請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8163完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曲芳華(Fang-Hua Chu) | |
| dc.contributor.author | Chong-Yao Hong | en |
| dc.contributor.author | 洪崇耀 | zh_TW |
| dc.date.accessioned | 2021-05-20T00:49:28Z | - |
| dc.date.available | 2025-08-17 | |
| dc.date.available | 2021-05-20T00:49:28Z | - |
| dc.date.copyright | 2020-08-21 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-18 | |
| dc.identifier.citation | Adams, R.P. (2007) Identification of essential oil components by gas chromatography/mass spectroscopy, 4th edition. Allured Publishing Corporation. Fourth edition 53-788. Andersen, T.B., K.A. Martinez-Swatson, S.A. Rasmussen, B.A. Boughton, K. Jørgensen, J. Andersen-Ranberg, N. Nyberg, S.B. Christensen and H.T. Simonsen (2017) Localization and in-vivo characterization of Thapsia garganica CYP76AE2 indicates a role in thapsigargin biosynthesis. Plant Physiology 174: 56-72. Arimura, G.I., C. Kost and W. Boland (2005) Herbivore-induced, indirect plant defences. Biochimica et Biophysica Acta 1734: 91-111. Bach, S.S, J.É. Bassard, J. Andersen-Ranberg, M.E. Møldrup, H.T. Simonsen and B. Hamberger (2014) High-throughput testing of terpenoid biosynthesis candidate genes using transient expression in Nicotiana benthamiana. Methods in Molecular Biology 1153: 245-255. Bak, S., F. Beisson, G. Bishop, B. Hamberger, R. Höfer, S. Paquette, and D. Werck-Reichharta (2011) Cytochromes P450 in The Arabidopsis Book. American Society of Plant Biologists 9: e0144. Baldwin, I.T. (2010) Plant volatiles. Current Biology 20(9): 392-397. Bathe, U. and A. Tissier (2019) Cytochrome P450 enzymes: A driving force of plant diterpene diversity. Phytochemistry 161: 149-162. Benabdelkader, T., Y. Guitton, B. Pasquier, J.L. Magnard, F. Jullien, A. Kameli and L. Legendre (2015) Functional characterization of terpene synthases and chemotypic variation in three lavender species of section Stoechas. Physiologia Plantarum 53: 43-57. Benelli, G., M. Govindarajan, M.S. AlSalhi, S. Devanesan and F. Maggi (2018) High toxicity of camphene and γ-elemene from Wedelia prostrata essential oil against larvae of Spodoptera litura (Lepidoptera: Noctuidae). Environmental Science and Pollution Research 25: 10383–10391. Boachon, B., R.R. Junker, L. Miesch, J.E. Bassard, R. Höfer, R. Caillieaudeaux, D.E. Seidel, A. Lesot, C. Heinrich, J.F. Ginglinger, L. Allouche, B. Vincent, D.S.C. Wahyuni, C. Paetz, F. Beran, M. Miesch, B. Schneider, K. Leiss and D. Werck-Reichharta (2015) CYP76C1 (Cytochrome P450)-mediated linalool metabolism and the formation of volatile and soluble linalool oxides in arabidopsis flowers: a strategy for defense against floral antagonists. The Plant Cell 27: 2972-2990. Biggs, B.W, C.G. Lim, K. Sagliani, S. Shankar, G. Stephanopoulos, M.D. Mey and P.K. Ajikumar (2016) Overcoming heterologous protein interdependency to optimize P450-mediated taxol precursor synthesis in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 113(12): 3209-3214. Cankar, K., A. Houwelingen, D. Bosch, T. Sonke, H. Bouwmeester and J. Beekwilder (2011) A chicory cytochrome P450 mono‐oxygenase CYP71AV8 for the oxidation of (+)‐valencene. FEBS Letters 585: 178-182. Cankar, K., A. Houwelingen, M. Goedbloed, R. Renirie, R.M. de Jong, H. Bouwmeester, D. Bosch, T. Sonke and J. Beekwilder (2014) Valencene oxidase CYP706M1 from Alaska cedar (Callitropsis nootkatensis). FEBS Letters 588: 1001-1007. Chadwick, M., H. Trewin, F. Gawthrop and C. Wagstaff (2013) Sesquiterpenoids lactones: benefits to plants and people. International Journal of Molecular Sciences 14:12780-12805. Chang, S., J. Puryear and J. Cairney (1993) A simple and efficient methodfor isolating RNA from pine trees. Plant Molecular Biology Reporter 11: 113-116. Chappell, J. (2004) Valencene synthase – a biochemical magician and harbinger of transgenic aromas. Trends in Plant Science 9(6): 266-269. Chen, C., L. Long, F. Zhang, Q. Chen, C. Chen, X. Yu, Q. Liu, J. Bao and Z. Long (2018) Antifungal activity, main active components and mechanism of Curcuma longa extract against Fusarium graminearum. PLOS ONE 13(3): e0194284 Chen, F., Tholl, D., Bohlmann, J., Pichersky E. (2011) The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. The Plant Journal 66: 212-229. Chiu, C.C., C.I. Keeling and J. Bohlmann (2017) Toxicity of pine monoterpenes to mountain pine beetle. Scientific Reports 7(8858):1-6. Chu, F.H., P.M. Kuo, Y.R. Chen and S.Y. Wang (2008) Cloning and characterization of α-pinene synthase from Chamaecyparis formosensis Matsum. Holzforschung 63: 69-74. Davière, J.M. and P. Achard (2013) Gibberellin signaling in plants. Development 140: 1147-1151. Dawson, R.F. (1941) The localization of the nicotine synthetic mechanism in the tobacco plant. Science: 94: 396-397. Degenhardt, J., Köllner, T.G., Gershenzon, J. (2009) Monoterpene and sesquiterpene synthase and the origin of terpene skeletal diversity in plants. Phytochemistry 70: 1621-1637. Diaz-Chavez, M.L., J. Moniodis, L.L. Madilao, S. Jancsik, C.I. Keeling, E.L. Barbour, E.L. Ghi salberti, J.A. Plummer, C.G. Jones and J. Bohlmann (2013) Biosynthesis of sandalwood oil: Santalum album CYP76F cytochromes P450 produce santalols and bergamotol. PLOS ONE 8(9): e75053. Dueholm, B., D.P. Drew, C. Sweetman and H.T. Simonsen (2019) In planta and in silico characterization of five sesquiterpene synthases from Vitis vinifera (cv. Shiraz) berries. Planta 249: 59-70. Emanuelsson, O., H Nielsen and G. von Heijne (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Science 8(5):978-984. Felicetti, B. and D.E. Cane (2004) Aristolochene synthase: mechanistic analysis of active site residues by site-directed mutagenesis. Journal of the American Chemical Society 126: 7212-7221. Gao, Y., R.B. Honzatko, and R.J. Peters (2012) Terpenoid synthase structures: a so far incomplete view of complex catalysis. Natural Product Reports 29: 1153-1175. Gershenzon, J. and N. Dudareva (2007) The function of terpene natural products in the natural world. Nature Chemical Biology 3(7): 408-414. Gesell, A., M. Blaukopf, L. Madilao, M.M.S. Yuen, S.G. Withers, J. Mattsson, J.H. Russell and J. Bohlmann (2015) The gymnosperm cytochrome P450 CYP750B1 catalyzes stereospecific monoterpene hydroxylation of (+)-sabinene in thujone biosynthesis in western redcedar. Plant Physiology 168: 94-96. Gonzalez, V., S. Touchet, D.J. Grundy, J.A. Faraldos and R.K. Allemann (2014) Evolutionary and mechanistic insights from the reconstruction of α-Humulene Synthases from a modern (+)-Germacrene A synthase. Journal of the American Chemical Society 136: 14505–14512. Gou, J., F. Hao, C. Huang, M. Kwon, F. Chen, C. Li, C. Liu, D.K. Ro, H. Tang and Y. Zhang (2018) Discovery of a non‐stereoselective cytochrome P450 catalyzing either 8α‐ or 8β‐hydroxylation of germacrene A acid from the Chinese medicinal plant, Inula hupehensis. The Plant Journal 93: 92-106. Gowan, E., B. A. Lewis and R. Turgeon (1995) Phloem transport of antirrhinoside, an iridoid glycoside, in Asarina scandens (Scrophulariaceae). Journal of Chemical Ecology 21: 1781–1788. Hackl, T., W.A. König and H. Muhle (2004) Isogermacrene A, a proposed intermediate in sesquiterpene biosynthesis. Phytochemistry 65(15): 2261-2275. Hansen, C.C., M. Sørensen, T.A.M. Veiga, J.F.S. Zibrandtsen, A.M. Heskes, C.E. Olsen, B.A. Boughton, B.L. Møller and E.H.J. Neilson (2018) Reconfigured cyanogenic glucoside biosynthesis in Eucalyptus cladocalyx involves a cytochrome P450 CYP706C55. Plant Physiology 178: 1081-1095. Hamberger, B.and J. Bohlmann (2006) Cytochrome P450 mono-oxygenases in conifer genomes: discovery of members of the terpenoid oxygenase superfamily in spruce and pine. Biochemical Society Transactions 34(6): 1209-1214. Hamberger, B. and S. Bak (2013) Plant P450s as versatile drivers for evolution of species-specific chemical diversity. Philosophical Transactions of the Royal Society B 368: 20120426. Hamdane, D., H. Zhang and P. Hollenberg (2008) Oxygen activation by cytochrome P450 monooxygenase. Photosynthesis Research 98: 657–666. Hausjell, J., H. Halbwirth and O. Spadiut (2018) Recombinant production of eukaryotic cytochrome P450s in microbial cell factories. Bioscience Reports: 38(2): BSR20171290. Hayashi, K.I., H. Kawaide, M. Notomi, Y. Sakigi, A. Matsuo and H. Nozaki (2006) Identification and functional analysis of bifunctionalent-kaurene synthase from the moss Physcomitrella patens. FEBS Letters 580: 6175–6181. Ho, C.L., K.F. Hua, K.P. Hsu, E.I. Wang and Y.C. Su (2012) Composition and antipathogenic activities of the twig essential oil of Chamaecyparis formosensis from Taiwan. Natural Product Communications 7(7): 933-936. Honda, Y, K. Nanasawa and H. Fujii (2018) Coexpression of 5-aminolevulinic acid synthase gene facilitates heterologous production of thermostable cytochrome P450, CYP119, in holo form in Escherichia coli. ChemBioChem 19(20): 2156-2159. Hsieh, Y.H., P.M. Kuo, S.C. Chien, L.F. Shyur and S.Y. Wang (2007) Effects of Chamaecyparis formosensis Matasumura extractives on lipopolysaccharide-induced release of nitric oxide. Phytomedicine 14(10): 675-680. Hsu, C.Y., C.Y. Lin and S.T. Chang (2016) Antitermitic activities of wood essential oil and its constituents from Chamaecyparis formosensis. Wood Science and Technology 50: 663-676. Hu, Y., Y.J. Zhou, J. Bao, L. Huang, J. Nielsen and A. Krivoruchko (2017) Metabolic engineering of Saccharomyces cerevisae for production of germacrene A, a precursor of beta-elemene. Journal of Industrial Microbiology and Biotechnology 44: 1065-1072. Huan, T.C. (1996) Flora of Taiwan second edition Vol.1. Editorial Committee of the Flora of Taiwan. Second edition 586-588. Huang, K.F., C.H. Wen, Y.R. Lee and F.H. Chu (2019) Cloning and characterization of terpene synthase genes from Taiwan cherry. Tree Genetics and Genomes 51. Humphreys, J.M. and C. Chapple. (2002) Rewriting the lignin roadmap. Current Opinion in Plant Biology 5(3):224-229. Hyatt, D.C., B. Youn, Y. Zhao, B. Santhamma, R.M. Coates, R.B. Croteau and C. Kang (2007) Structure of limonene synthase, a simple model for terpenoid cyclase catalysis. Proceedings of the National Academy of Sciences 104(13): 5360-5365. Ilc, T., D. Halter, L. Miesch, F. Lauvoisard, L. Kriegshauser, A. Ilg, R. Baltenweck, P. Hugueney, D. Werck‐Reichhart, E. Duchêne and N. Navrot (2017) A grapevine cytochrome P450 generates the precursor of wine lactone, a key odorant in wine. New Phytologist 213: 264-274. Jensen, N.B., M. Zagrobelny, K. Hjernø, C.E. Olsen, J. Houghton-Larsen, J. Borch, B.L. Møller and S. Bak (2011) Convergent evolution in biosynthesis of cyanogenic defence compounds in plants and insects. Nature Communications 2: 273. Keeling, C.I. and J. Bohlmann (2006) Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytologist 170: 657-675. Klowden, M. (2013) Physiological systems in insects third edition. Academic Press. Third edition 1-87. Kranker, J.W., M.C.R. Franssen, A. Groot, W.A. Kӧnig and H.J. Bouwmeester (1998) (+)-Germacrene A biosynthesis. Plant Physiology 117: 1381-1392. Kuo, P.M., F.H. Chu, S.T. Chang, W.F. Hsiao and S.Y. Wang (2007) Insecticidal activity of essential oil from Chamaecyparis formosensis Matsum. Holzforschung 61: 595-599. Kuo, P.M., K.H. Hsu, Y.R. Lee, F.H. Chu and S.Y. Wang (2011) Isolation and characterization of β-cadinene synthase cDNA from Chamaecyparis formosensis Matsum. Holzforschung 66: 569-576. Kuo, P.M., F.H. Chu and S.Y. Wang (2012) Effect of methyl jasmonate on the amounts of volatile compounds emitted from Chamaecyparis formosensis Matsum. leaves. Quarterly Journal of Forest Research 34(1): 83-96. Li, F.S., P. Phyo, J. Jacobowitz, M. Hong and J.K. Weng (2019) The molecular structure of plant sporopollenin. Nature Plants 5: 41-46. Luo, P., Y.H. Wang, G.D. Wang, M. Essenberg and X.Y. Chen (2001) Molecular cloning and functional identification of (+)‐δ‐cadinene‐8‐hydroxylase, a cytochrome P450 mono‐oxygenase (CYP706B1) of cotton sesquiterpene biosynthesis. The Plant Journal 28(1): 95-104. Ma, L.T., Y.R. Lee, P.L. Liu, Y.T. Cheng, T.F. Shiu, N.W. Tsao, S.Y. Wang, F.H. Chu (2019) Phylogenetically distant group of terpene synthases participates in cadinene and cedrane-type sesquiterpenes accumulation in Taiwania cryptomerioides. Plant Science 289: 110277. Mao, H., J. Liu, F. Ren, R.J. Peters and Q. Wang (2016) Characterization of CYP71Z18 indicates a role in maize zealexin biosynthesis. Phytochemistry 121: 4-10. McAndrew, R.P., P.P. Peralta-Yahya, A. DeGiovanni, J.H Pereira, M.Z. Hadi, J.D Keasling and P.D. Adams (2011) Structure of a three-domain sesquiterpene synthase: a prospective target for advanced biofuels production. Structure 19: 1876-1884. Mithöfer, A. and W. Boland. (2012) Plant defense against herbivores: chemical aspects. Annual Review of Plant Biology 63: 431-450. Mizutani, M. and F. Sato (2011) Unusual P450 reactions in plant secondary metabolism. Archives of Biochemistry and Biophysics 507: 194-203. Nelson, D. and D. Werck-Reichhart (2011) A P450-centric view of plant evolution. The Plant Journal 66: 194-211. Oh, H.W., C.S. Yun, J.H. Jeon, J.A. Kim, D.S. Park, H.W. Ryu, S.R. Oh, H.H. Song, Y. Shin, C.S. Jung and S.W. Shin (2017) Conifer diterpene resin acids disrupt juvenile hormone-mediated endocrine regulation in the Indian meal moth Plodia interpunctella. Journal of Chemical Ecology 43:703-711. Paddon, C.J. and J.D. Keasling (2014) Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nature Reviews Microbiology 12: 355–367. Pateraki, I., A.M. Heskes and B. Hamberger (2015) Cytochromes P450 for terpene functionalisation and metabolic engineering. Advances in Biochemical Engineering/Biotechnology 148:107-139. Pemberton, T.A., M. Chen, G.G. Harris, W.K. Chou, L. Duan, M. Köksal, A.S. Genshaft, D.E. Cane and D.W. Christianson (2017) Exploring the influence of domain architecture on the catalytic function of diterpene synthases. Biochemistry 56: 2010-2013. Pierik, R., C. L. Ballaré and M. Dicke (2014) Ecology of plant volatiles: taking a plant community perspective. Plant Cell and Environment 37: 1845-1853. Pulido, P., C. Perello and M. Rodriguez-Concepcion (2012) New insights into plant isoprenoid metabolism. Molecular Plant 5(5): 964-967. Rodríguez-Concepción, M. and A. Boronat (2012) Isoprenoid synthesis in plants and microorganisms. Springer 1-16. Sasso, R., L. Iodice, M.C. Digilio, A. Carretta, L. Ariati and E. Guerrieri. (2007) Host-locating response by the aphid parasitoid Aphidius ervi to tomato plant volatiles. Journal of Plant Interactions 2(3): 175-183. Sasso, R., L. Iodice, C.M. Woodcock, J.A. Pickett and E. Guerrieri. (2009) Electrophysiological and behavioural responses of Aphidius ervi (Hymenoptera: Braconidae) to tomato plant volatiles. Chemoecology 19: 195–201. Scott, E.E., M. Spatzenegger and J.R. Halpert (2001) A truncation of 2B subfamily cytochromes P450 yields increased expression levels, increased solubility, and decreased aggregation while retaining function. Archives of Biochemistry and Biophysics 395(1): 57-68. Su, Y.C., C.L. Ho and E.I. Wang (2006) Analysis of leaf essential oils from the indigenous five conifers of Taiwan. Flavour and Fragrance Journal 21: 447-452. Taniguchi, S., S. Miyoshi, D. Tamaoki, S. Yamada, K. Tanaka, Y. Uji, S. Tanaka, K. Akimitsu and K. Gomi (2014) Isolation of jasmonate-induced sesquiterpene synthase of rice: Product of which has antifungal activity against Magnaporthe oryzae. Journal of Plant Physiology 171: 625-632. Tholl, D. (2015) Biosynthesis and biological functions of terpenoids in plants. Advances in Biochemical Engineering/Biotechnology reviews 148: 63-106. Trapp, S.C. and R.B. Croteau (2001) Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics 158(2): 811-832. Turlings, C.J.T. and M. Erb (2018) Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential. Annual Review of Plant Biology 63: 433-452. Wu, K.T. and C.C. Wang (1990) The antimicrobial of the essential oils from heartwood of Taiwan yellow cypressand Taiwan red cypress. Bulletin of Experiment forest, Department of Forestry of National Chung Hsing University 12(1): 187-492. Wang, C.T., H. Liu, X.S. Gao and H.X. Zhang (2010) Overexpression of G10H and ORCA3 in the hairy roots of Catharanthus roseus improves catharanthine production. Plant Cell Reports 29:887–894. Wang, Q., M.L. Hillwig, K. Okada, K. Yamazaki, Y. Wu, S. Swaminathan, H. Yamane and R.J. Peters (2012) Characterization of CYP76M5–8 indicates metabolic plasticity within a plant biosynthetic gene cluster. The Journal of Biological Chemistry 287(9): 6159-6168. Wang, S.Y., C.L. Wu, F.H. Chu, S.C. Chien Y.H. Kuo, L.F.Shyur, and S.T. Chang (2005) Chemical composition and antifungal activity of essential oil isolated from Chamaecyparis formosensis Matsum. wood. Holzforschung 59: 295-299. Wang, U.H. and C.T Liu (1985) The comparison of chemical compositions and their utilizations between lotus- root- rot and sound Taiwan red cypress Wood. Forest Products Industry 4(1): 12-22. Wang, W.P., C.Y. Hwang, T.P. Lin and S.Y. Hwang (2003) Historical biogeography and phylogenetic relationships of the genus Chamaecyparis (Cupressaceae) inferred from chloroplast DNA polymorphism. Plant Systematic and Evolution 241: 13-28. Weitzel, C. and H.T. Simonsen (2015) Cytochrome P450-enzymes involved in the biosynthesis of mono- and sesquiterpenes. Phytochemistry Reviews 14: 7-24. Weinheimer, A.J., P.H. Washecheck, D.V.D. Helm and M.B Hossain (1968) The sesquiterpene hydrocarbons of the Gorgonian, Pseudopferogorgia americana, the nonisoprenoid β-gorgonene. Chemical Communication 1070-1071. Xiao, Y., Q. Wang, M. Erb, T.C.J. Turlings, L. Ge, L. Hu, J. Li, X. Han, T. Zhang, J. Lu, G. Zhang and Y. Lou. (2012) Specific herbivore-induced volatiles defend plants and determine insect community composition in the field. Ecology Letters 15: 1130-1139. Yu, F., S. Okamoto, H. Harada, K. Yamasaki, N. Misawa and R. Utsumi (2011) Zingiber zerumbet CYP71BA1 catalyzes the conversion of α-humulene to 8-hydroxy-α-humulene in zerumbone biosynthesis. Cellular and Molecular Life Sciences 68: 1033-1040. Zhao, M., N. Zhang, T. Gao, J. Jin, T. Jing, J. Wang, Y. Wu, X. Wan, W. Schwab and C. Song (2020) Sesquiterpene glucosylation mediated by glucosyltransferase UGT91Q2 is involved in the modulation of cold stress tolerance in tea plants. New Phytologist 226: 362-372. Zerbe, P., B. Hamberger, M.M.S. Yuen, A. Chiang, H.K. Sandhu, L.L. Madilao, A. Nguyen, B. Hamberger, S.S. Bach, and J. Bohlmann (2013) Gene discovery of modular diterpene metabolism in nonmodel systems. Plant Physiology 162: 1073-1091. Zerbe, P. and J. Bohlmann (2015) Plant diterpene synthases: exploring modularity and metabolic diversity for bioengineering. Trends in Biotechnology 33(7): 419-428. Zhou, F. and E. Pichersky (2020) The complete functional characterisation of the terpene synthase family in tomato. New Phytologist 226: 1341-1360. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8163 | - |
| dc.description.abstract | 紅檜 (Chamaecyparis formosensis Matsum.)為臺灣特有的珍貴樹種,其精油成分以萜類化合物 (Terpenoids) 為主,並已被證實有多種優異的生物活性,故對紅檜的萜類合成酶 (Terpene synthase, TPS) 及細胞色素P450 (Cytochrome P450) 的功能研究更顯重要,未來可以應用於重要成分的半化學合成。且柏科於P450的研究亦較闕如,若能鑑定P450功能亦能協助裸子植物演化途徑的解析。本研究自紅檜葉部轉錄體的NGS (Next generation sequence) 資料庫取得4個倍半萜合成酶:Cf_6163、Cf_17788_1、Cf_17788_2及Cf_30044;以及3個P450的序列:Cf_791、Cf_9283及Cf_12832。其中Cf_6163、Cf_17788_1及Cf_17788_2各與FPP受質反應出Germacrene A、新化合物以及Isogermacrene A,其中新化合物被鑑定為1,2,3,5,6,7,8,8a-Octahydro-8a-methyl-1-methylene-7-(1-methylethyl) naphthalene,Cf_30044則未成功完成催化反應。Cf_17788_1/2的產物,可能具有特殊的環化機制,未來透過點突變試驗可對其環化機制有更進一步的了解。3個P450中,Cf_791屬於CYP706M亞族、Cf_9283及Cf_12832各屬於CYP76AA亞族。P450與TPS在大腸桿菌 (Escherichia coli) 的共表現系統僅有Cf_6163與Cf_12832有出現新的產物。未來可採用其他表現系統,並將其他TPS及P450納入試驗,以得到準確的P450功能鑑定。 | zh_TW |
| dc.description.abstract | Chamaecyparis formosensis Matsum.is a precious tree species unique to Taiwan. Its essential oil components are mainly terpenoids. It has been confirmed to have a variety of excellent biological activities. Therefore, it is important on the research of functional characterization of terpene synthase (TPS) and CYP450 (Cytochrome P450). The research can be applied to the semi-chemical synthesis of important components in the future. On the other hand, the study of P450 from Cupressaceae is also lacking. Once the function of P450 can be identified, it can also help the analysis of evolutionary pathway of gymnosperms. In this study, four sesquiterpene synthases were obtained from the NGS (Next generation sequence) database of Chamaecyparis formosensis Matsum leaf transcriptome: Cf_6163, Cf_17788_1, Cf_17788_2 and Cf_30044; and three P450 sequences: Cf_791, Cf_9283 and Cf_12832. Among them, Cf_6163, Cf_17788_1 and Cf_17788_2 reacted with FPP substrate to produce Germacrene A, a new compound and Isogermacrene A. The new compound was identified as 1,2,3,5,6,7,8,8a-Octahydro-8a-methyl- 1-methylene-7-(1-methylethyl) Naphthalene. Cf_30044 failed to complete the catalytic reaction. The product of Cf_17788_1/2 may have a special cyclization mechanism. In the future, a point mutation test can be used to further understand their cyclization mechanism. Among the three P450s, Cf_791 belongs to the CYP706M subfamily, while Cf_9283 and Cf_12832 belong to the CYP76AA subfamily. In the co-expression system of P450 and TPS in Escherichia coli, only Cf_6163 and Cf_12832 had a new product. In the future, other expression systems can be used, and other TPSs and P450s can be included in the test to obtain accurate P450 functional identification. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T00:49:28Z (GMT). No. of bitstreams: 1 U0001-1708202014211900.pdf: 5465449 bytes, checksum: 8c583049220ce01196d80ac0e8577e3b (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員審定書 i 誌謝 ii 摘要 iii Abstract iv 目錄 vi 圖目錄 ix 表目錄 xi 一、前言 1 二、文獻回顧 4 2.1 萜類化合物介紹 4 2.1.1萜類化合物 4 2.1.2植物中的功能:以植物防禦為例 5 2.2 萜類化合物的生合成 7 2.2.1萜類化合物的生合成途徑 7 2.2.2萜類化合物的環化途徑:以倍半萜類化合物為例 10 2.3 萜類合成酶的分類 12 2.3.1萜類合成酶的受質 12 2.3.2萜類合成酶的離子化機制 12 2.3.3萜類合成酶的內含子分布 15 2.3.4萜類合成酶的演化分群 16 2.4 細胞色素P450的介紹 17 2.5 P450與植物演化 22 2.6 P450對萜類化合物的修飾 24 2.6.1 初級萜類代謝相關的P450家族 24 2.6.2 初級萜類代謝相關的P450家族 25 三、材料方法 30 3.1 試材及紅檜葉部RNA萃取 30 3.2 選殖基因的篩選 30 3.3葉部基因的選殖 31 3.4蛋白質質體建構 32 3.5西方墨點法 (Western blot) 34 3.6 萜類合成酶蛋白質大量表現及純化 35 3.7目標蛋白質與受質反應 37 3.8大腸桿菌 in vivo co-expression反應系統 38 3.9以氣相層析質譜儀 (GC-MS) 分析產物 38 3.10基因序列演化地位分析 39 3.11蛋白質相關資訊預測 39 3.12 NMR (Nuclear Magnetic Resonance) 解析倍半萜化合物結構 40 3.13 Genomic DNA 萃取及內含子序列取得 40 四、結果 41 4.1 萜類合成酶選殖資訊 41 4.2 萜類合成酶內含子分布狀況 44 4.3 萜類合成酶系統發生樹 46 4.4 萜類合成酶西方墨點結果 48 4.5 萜類合成酶酵素純化 49 4.6 萜類合成酶 in vitro反應 51 4.7 萜類合成酶 in vivo 反應 56 4.8 NMR解析結果 58 4.9 萜類合成酶模擬結構 62 4.10 P450選殖資訊 63 4.11 P450系統發生樹 67 4.12 P450 西方墨點結果 68 4.13 P450 Coexpression 69 五、討論 70 5.1 萜類合成酶產物 70 5.1.1 產物於植物體中的分布狀況 70 5.1.2 萜類化合物之生物活性及應用 74 5.2萜類合成酶的環化機制及重要反應殘基 75 5.3 內含子分布情形 80 5.4 系統發生樹分群 81 5.5 P450反應結果 83 5.5.1系統表現 83 5.5.2其他家族 85 六、結論 87 七、參考資料 88 | |
| dc.language.iso | zh-TW | |
| dc.title | 紅檜葉部倍半萜合成酶及細胞色素P450的基因選殖和功能鑑定 | zh_TW |
| dc.title | Cloning and Characterization of Sesquiterpene Synthases and Cytochrome P450 from Leaves of Chamaecyparis formosensis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 何政坤(Cheng-Kuen Ho),孫英玄(Ying-Hsuan Sun),林盈仲(Ying-Chung Lin),王升陽(Sheng-Yang Wang) | |
| dc.subject.keyword | 紅檜,萜類合成酶,細胞色素P450,倍半萜類化合物,細胞色素P450表現系統, | zh_TW |
| dc.subject.keyword | Chamaecyparis formosensis Matsum,Terpene synthase,Cytochrome P450,Sesquiterpenoid,P450 Expression system, | en |
| dc.relation.page | 100 | |
| dc.identifier.doi | 10.6342/NTU202003745 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2020-08-19 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-17 | - |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1708202014211900.pdf | 5.34 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
