science Business Media: Berlin, 2008. 64. Toby, B. H.; Von Dreele, R. B, GSAS-II: the Genesis of a Modern Open-Source All Purpose Crystallography Software Package. J. Appl. Crystallogr. 2013, 46, 544–549. 65. Rietveld, H. M. Line Profiles of Neutron Powder-Diffraction Peaks for Structure Refinement. Acta Cryst. 1967, 22, 151. 66. M., R. H., A Profile Refinement Method for Nuclear and Magnetic Structures. J. Appl. Cryst. 1969, 2, 65–71. 67. Don, M. The Coulter Principle: Foundation of an Industry. J. Lab. Autom. 2003, 8, 72–81. 68. Manceau, A.; Marcus, M. A.; Grangeon, S. Determination of Mn Valence States in Mixed-Valent Manganates by XANES Spectroscopy. Am. Mineral. 2012, 97, 816–827. 69. Farges, F.; Brown, G. E., Jr.; Rehr, J. J. Ti K-edge XANES Studies of Ti Coordination and Disorder in Oxide Compounds: Comparison between Theory and Experiment. Phys. Rev. B 1997, 56, 1809. 70. Penner-Hahn, J. E. X-ray Absorption Spectroscopy. Comprehensive Coordination Chemistry II 2003, 2, 159–186. 71. Pranitha, D.; Parthiban, N.; Dinakaran, S.; Ghosh, S.; Banji, D. S. Solid State Nuclear Magnetic Resonance Spectroscopy-A Review. Asian J. Pharm. Clin. Res 2011, 4, 9–14. 72. Alia, A.; Ganapathy, S.; de Groot, H. J. Magic angle spinning (MAS) NMR: A New Tool to Study the Spatial and Electronic Structure of Photosynthetic Complexes. Photosynth. Res. 2009, 102, 415–425. 73. Xie, R.-J.; Li, Y. Q.; Hirosaki, N.; Yamamoto, H. Nitride Phosphors and Solid-State Lighting. Crc Press: Boca Raton, 2019. 74. Henderson, B.; Imbusch, G. F. Optical Spectroscopy of Inorganic Solids. Oxford University Press: Oxford, 2006. 75. Grinberg, M.; Jaskólski, W. Influence of a Confinement-Type Lattice Anharmonicity on the Nonradiative Processes in Solids. Phys. Rev. B 1997, 55, 5581. 76. Wang, W.-N. Widiyastuti, W.; Ogi, T.; Lenggoro, I. W.; Okuyama, K. Correlations between Crystallite/Particle Size and Photoluminescence Properties of Submicrometer Phosphors. Chem. Mater. 2007, 19, 1723–1730. 77. Lazarowska, S.; Mahlik, M.; Grinberg, Yeh, C.-W.; Liu, R. S. Spectroscopic Properties and Energy Level Location of Eu2+ in Sr2Si5N8 Phosphor. Opt. Mater. 2014, 37 734–739. 78. Shannon, R. D., Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. 1976, 32, 751–767.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81706-
dc.description.abstract隨環保議題之日漸重要,白光發光二極體不僅普及於照明市場,亦逐漸擴展至其他領域,如醫療電子裝置與光醫療等領域。因發光二極體具壽命長、耐衝撞與光譜可調性,故逐漸應用於該領域。而螢光粉作為發光二極體之光轉換材料為提供調控光譜至適合放光波長之關鍵。現今於螢光粉之研究大多著重於氧化物、氮化物與氮氧化物,其中氮磷化物(nitridophosphate),因其結構多樣性故具獨特之放光性質,並藉熱等靜壓燒結爐(hot isostatic press; HIP)改善以往製備之困難,故氮磷化物為冉冉升起之新螢光粉材料。本研究於高溫高壓下藉化學取代法開發此二氮磷化物系統Ca2−xSrxPN3:Eu2+與Sr3−xBaxP5N10Cl:Eu2+。第一部分為調控氮磷化物Ca2−xSrxPN3:Eu2+之化學組成。本研究發現於紅光與近紅外光之雙重峰之放射光譜,並隨Sr2+摻雜比例提高,於近紅外光區放射譜帶之相對放射強度上升且藍移,然於紅光區則具紅移之現象,故藉結構精修得知其局部配位環境之演變,揭示且詳細解釋摻入Sr2+時紅光與近紅外光之變化。此外,藉氮磷化物Ca2−xSrxPN3:Eu2+之紅光與近紅外光應用於光生物調節之示範。第二部分為探討氮磷化物Sr3−xBaxP5N10Cl:Eu2+化學取代下之獨特發光特性與內部量子效率變化,並發現Sr2+/Ba2+混合化合物比無取代之化合物效率提升達1.7倍,故藉微結構分析與X光近緣吸收光譜探索Sr2+與Ba2+於陽離子取代之協同效應,並藉變溫光譜與衰變時間瞭解其熱特性。本研究於合成與分析氮磷化物螢光粉,為發展發光二極體用螢光材料重要之參考。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T09:26:01Z (GMT). No. of bitstreams: 1
U0001-1801202219292800.pdf: 7401255 bytes, checksum: 80cb29cf0e6e9b43bc4cb5ec32c95596 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 I 誌謝 II 摘要 III Abstract IV 目錄 V 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 光之起源 1 1.2 光 1 1.2.1 發光之簡介 3 1.3 固態照明(solid-state lighting; SSL) 4 1.3.1 發光二極體之發展 4 1.3.2 發光二極體之工作原理 5 1.3.3 白光發光二極體(white light-emitting diode; WLED) 6 1.3.4 發光二極體於光生物調節之應用 7 1.4 螢光粉(phosphor) 8 1.4.1 螢光粉之組成 8 1.5 螢光粉發光機制 12 1.5.1 賈布朗斯基圖(Jabłoński diagram) 12 1.5.2 法蘭克-康頓原理(Franck-Condon principle) 13 1.5.3 黃昆因子(Huang - Rhys factor)與斯托克斯位移(Stokes shift) 14 1.6 主體晶格影響活化劑之因素 15 1.6.1 電子雲散效應(nephelauxetic effect) 16 1.6.2 晶體場理論(crystal field theory) 17 1.6.3 淬滅效應(quenching effect) 18 1.7 氮磷化物(nitridophosphate)螢光粉之歷史 20 1.7.1 氮磷化物之分類 21 1.8 動機與目的 22 1.8.1 Ca2PN3:Eu2+雙重放射之氮磷化物螢光粉 22 1.8.2 Sr3P5N10Cl:Eu2+氮磷化物螢光粉之協同效應 23 第二章 樣品合成與儀器分析原理 25 2.1 化學藥品 25 2.2氮磷化物螢光粉之合成方法 26 2.2.1 熱等靜壓燒結爐(hot isostatic pressing; HIP) 26 2.2.2 Ca1.94−xSrxPN3:0.06Eu2+氮磷化物螢光粉之合成 28 2.2.3 Sr2.91−xBaxP5N10Cl:0.09Eu2+氮磷化物螢光粉之合成 28 2.3 儀器分析 29 2.3.1 結構鑑定 29 2.3.1.1 粉末X光繞射(powder X-ray diffractometer; XRD) 30 2.3.1.2 同步輻射X光繞射(synchrotron X-ray diffraction) 32 2.3.1.3結構精修(structure refinement) 33 2.3.1.4 掃描式電子顯微鏡(scanning electron microscope; SEM) 35 2.3.1.5 庫爾特粒徑分析儀(Coulter particle size analyzer) 36 2.3.1.6 X光吸收光譜(X-ray absorption spectroscopy; XAS) 37 2.3.1.6 固態核磁共振(solid-state nuclear magnetic resonance; ss-NMR) 40 2.3.2 發光性質分析 42 2.3.2.1 光激發光譜儀(photoluminescence spectrometer; PL spectrometer) 42 2.3.2.2 絕對量子效率儀(absolute quantum yield spectrometer) 44 2.3.2.3變溫與變壓光激發光譜(temperature-dependent and pressure-dependent photoluminescence spectrometer; TDPL and PDPL) 45 第三章 結果與討論 47 3.1 Ca2PN3:Eu2+雙重放射之氮磷化物螢光粉 47 3.1.1 Ca1.94−xSrxPN3:0.06Eu2+氮磷化物螢光粉之結構分析 48 3.1.2 Ca1.94−xSrxPN3:0.06Eu2+氮磷化物螢光粉之放光特性 54 3.1.3 Ca1.94−xSrxPN3:0.06Eu2+氮磷化物螢光粉之熱特性 56 3.1.4 Ca1.94−xSrxPN3:0.06Eu2+之變壓光譜 62 3.2 Sr3P5N10Cl:Eu2+氮磷化物螢光粉之協同效應 63 3.2.1 Sr2.91−xBaxP5N10Cl:0.09Eu2+氮磷化物螢光粉之結構分析 63 3.2.2 Sr2.91−xBaxP5N10Cl:0.09Eu2+氮磷化物螢光粉之放光特性 72 3.2.3 Sr2.91−xBaxP5N10Cl:0.09Eu2+氮磷化物螢光粉之協同作用 74 3.2.4 Sr2.91−xBaxP5N10Cl:0.09Eu2+氮磷化物螢光粉之熱特性 78 3.2.5 Sr2.91−xBaxP5N10Cl:0.09Eu2+氮磷化物螢光粉之變壓光譜 83 3.3 Ca1.94−xSrxPN3:0.06Eu2+與Sr2.91−xBaxP5N10Cl:0.09Eu2+氮磷化物螢光粉之綜合探討 84 第四章 結論 87 參考文獻 89
dc.language.isozh-TW
dc.subject氮磷化物zh_TW
dc.subject螢光粉zh_TW
dc.subjectphosphoren
dc.subjectNitridophosphateen
dc.title以化學取代調控氮磷化物螢光粉之放光特性zh_TW
dc.titleControl Luminescence on Nitridophosphate Phosphors by Chemical Substitutionen
dc.date.schoolyear110-1
dc.description.degree碩士
dc.contributor.oralexamcommittee楊吉水(Jeng-Wei Lin),廖秋峯(Her-Bert Chang),汪建民(Chia-Hui Wang),陳錦明
dc.subject.keyword螢光粉,氮磷化物,zh_TW
dc.subject.keywordphosphor,Nitridophosphate,en
dc.relation.page96
dc.identifier.doi10.6342/NTU202200094
dc.rights.note未授權
dc.date.accepted2022-01-21
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
U0001-1801202219292800.pdf
  未授權公開取用
7.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved