請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81656完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林順福 | |
| dc.contributor.author | Shih-Wei Liang | en |
| dc.contributor.author | 梁師瑋 | zh_TW |
| dc.date.accessioned | 2022-11-24T09:25:20Z | - |
| dc.date.available | 2022-11-24T09:25:20Z | - |
| dc.date.copyright | 2021-08-04 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-07-23 | |
| dc.identifier.citation | 日本國稅廳。1989。「清酒の製法品質表示基準」の概要。取自https://www.nta.go.jp/taxes/sake/hyoji/seishu/gaiyo/02.htm 日本農林水產省。2020。令和元年産酒造好適米の生産量(推計値)。取自https://www.maff.go.jp/j/seisaku_tokatu/kikaku/attach/pdf/sake_01chousa-2.pdf 日本農林水產省。2021。酒造好適米の農産物検査結果(生産量)と令和2年産の生産量推計② (銘柄別)。取自https://www.maff.go.jp/j/seisaku_tokatu/kikaku/attach/pdf/sake_02seisan-10.pdf 朱雅玲。2002。利用SSR分子標誌建立水稻連鎖圖譜及分析F2族群之遺傳重組。國立臺灣大學農藝學研究所碩士論文。臺北市。取自https://ndltd.ncl.edu.tw/cgibin/gs32/gsweb.cgi?o=dnclcdr s=id=%22090NTU00417007%22. searchmode=basic 行政院財政部。2019年4月。海關進口稅則部分稅則修正草案。取自https://webfile.customs.gov.tw/Download.ashx?u=LzAwMS9VcGxvYWQvMS9yZWxmaWxlLzgxNjkvMTgwMzE4LzM3OTU3OTcyLWMzYWYtNDViYi05OWZkLTU3N2FmY2RjOWM0Zi5wZGY%3d n=MTA4MDcwM1%2fnuL3oqqrmmI4t6KGM5pS%2f6Zmi54mILnBkZg%3d%3d 行政院財政部關務署秘書室。2019年7月3日。新聞稿 - 108年7月3日立法院三讀通過「海關進口稅則」部分稅則修正案。取自https://web.customs.gov.tw/News_Content.aspx?n=CAB5D137A3FE907F sms=1095B63D0846032B s=FD98732FF6B31CC3 行政院農業委員會農糧署統計室。2000年8月12日。農業統計年報(88年) - 每人每年糧食可供消費量。取自https://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx 行政院農業委員會農糧署統計室。2020年7月10日。農業統計年報(108年) - 每人每年糧食可供消費量。取自https://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx 吳岱融、林妤姍、王仁助、劉雲霖、吳添金、邱家玉、許志聖、張素貞。2013。水稻釀酒新品種苗栗1號。苗栗區農業改良場研究彙報 3:1-10。 李文雅。2008。水稻重組自交系連鎖圖譜之建立及遺傳重組分析。國立臺灣大學農藝學研究所碩士論文。臺北市。取自https://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0001-3007200812355400 連苡廷。2019。清酒用稻米性狀及抽穗期之基因定位。國立臺灣大學農藝學研究所碩士論文。臺北市。取自https://hdl.handle.net/11296/ew65xr。 陳正昇、陳榮坤、金漢煊、林彥蓉。2010。以分子輔助選種導入 hd1, Hd6和ehd1抽穗期基因至水稻越光品種。作物、環境與生物資訊 7(1):1-20。 陳榮坤、林彥蓉、羅正宗。2012。水稻新品種臺南16號之育成。臺南區農業改良場研究彙報 60:1-12。 楊逢春、梁淑云、李祖烽、韋樹桐。2007。中國栽培稻簡史。現代農業科技 4:95-97。 賴郁薇。2017年5月31日。地酒嘗試!台灣米能不能釀在地好酒?米品種、釀酒機械都是關鍵。上下游。取自https://www.newsmarket.com.tw/blog/95825/ 賴郁薇。2018年5月7日。在日本的風土種下台灣米!陳韋仁在島根釀造「台中六十五號清酒」。上下游。取自https://www.newsmarket.com.tw/blog/109102/ 簡祥庭、陳榮坤、侯藹玲、陳正昇、林彥蓉。2011。Hd1, Hd6與Ehd1對水稻抽穗期之影響。作物、環境與生物資訊 8(1):45-57。 霧峰農會酒莊。2019年4月30日。被譽為「天生好米」該有什麼特質?一次解析米界高材生「霧峰益全香米」!取自https://www.twwfsake.com/winetalk_view.php?id=24 Brem, R. B., and Kruglyak, L. (2005). The landscape of genetic complexity across5,700 gene expression traits in yeast. Proceedings of the National Academy of Sciences 102(5): 1572-1577. Cai, M., Chen, S., Wu, M., Zheng, T., Zhou, L., Li, C., Zhang, H., Wang, J., Xu, X., Chai, J., Ren, Y., Guo, X., Zhang, X., Lei, C., Cheng, Z., Wang, J., Jiang, L., Zhai, H., Wang, H., Zhu, S., and Wan, J. (2019). Early heading 7 interacts with DTH8, and regulates flowering time in rice. Plant Cell Reports 38(5): 521-532. Chang, T. T., Li, C. C., and Vergara, B. S. (1969). Component analysis of duration from seeding to heading in rice by the basic vegetative phase and the photoperiod-sensitive phase. Euphytica 18(1): 79-91. DeVicente, M. C., and Tanksley, S. D. (1993). QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics 134(2): 585-596. Doi, K., Izawa, T., Fuse, T., Yamanouchi, U., Kubo, T., Shimatani, Z., Yano, M., and Yoshimura, A. (2004). Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Development 18(8): 926-936. Du, A., Tian, W., Wei, M., Yan, W., He, H., Zhou, D., Huang, X., Li, S., and Ouyang, X. (2017). The DTH8-Hd1 module mediates day-length-dependent regulation of rice flowering. Molecular Plant 10(7): 948-961. Ellegren, H. (2004). Microsatellites: simple sequences with complex evolution. Nature Reviews Genetics 5(6): 435-445. Fan, C., Xing, Y., Mao, H., Lu, T., Han, B., Xu, C., Li, X., and Zhang, Q. (2006). GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theoretical and Applied Genetics 112(6): 1164-1171. FAO. Retrieved December 16, 2020, from http://www.fao.org/faostat/en/#data/QC Fishman, L., and Willis, J. H. (2005). A novel meiotic drive locus almost completely distorts segregation in Mimulus (monkeyflower) hybrids. Genetics 169(1): 347-353. Fujita, N., Yoshida, M., Asakura, N., Ohdan, T., Miyao, A., Hirochika, H., and Nakamura, Y. (2006). Function and characterization of starch synthase I using mutants in rice. Plant Physiology 140(3): 1070-1084. Fujita, N., Yoshida, M., Kondo, T., Saito, K., Utsumi, Y., Tokunaga, T., Nishi, A., Satoh, H., Park, J. H., Jane, J. L., Miyao, A., Hirochika, H., and Nakamura, Y. (2007). Characterization of SSIIIa-deficient mutants of rice: the function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm. Plant Physiology 144(4): 2009-2023. Gao, H., Zheng, X. M., Fei, G., Chen, J., Jin, M., Ren, Y., Wu, W., Zhou, K., Sheng, P., Zhou, F., Jiang, L., Wang, J., Zhang, X., Guo, X., Wang, J. L., Cheng, Z., Wu, C., Wang, H., and Wan, J. M. (2013). Ehd4 encodes a novel and Oryza-genus-specific regulator of photoperiodic flowering in rice. PLoS Genetics 9(2), e1003281. Hagiwara, W. E., Onishi, K., Takamure, I., and Sano, Y. (2006). Transgressive segregation due to linked QTLs for grain characteristics of rice. Euphytica 150(1): 27-35. Hayama, R., Yokoi, S., Tamaki, S., Yano, M., and Shimamoto, K. (2003). Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422(6933): 719-722. Hayashi, M., Sugiura, K., Kuno, C., Endo, I., Tanaka, Y., and Yamauchi, A. (2011). Reduction of rice chalky grain by deep and permanent irrigation method; Effect on growth and grain quality of rice. Plant Production Science 14(3): 282-290. Hirose, T., and Terao, T. (2004). A comprehensive expression analysis of the starch synthase gene family in rice (Oryza sativa L.). Planta 220(1): 9-16. Hosseinzadeh-Colagar, A., Haghighatnia, M. J., Amiri, Z., Mohadjerani, M., and Tafrihi, M. (2016). Microsatellite (SSR) amplification by PCR usually led to polymorphic bands: Evidence which shows replication slippage occurs in extend or nascent DNA strands. Molecular Biology Research Communications 5(3): 167-174. Huang, X., Qian, Q., Liu, Z., Sun, H., He, S., Luo, D., Xia, G., Chu, C., Li, J., and Fu, X. (2009). Natural variation at the DEP1 locus enhances grain yield in rice. Nature Genetics 41(4): 494-497. IRGSP. Retrieved December 18, 2020, from https://rapdb.dna.affrc.go.jp/ Ishikawa, R., Aoki, M., Kurotani, K. I., Yokoi, S., Shinomura, T., Takano, M., and Shimamoto, K. (2011). Phytochrome B regulates Heading date 1 (Hd1)-mediated expression of rice florigen Hd3a and critical day length in rice. Molecular Genetics and Genomics 285(6): 461-470. Ishimaru, K., Hirotsu, N., Madoka, Y., Murakami, N., Hara, N., Onodera, H., Takayuki, K., Ujiie, K., Shimizu, B. I., Onishi, A., Miyagawa, H., and Katoh, E. (2013). Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nature Genetics 45(6): 707-711. Itoh, H., Nonoue, Y., Yano, M., and Izawa, T. (2010). A pair of floral regulators sets critical day length for Hd3a florigen expression in rice. Nature Genetics 42(7): 635-638. Japanese Sake and Shochu Makers Association. (2011). A Comprehensive Guild to Japanese Sake. Retrieved December 18, 2020, from http://www.japansake.or.jp/sake/english/index.html Jeon, J. S., Ryoo, N., Hahn, T. R., Walia, H., and Nakamura, Y. (2010). Starch biosynthesis in cereal endosperm. Plant Physiology and Biochemistry 48(6): 383-392. Juliano, B. O., and Villareal, C. P. (1993). Grain Quality Evaluation of World Rices. International Rice Research Institute. Kim, S. K., Yun, C. H., Lee, J. H., Jang, Y. H., Park, H. Y., and Kim, J. K. (2008). OsCO3, a CONSTANS-LIKE gene, controls flowering by negatively regulating the expression of FT-like genes under SD conditions in rice. Planta 228(2): 355-365. Koide, Y., Sakaguchi, S., Uchiyama, T., Ota, Y., Tezuka, A., Nagano, A. J., Ishiguro, S., Takamure, I., and Kishima, Y. (2019). Genetic properties responsible for the transgressive segregation of days to heading in rice. G3: Genes, Genomes, Genetics 9(5): 1655-1662. Komiya, R., Ikegami, A., Tamaki, S., Yokoi, S., and Shimamoto, K. (2008). Hd3a and RFT1 are essential for flowering in rice. Development 135(4): 767-774. Komiya, R., Yokoi, S., and Shimamoto, K. (2009). A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136(20): 3443-3450. Koo, B. H., Yoo, S. C., Park, J. W., Kwon, C. T., Lee, B. D., An, G., Zhang, Z., Li, J., Li, Z., and Paek, N. C. (2013). Natural variation in OsPRR37 regulates heading date and contributes to rice cultivation at a wide range of latitudes. Molecular Plant 6(6): 1877-1888. Kubo, A., Fujita, N., Harada, K., Matsuda, T., Satoh, H., and Nakamura, Y. (1999). The starch-debranching enzymes isoamylase and pullulanase are both involved in amylopectin biosynthesis in rice endosperm. Plant Physiology 121(2): 399-410. Kusutani, A., Ueda, K., Hashimoto, T., Morokuma, M., Toyota, M., and Asanuma, K. I. (2001). Basic Studies on the Cultivation and Breeding of Brewers' Rice in Kagawa Prefecture: Effect of the selection for leaf color on the protein content and some other brewing characteristics in late generation (Genetic Resources and Evaluation). Japanese Journal of Crop Science 70(4): 554-560. Li, S., Wei, X., Ren, Y., Qiu, J., Jiao, G., Guo, X., Tang, S., Wan, J., and Hu, P. (2017). OsBT1 encodes an ADP-glucose transporter involved in starch synthesis and compound granule formation in rice endosperm. Scientific Reports 7(1): 1-13. Li, Y., Fan, C., Xing, Y., Jiang, Y., Luo, L., Sun, L., Shao, D., Xu, C., Li, X., Xiao, J., He, Y., and Zhang, Q. (2011). Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nature Genetics 43(12): 1266-1269. Li, Z., Pinson, S. R. M., Stansel, J. W., and Park, W. D. (1995). Identification of quantitative trait loci (QTLs) for heading date and plant height in cultivated rice (Oryza sativa L.). Theoretical and Applied Genetics 91(2): 374-381. Lyon, M. F. (2003). Transmission ratio distortion in mice. Annual Review of Genetics 37(1): 393-408. Mao, D., Liu, T., Xu, C., Li, X., and Xing, Y. (2011). Epistasis and complementary gene action adequately account for the genetic bases of transgressive segregation of kilo-grain weight in rice. Euphytica 180(2): 261-271. Matsubara, K., Yamanouchi, U., Nonoue, Y., Sugimoto, K., Wang, Z. X., Minobe, Y., and Yano, M. (2011). Ehd3, encoding a plant homeodomain finger‐containing protein, is a critical promoter of rice flowering. The Plant Journal 66(4): 603-612. McCouch, S. R., Teytelman, L., Xu, Y., Lobos, K. B., Clare, K., Walton, M., Fu, B., Maghirang, R., Li, Z., Xing, Y., and Zhang, Q. (2002). Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Research 9(6): 199-207. Nadeau, J. H. (2017). Do gametes woo? Evidence for their nonrandom union at fertilization. Genetics 207(2): 369-387. Nagato, K., and Ebata, M. (1965). Effects of high temperature during ripening period on the development and the quality of rice kernels. Japanese Journal of Crop Science 34(1): 59-66. Nakamura, Y. (1996). Some properties of starch debranching enzymes and their possible role in amylopectin biosynthesis. Plant Science 121(1): 1-18. Nakano, H. (2019). Countermeasures against the occurrence of chalky grain during rice ripening under high temperatures. Climate Smart Agriculture for the Small-Scale Farmers in the Asian and Pacific Region: 265-276. Ogiso, E., Takahashi, Y., Sasaki, T., Yano, M., and Izawa, T. (2010). The role of casein kinase II in flowering time regulation has diversified during evolution. Plant Physiology 152(2): 808-820. Ohdan, T., Francisco Jr, P. B., Sawada, T., Hirose, T., Terao, T., Satoh, H., and Nakamura, Y. (2005). Expression profiling of genes involved in starch synthesis in sink and source organs of rice. Journal of Experimental Botany 56(422): 3229-3244. Okita, T. W. (1992). Is there an alternative pathway for starch synthesis ?. Plant Physiology 100(2): 560-564. Preiss, J., and Sivak, M. N. (1996). Starch synthesis in sinks and sources. Photoassimilate Distribution in Plants and Crops: Source-Sink Relationships: 63-96. Qiao, J., Liu, Z., Deng, S., Ning, H., Yang, X., Lin, Z., Li, G., Wang, Q., Wang, S., and Ding, Y. (2011). Occurrence of perfect and imperfect grains of six japonica rice cultivars as affected by nitrogen fertilization. Plant and Soil 349(1): 191-202. READYFOR。2018年2月26日。台湾出身の蔵人が醸す!台湾と島根をつな ぐ日本酒が誕生。取自https://readyfor.jp/projects/taityu65/announcements/72422 Ren, L., Tang, D., Zhao, T., Zhang, F., Liu, C., Xue, Z., Shi, W., Du, G., Shen, Y., and Cheng, Z. (2018). OsSPL regulates meiotic fate acquisition in rice. New Phytologist 218(2): 789-803. Sakulsingharoj, C., Choi, S. B., Ogawa, M., Singh, S., Bork, J., Meyer, C. R., Edwards, G. E., Preiss, J., and Okita, T. W. (2003). Manipulating starch and storage protein biosynthesis during endosperm development to increase rice yield. Rice Science: Innovations and Impact for Livelihood: 345-359. International Rice Research Institute. Satoh, H., Nishi, A., Yamashita, K., Takemoto, Y., Tanaka, Y., Hosaka, Y., Sakurai, A., Fujita, N., and Nakamura, Y. (2003). Starch-branching enzyme I-deficient mutation specifically affects the structure and properties of starch in rice endosperm. Plant Physiology 133(3): 1111-1121. Setter, T. L., Laureles, E. V., and Mazaredo, A. M. (1997). Lodging reduces yield of rice by self-shading and reductions in canopy photosynthesis. Field Crops Research 49(2-3): 95-106. She, K. C., Kusano, H., Koizumi, K., Yamakawa, H., Hakata, M., Imamura, T., Fukuda, M., Naito, N., Tsurumaki, Y., Yaeshima, M., Tsuge, T., Matsumoto, K., Kudoh, M., Itoh, E., Kikuchi, S., Kishimoto, N., Yazaki, J., Ando, T., Yano, M., Aoyama, T., Sasaki, T., Satoh, H., and Shimada, H. (2010). A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality. The Plant Cell 22(10): 3280-3294. Smith A.M., Denyer K., and Martin C. (1997) The synthesis of the starch granule. Annual Review of Plant Physiology and Plant Molecular Biology 48: 67-87. Song, X. J., Huang, W., Shi, M., Zhu, M. Z., and Lin, H. X. (2007). A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics 39(5): 623-630. Song, X., Qiu, S. Q., Xu, C. G., Li, X. H., and Zhang, Q. (2005). Genetic dissection of embryo sac fertility, pollen fertility, and their contributions to spikelet fertility of intersubspecific hybrids in rice. Theoretical and Applied Genetics 110(2): 205-211. Takano-Kai, N., Jiang, H., Kubo, T., Sweeney, M., Matsumoto, T., Kanamori, H., Padhukasahasram, B., Bustamante, C., Yoshimura, A., Doi, K., and McCouch, S. (2009). Evolutionary history of GS3, a gene conferring grain length in rice. Genetics 182(4): 1323-1334. Tamaki, S., Matsuo, S., Wong, H. L., Yokoi, S., and Shimamoto, K. (2007). Hd3a protein is a mobile flowering signal in rice. Science 316(5827): 1033-1036. Tanaka, N., Fujita, N., Nishi, A., Satoh, H., Hosaka, Y., Ugaki, M., Kawasaki, S., and Nakamura, Y. (2004). The structure of starch can be manipulated by changing the expression levels of starch branching enzyme IIb in rice endosperm. Plant Biotechnology Journal 2(6): 507-516. Taoka, K. I., Ohki, I., Tsuji, H., Furuita, K., Hayashi, K., Yanase, T., Yamaguchi, M., Nakashima, C., Purwestri, Y. A., Tamaki, S., Ogaki, Y., Shimada, C., Nakagawa, A., Kojima, C., and Shimamoto, K. (2011). 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 476(7360): 332-335. Turner, B. C., and Perkins, D. D. (1979). Spore killer, a chromosomal factor in Neurospora that kills meiotic products not containing it. Genetics 93(3): 587-606. Venkateswarlu, B., and Visperas, R. M. (1987). Source-sink relationships in crop plants. IRRI Research Paper Series. International Rice Research Institute. Wakamatsu, K., Sasaki, O., and Tanaka, A. (2009). Effects of the amount of insolation and humidity during the ripening period on the grain quality of brown rice in warm regions of Japan. Japanese Journal of Crop Science 78(4): 476-482. Wang, E., Wang, J., Zhu, X., Hao, W., Wang, L., Li, Q., Zhang, L., He, W., Lu, B., Lin, H., Ma, H., Zhang, G., and He, Z. (2008). Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nature Genetics 40(11): 1370-1374. Wang, S., Wu, K., Yuan, Q., Liu, X., Liu, Z., Lin, X., Zeng, R., Zhu, H., Dong, G., Qian, Q., Zhang, G., and Fu, X. (2012). Control of grain size, shape and quality by OsSPL16 in rice. Nature Genetics 44(8): 950-954. Wang, Z. Y., Zheng, F. Q., Shen, G. Z., Gao, J. P., Snustad, D. P., Li, M. G., Zhang, J. L., and Hong, M. M. (1995). The amylose content in rice endosperm is related to the post‐transcriptional regulation of the waxy gene. The Plant Journal 7(4): 613-622. Weng, J., Gu, S., Wan, X., Gao, H., Guo, T., Su, N., Lei, C., Zhang, X., Cheng, Z., Guo, X., Wang, J., Jiang, L., Zhai, H., and Wan, J. (2008). Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Research 18(12): 1199-1209. Xi, M., Zhao, Y., Lin, Z., Zhang, X., Ding, C., Tang, S., Liu, Z., Wang, S., and Ding, Y. (2016). Comparison of physicochemical characteristics between white-belly and white-core rice grains. Journal of Cereal Science 69: 392-397. Xu, Y., McCouch, S. R., and Shen, Z. (1998). Transgressive segregation of tiller angle in rice caused by complementary gene action. Crop Science 38(1): 12-19. Xue, W., Xing, Y., Weng, X., Zhao, Y., Tang, W., Wang, L., Zhou, H., Yu, S., Xu, C., Li, X., and Zhang, Q. (2008). Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genetics 40(6): 761-767. Yang, H., Yang, R., Li, Y., Jiang, Z., and Zheng, J. (2000). The relationship between culm traits and lodging resistance of rice cultivars. Fujian Journal of Agricultural Sciences 15(2): 1-7. Yano, M., and Sasaki, T. (1997). Genetic and molecular dissection of quantitative traits in rice. Plant Molecular Biology 35: 145-153. Yano, M., Katayose, Y., Ashikari, M., Yamanouchi, U., Monna, L., Fuse, T., Baba, T., Yamamoto, K., Umehara, Y., Nagamura, Y., and Sasaki, T. (2000). Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. The Plant Cell 12(12): 2473-2483. Yano, M., Kojima, S., Takahashi, Y., Lin, H., and Sasaki, T. (2001). Genetic control of flowering time in rice, a short-day plant. Plant Physiology 127(4): 1425-1429. Yano, M., Yoshiaki, H., Kuboki, Y., Lin, S. Y., Nagamura, Y., Kurata, N., Sasaki, T., and Minobe, Y. (1996). QTL analysis as an aid to tagging genes that control heading time in rice. Rice Genetics III 3: 650-656. Zhang, X. C., Lin, Z. M., Liu, Z. H., Li, G. H., Wang, Q. S., Wang, S. H., and Ding, Y. F. (2014). Analysis of variations in white-belly and white-core rice kernels within a panicle and the effect of panicle type. Journal of Integrative Agriculture 13(8): 1672-1679. Zhang, Z. H., Zhu, Y. J., Wang, S. L., Fan, Y. Y., and Zhuang, J. Y. (2019). Importance of the interaction between heading date genes hd1 and ghd7 for controlling yield traits in rice. International Journal of Molecular Sciences 20(3): 516. Zhao, X., and Kochert, G. (1992). Characterization and genetic mapping of a short, highly repeated, interspersed DNA sequence from rice (Oryza sativa L.). Molecular and General Genetics 231(3): 353-359. Zhou, Y., Zheng, H., Wei, G., Zhou, H., Han, Y., Bai, X., Xing, Y., and Han, Y. (2016). Nucleotide diversity and molecular evolution of the ALK gene in cultivated rice and its wild relatives. Plant Molecular Biology Reporter 34(5): 923-930. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81656 | - |
| dc.description.abstract | 由於臺灣常有稻米產銷失衡的問題,釀造清酒為解決途徑之一,然而臺灣目前並無適合釀造清酒之專用稻米品種,直接引進日本的酒米品種則會因為過早抽穗而導致產量下降。因此,本研究的目的為將臺灣的稉稻品種臺南16號所具有之晚抽穗及高千粒重基因以分子輔助回交育種的方式導入引進之日本酒米品種美山錦中,希望能改良引進酒米品種之抽穗期及千粒重。本研究以臺南16號為供給親及美山錦為輪迴親雜交獲得18株F1,並先後分別對130株BC1F1、33株BC2F1及92株BC3F1植株進行前景選拔,最後獲選1株具有目標性狀基因之BC3F1植株,將其自交產生93株BC3F2,再對其進行前景選拔和抽穗期、千粒重及稔實率等外表性狀調查。本研究成功將2個晚抽穗(qDTH10-1/qDTH10-2和qDTH3-1)及1個高千粒重(qGwt9-1)基因座導入美山錦品種中,改良後的BC3F2個體之抽穗期可延長約20天,而千粒重則可提升約1.14克,且穀粒產量亦隨之提升28.11%,顯示以分子標誌選拔目標性狀可達到預期目標。同時,本研究也對BC2F1及BC3F1前景選拔獲選之植株進行遺傳背景分析,輪迴親遺傳背景比例分別約為80%及85%,顯示輪迴親遺傳背景所佔比例低於理論值。此外,本研究亦發現抽穗期與千粒重兩目標性狀間呈現顯著負相關,即過度延遲抽穗期將因增加穀粒數而使千粒重降低,且可能導致植株過高增加倒伏風險,並可能因生育期過長而影響輪作制度及節水效益,因此後續品系之抽穗期選拔將以效應較大之qDTH10-1/qDTH10-2基因為主,而以效應較小的qDTH3-1基因為輔。此外,本研究亦使用帶有gs3對偶基因的臺南16號品種為供給親且同樣以美山錦品種為輪迴親進行回交,並先後分別對32株BC1F1及47株BC2F1進行前景選拔,試圖在除了上述抽穗期及千粒重基因外導入可增大粒型(千粒重)的gs3對偶基因,以期間接增加產量。綜合而言,本研究利用分子標誌輔助回交育種已成功改良優良酒米品種之抽穗期及千粒重等性狀,並已初步獲選具潛力之個體/品系,期望後續品系評估後可推薦適合臺灣栽培環境之優良酒米新品種。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T09:25:20Z (GMT). No. of bitstreams: 1 U0001-2107202112353000.pdf: 3465846 bytes, checksum: b76cb5f8eb079bbfe30531d39c06af24 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 中文摘要 iii Abstract iv 目錄 vi 表目錄 ix 圖目錄 xi 附表目錄 xii 前言 1 前人研究 4 一、重要的酒米性狀 4 二、分子標誌輔助選種 5 三、酒米引種問題 6 四、抽穗期相關的遺傳調控機制 7 五、影響穀粒粒型與產量之基因 9 六、影響水稻白堊質之基因 11 材料與方法 14 一、試驗材料 14 二、分子標誌基因型檢測 17 1.水稻植株DNA萃取 17 2.聚合酶連鎖反應及瓊脂膠電泳分析 18 3.SSR分子標誌的使用 18 三、目標性狀相關QTL之基因型分析 19 四、遺傳背景分析 19 五、外表型調查 20 結果 22 一、A1組之前景選拔 22 1.BC1F1及BC1F1-s族群的目標性狀基因座分析與選拔 22 2.BC2F1及BC2F1-s族群的目標性狀基因座分析與選拔 24 3.BC3F1及BC3F1-s族群的目標性狀基因座分析與選拔 29 4.BC4F1族群的目標性狀基因座分析 33 5.BC3F2-s族群的目標性狀基因座分析與選拔 35 6.BC3F2-s-L族群的目標性狀基因座分析與選拔 36 二、A1組之遺傳背景分析 38 1.獲選BC2F1-s個體之遺傳背景分析 38 2.獲選BC3F1-s個體之遺傳背景分析 40 三、A1組之分子標誌與目標性狀間之關聯性分析 46 1.分子標誌與抽穗期間之關聯性 46 2.分子標誌與千粒重間之關聯性 49 3.分子標誌與心白性狀間之關聯性 51 4.抽穗期與產量相關性狀間之關聯性 53 5.千粒重與產量相關性狀間之關聯性 56 6.性狀間的相關性分析 58 四、A2組之前景選拔(含gs3對偶基因) 60 1.BC1F1-g族群的目標性狀基因座分析與選拔 60 2.BC2F1-g族群的目標性狀基因座分析與選拔 62 討論 65 一、A1組之目標性狀基因座選拔 65 1.抽穗期之改良 65 2.千粒重之改良 67 3.抽穗期與產量相關性狀的關係 71 二、A1組之心白分析 71 三、A1組抽穗期與重要農藝性狀間之關係 74 四、A1組之遺傳背景分析 75 五、A2組之抽穗期與千粒重基因座選拔 76 結論 78 附錄 79 參考資料 82 | |
| dc.language.iso | zh-TW | |
| dc.subject | 分子輔助回交育種 | zh_TW |
| dc.subject | 酒米 | zh_TW |
| dc.subject | 千粒重 | zh_TW |
| dc.subject | 抽穗期 | zh_TW |
| dc.subject | 穀粒產量 | zh_TW |
| dc.subject | days to heading | en |
| dc.subject | 1000-grain weight | en |
| dc.subject | grain yields | en |
| dc.subject | sake-brewing rice | en |
| dc.subject | marker-assisted backcross selection | en |
| dc.title | 利用分子標誌輔助回交改良酒米品種之抽穗期及千粒重 | zh_TW |
| dc.title | Improvement of a Sake-Brewing Rice Variety on Days to Heading and Thousand-Grain Weight Using Marker-Assisted Backcross Selection | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃永芬(Hsin-Tsai Liu),陳榮坤(Chih-Yang Tseng) | |
| dc.subject.keyword | 酒米,抽穗期,千粒重,穀粒產量,分子輔助回交育種, | zh_TW |
| dc.subject.keyword | sake-brewing rice,days to heading,1000-grain weight,grain yields,marker-assisted backcross selection, | en |
| dc.relation.page | 93 | |
| dc.identifier.doi | 10.6342/NTU202101623 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-07-23 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2107202112353000.pdf 未授權公開取用 | 3.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
