Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81661
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭斯彥(Sy-Yen Kuo)
dc.contributor.authorJhih-Cing Huangen
dc.contributor.author黃芷晴zh_TW
dc.date.accessioned2022-11-24T09:25:26Z-
dc.date.available2022-11-24T09:25:26Z-
dc.date.copyright2021-08-06
dc.date.issued2021
dc.date.submitted2021-07-29
dc.identifier.citation[1] Edward Farhi and Hartmut Neven. Classification with quantum neural networks on near term processors. arXiv:1802.06002, 2018. [2] https://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html [3] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Dacheng Tao, Nana Liu. Quantum noise protects quantum classifiers against adversaries. Physical Review Research 3, 023153, 2021. [4] I. Cong, S. Choi, and M. D. Lukin, Nature Physics 15, 12731278, 2019. [5] Marcello Benedetti, Delfina Garcia-Pintos, Oscar Perdomo, Vicente Leyton Ortega, Yunseong Nam, and Alejandro PerdomoOrtiz. A generative modeling approach for benchmarking and training shallow quantum circuits. npj Quantum Information, 5(1):1–9, 2019. [6] Pierre-Luc Dallaire-Demers and Nathan Killoran. Quantum generative adversarial networks. Physical Review A, 98(1):012324, 2018. [7] Vojtech Havli cek, Antonio D Corcoles, Kristan Temme, Aram W Harrow, Abhinav Kandala, Jerry M Chow, and Jay M Gambetta. Supervised learning with quantum enhanced feature spaces. Nature, 567(7747):209, 2019. [8] William Huggins, Piyush Patil, Bradley Mitchell, K Birgitta Whaley, and Miles Stoudenmire. Towards quantum machine learning with tensor networks. Quantum Science and Technology, 4(2):024001, 2019. [9] Maria Schuld, Alex Bocharov, Krysta Svore, and Nathan Wiebe. 28 Circuit-centric quantum classifiers. Phys. Rev. A 101, 032308 (2020b). [10] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis. In Theory of Cryptography Conference ’06, pages 265–284. Springer, 2006. [11] Weiyuan Gong, Dong-Ling Deng. Universal Adversarial Examples and Perturbations for Quantum Classifiers. arXiv:2102.07788, 2021. [12] Jeremy M Cohen, Elan Rosenfeld, J. Zico Kolter. Certified Adversarial Robustness via Randomized Smoothing. International Conference on Machine Learning, pages 1310–1320, 2019. [13] Sirui Lu, Lu-Ming Duan, Dong-Ling Deng. Quantum Adversarial Machine Learning. Phys. Rev. Research 2, 033212 (2020). [14] V. Havlicek, A. D. Co ́rcoles, K. Temme, A. W. Harrow, A. Kandala, J. M. Chow, and J. M. Gambetta, Supervised learning with quantum enhanced feature spaces, Nature, 567 209–212 , 2019. [15] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In International Conference on Learning Representations, 2015.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81661-
dc.description.abstract量子機器學習目前已成為突破機器學習計算速度的潛在可能,其完善化仍是許 多研究團隊的主要目標。現行研究除了設法在量子電腦硬體實作方面進行改善, 針對量子機器學習,傳統機器學習領域的相關研究對應之量子機器學習版本也是 量子計算領域的重點方向。有研究證明量子分類器容易受到機器學習對抗例攻 擊,並且隨著資料的維度增加,其受到對抗例攻擊的風險呈指數增長。本研究利 用外加旋轉雜訊,模擬傳統機器學習隨機平滑演算法,以期達到增加量子分類器 面對對抗例的可靠性,並連結差分隱私之定義,驗證外加雜訊所增強之量子分類 器可耐受對抗例之距離下界。本篇研究探討之量子分類器無特定架構之限制,故 適用於增強所有量子分類器之可靠性。此外,有別於許多傳統機器學習防禦對抗 例之演算法,此量子機器學習演算法不需透過重新訓練量子分類器,即可透過本 研究提出之演算法防禦對抗例。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T09:25:26Z (GMT). No. of bitstreams: 1
U0001-1607202112292200.pdf: 2562248 bytes, checksum: 424fd6e734042fe43919939185714eda (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents1 Introduction 1 2 Related Work 4 2.1 MachineLearning............................. 4 2.2 QuantumMachineLearning ....................... 5 2.3 AdversarialAttack ............................ 6 2.4 CertifiedRobustness ........................... 7 2.5 DifferentialPrivacy............................ 8 3 Preliminary 9 3.1 Notation.................................. 9 3.2 Definition ................................. 10 3.2.1 QuantumClassifier........................ 10 3.2.2 QuantumDifferentialPrivacy .................. 11 4 Proposed Method 13 5 Analysis 15 5.1 AccuracyofNoisyClassifiers....................... 15 5.2 Relation between Noise Magnitude and Quantum Differential Privacy 20 5.3 Connection between Quantum Differential Privacy and Certified Ro- bustness.................................. 21 6 Experiment 24 7 Conclusion 26 8 Reference 28
dc.language.isoen
dc.subject量子分類器zh_TW
dc.subject差分隱私zh_TW
dc.subject可靠性驗證zh_TW
dc.subject量子雜訊zh_TW
dc.subject量子計算zh_TW
dc.subjectQuantum Classifieren
dc.subjectDifferential Privacyen
dc.subjectQuantum Computationen
dc.subjectQuantum Noiseen
dc.subjectCertified Robustnessen
dc.title利用外加雜訊以增強量子分類器於對抗例之可靠性驗證zh_TW
dc.titleCertification of Quantum Classifier Robustness against Adversarial Examples through Quantum Noise.en
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee游家牧(Hsin-Tsai Liu),陳英一(Chih-Yang Tseng),雷欽隆,顏嗣鈞
dc.subject.keyword差分隱私,可靠性驗證,量子雜訊,量子計算,量子分類器,zh_TW
dc.subject.keywordDifferential Privacy,Quantum Computation,Quantum Noise,Certified Robustness,Quantum Classifier,en
dc.relation.page29
dc.identifier.doi10.6342/NTU202101509
dc.rights.note未授權
dc.date.accepted2021-07-30
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
U0001-1607202112292200.pdf
  未授權公開取用
2.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved