請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81634完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙福杉(Fu-Shan Jaw) | |
| dc.contributor.author | Chih-Wei Sung | en |
| dc.contributor.author | 宋之維 | zh_TW |
| dc.date.accessioned | 2022-11-24T09:25:00Z | - |
| dc.date.available | 2022-11-24T09:25:00Z | - |
| dc.date.copyright | 2021-08-06 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-01 | |
| dc.identifier.citation | [1] Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25:44-56. [2] Kirubarajan A, Taher A, Khan S, Masood S. Artificial intelligence in emergency medicine: A scoping review. J Am Coll Emerg Physicians Open. 2020;1:1691-702. [3] Krittanawong C. The rise of artificial intelligence and the uncertain future for physicians. Eur J Intern Med. 2018;48:e13-e4. [4] Stewart J, Sprivulis P, Dwivedi G. Artificial intelligence and machine learning in emergency medicine. Emerg Med Australas. 2018;30:870-4. [5] Ramesh AN, Kambhampati C, Monson JR, Drew PJ. Artificial intelligence in medicine. Ann R Coll Surg Engl. 2004;86:334-8. [6] Grant K, McParland A, Mehta S, Ackery AD. Artificial Intelligence in Emergency Medicine: Surmountable Barriers With Revolutionary Potential. Ann Emerg Med. 2020;75:721-6. [7] Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation. 2014;129:e28-e292. [8] Atwood C, Eisenberg MS, Herlitz J, Rea TD. Incidence of EMS-treated out-of-hospital cardiac arrest in Europe. Resuscitation. 2005;67:75-80. [9] Berdowski J, Berg RA, Tijssen JG, Koster RW. Global incidences of out-of-hospital cardiac arrest and survival rates: Systematic review of 67 prospective studies. Resuscitation. 2010;81:1479-87. [10] Viereck S, Palsgaard Moller T, Kjaer Ersboll A, Folke F, Lippert F. Effect of bystander CPR initiation prior to the emergency call on ROSC and 30day survival-An evaluation of 548 emergency calls. Resuscitation. 2017;111:55-61. [11] Nichol G, Thomas E, Callaway CW, Hedges J, Powell JL, Aufderheide TP, et al. Regional variation in out-of-hospital cardiac arrest incidence and outcome. JAMA. 2008;300:1423-31. [12] Nehme Z, Andrew E, Bray JE, Cameron P, Bernard S, Meredith IT, et al. The significance of pre-arrest factors in out-of-hospital cardiac arrests witnessed by emergency medical services: a report from the Victorian Ambulance Cardiac Arrest Registry. Resuscitation. 2015;88:35-42. [13] Marijon E, Uy-Evanado A, Dumas F, Karam N, Reinier K, Teodorescu C, et al. Warning Symptoms Are Associated With Survival From Sudden Cardiac Arrest. Ann Intern Med. 2016;164:23-9. [14] Sung CW, Huang CH, Chen WJ, Chang WT, Wang CH, Wu YW, et al. Obesity is associated with poor prognosis in cardiogenic arrest survivors receiving coronary angiography. J Formos Med Assoc. 2020;119:861-8. [15] Sung CW, Huang CH, Chen WJ, Chang WT, Wang CH, Wu YW, et al. Obese cardiogenic arrest survivors with significant coronary artery disease had worse in-hospital mortality and neurological outcomes. Sci Rep. 2020;10:18638. [16] Weeke P, Folke F, Gislason GH, Lippert FK, Olesen JB, Andersson C, et al. Pharmacotherapy and hospital admissions before out-of-hospital cardiac arrest: a nationwide study. Resuscitation. 2010;81:1657-63. [17] Shuvy M, Koh M, Qiu F, Brooks SC, Chan TCY, Cheskes S, et al. Health care utilization prior to out-of-hospital cardiac arrest: A population-based study. Resuscitation. 2019;141:158-65. [18] Eisenberg M, Hallstrom A, Bergner L. The ACLS score. Predicting survival from out-of-hospital cardiac arrest. JAMA. 1981;246:50-2. [19] Haukoos JS, Lewis RJ, Stratton SJ, Niemann JT. Is the ACLS score a valid prediction rule for survival after cardiac arrest? Acad Emerg Med. 2003;10:621-6. [20] Maupain C, Bougouin W, Lamhaut L, Deye N, Diehl JL, Geri G, et al. The CAHP (Cardiac Arrest Hospital Prognosis) score: a tool for risk stratification after out-of-hospital cardiac arrest. Eur Heart J. 2016;37:3222-8. [21] Seewald S, Wnent J, Lefering R, Fischer M, Bohn A, Jantzen T, et al. CaRdiac Arrest Survival Score (CRASS) - A tool to predict good neurological outcome after out-of-hospital cardiac arrest. Resuscitation. 2020;146:66-73. [22] Pareek N, Kordis P, Beckley-Hoelscher N, Pimenta D, Kocjancic ST, Jazbec A, et al. A practical risk score for early prediction of neurological outcome after out-of-hospital cardiac arrest: MIRACLE2. Eur Heart J. 2020. [23] Gue YX, Sayers M, Whitby BT, Kanji R, Adatia K, Smith R, et al. Usefulness of the NULL-PLEASE Score to Predict Survival in Out-of-Hospital Cardiac Arrest. Am J Med. 2020. [24] Baldi E, Caputo ML, Savastano S, Burkart R, Klersy C, Benvenuti C, et al. An Utstein-based model score to predict survival to hospital admission: The UB-ROSC score. Int J Cardiol. 2020;308:84-9. [25] Merchant RM, Topjian AA, Panchal AR, Cheng A, Aziz K, Berg KM, et al. Part 1: Executive Summary: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2020;142:S337-S57. [26] Wang JC, Tsai SH, Chen YH, Chen YL, Chu SJ, Liao WI. Kinect-based real-time audiovisual feedback device improves CPR quality of lower-body-weight rescuers. Am J Emerg Med. 2018;36:577-82. [27] Duchateau FX, Gueye P, Curac S, Tubach F, Broche C, Plaisance P, et al. Effect of the AutoPulse automated band chest compression device on hemodynamics in out-of-hospital cardiac arrest resuscitation. Intensive Care Med. 2010;36:1256-60. [28] Halperin HR, Paradis N, Ornato JP, Zviman M, Lacorte J, Lardo A, et al. Cardiopulmonary resuscitation with a novel chest compression device in a porcine model of cardiac arrest: improved hemodynamics and mechanisms. J Am Coll Cardiol. 2004;44:2214-20. [29] Timerman S, Cardoso LF, Ramires JA, Halperin H. Improved hemodynamic performance with a novel chest compression device during treatment of in-hospital cardiac arrest. Resuscitation. 2004;61:273-80. [30] Ikeno F, Kaneda H, Hongo Y, Sakanoue Y, Nolasco C, Emami S, et al. Augmentation of tissue perfusion by a novel compression device increases neurologically intact survival in a porcine model of prolonged cardiac arrest. Resuscitation. 2006;68:109-18. [31] Steen S, Liao Q, Pierre L, Paskevicius A, Sjoberg T. Evaluation of LUCAS, a new device for automatic mechanical compression and active decompression resuscitation. Resuscitation. 2002;55:285-99. [32] Ong ME, Ornato JP, Edwards DP, Dhindsa HS, Best AM, Ines CS, et al. Use of an automated, load-distributing band chest compression device for out-of-hospital cardiac arrest resuscitation. JAMA. 2006;295:2629-37. [33] Steinmetz J, Barnung S, Nielsen SL, Risom M, Rasmussen LS. Improved survival after an out-of-hospital cardiac arrest using new guidelines. Acta Anaesthesiol Scand. 2008;52:908-13. [34] Axelsson C, Herrera MJ, Fredriksson M, Lindqvist J, Herlitz J. Implementation of mechanical chest compression in out-of-hospital cardiac arrest in an emergency medical service system. Am J Emerg Med. 2013;31:1196-200. [35] Lu XG, Kang X, Gong DB. [The clinical efficacy of Thumper modal 1007 cardiopulmonary resuscitation: a prospective randomized control trial]. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2010;22:496-7. [36] Couper K, Yeung J, Nicholson T, Quinn T, Lall R, Perkins GD. Mechanical chest compression devices at in-hospital cardiac arrest: A systematic review and meta-analysis. Resuscitation. 2016;103:24-31. [37] Hashimoto Y, Moriya F, Furumiya J. Forensic aspects of complications resulting from cardiopulmonary resuscitation. Leg Med (Tokyo). 2007;9:94-9. [38] Buschmann CT, Tsokos M. Frequent and rare complications of resuscitation attempts. Intensive Care Med. 2009;35:397-404. [39] Deliliga A, Chatzinikolaou F, Koutsoukis D, Chrysovergis I, Voultsos P. Cardiopulmonary resuscitation (CPR) complications encountered in forensic autopsy cases. BMC Emerg Med. 2019;19:23. [40] Keenan SP, Dodek P, Martin C, Priestap F, Norena M, Wong H. Variation in length of intensive care unit stay after cardiac arrest: where you are is as important as who you are. Crit Care Med. 2007;35:836-41. [41] Nolan JP, Laver SR, Welch CA, Harrison DA, Gupta V, Rowan K. Outcome following admission to UK intensive care units after cardiac arrest: a secondary analysis of the ICNARC Case Mix Programme Database. Anaesthesia. 2007;62:1207-16. [42] Mashiko K, Otsuka T, Shimazaki S, Kohama A, Kamishima G, Katsurada K, et al. An outcome study of out-of-hospital cardiac arrest using the Utstein template--a Japanese experience. Resuscitation. 2002;55:241-6. [43] Stub D, Bernard S, Duffy SJ, Kaye DM. Post cardiac arrest syndrome: a review of therapeutic strategies. Circulation. 2011;123:1428-35. [44] Laver S, Farrow C, Turner D, Nolan J. Mode of death after admission to an intensive care unit following cardiac arrest. Intensive Care Med. 2004;30:2126-8. [45] Lybeck A, Friberg H, Aneman A, Hassager C, Horn J, Kjaergaard J, et al. Prognostic significance of clinical seizures after cardiac arrest and target temperature management. Resuscitation. 2017;114:146-51. [46] Englander J, Cifu DX, Diaz-Arrastia R. Information/education page. Seizures and traumatic brain injury. Arch Phys Med Rehabil. 2014;95:1223-4. [47] Towne AR, Waterhouse EJ, Boggs JG, Garnett LK, Brown AJ, Smith JR, Jr., et al. Prevalence of nonconvulsive status epilepticus in comatose patients. Neurology. 2000;54:340-5. [48] Ingvar M. Cerebral blood flow and metabolic rate during seizures. Relationship to epileptic brain damage. Ann N Y Acad Sci. 1986;462:194-206. [49] Claassen J, Mayer SA, Kowalski RG, Emerson RG, Hirsch LJ. Detection of electrographic seizures with continuous EEG monitoring in critically ill patients. Neurology. 2004;62:1743-8. [50] Knight WA, Hart KW, Adeoye OM, Bonomo JB, Keegan SP, Ficker DM, et al. The incidence of seizures in patients undergoing therapeutic hypothermia after resuscitation from cardiac arrest. Epilepsy Res. 2013;106:396-402. [51] Hampel KG, Thijs RD, Elger CE, Surges R. Recurrence risk of ictal asystole in epilepsy. Neurology. 2017;89:785-91. [52] Van de Vel A, Cuppens K, Bonroy B, Milosevic M, Jansen K, Van Huffel S, et al. Non-EEG seizure-detection systems and potential SUDEP prevention: state of the art. Seizure. 2013;22:345-55. [53] Park JH, Shin SD, Song KJ, Hong KJ, Ro YS, Choi JW, et al. Prediction of good neurological recovery after out-of-hospital cardiac arrest: A machine learning analysis. Resuscitation. 2019;142:127-35. [54] Seki T, Tamura T, Suzuki M, Group S-KS. Outcome prediction of out-of-hospital cardiac arrest with presumed cardiac aetiology using an advanced machine learning technique. Resuscitation. 2019;141:128-35. [55] Sung CW, Wang HC, Shieh JS, Jaw FS. A novel mechanical chest compressor with rapid deployment in all population cardiopulmonary resuscitation. Sci Rep. 2020;10:6099. [56] http://hades.mech.northwestern.edu/index.php/PIC18F4520:_Digital_Outputs. [57] World Medical A. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310:2191-4. [58] Sung CW, Shieh JS, Chang WT, Lee YW, Lyu JH, Ong HN, et al. Machine Learning Analysis of Heart Rate Variability for the Detection of Seizures in Comatose Cardiac Arrest Survivors. IEEE Access. 2020;8:160515-25. [59] Shivaram S, Sundaram DSB, Balasubramani R, Muthyala A, Arunachalam SP. Intrinsic Mode Function Complexity Index Using Empirical Mode Decomposition discriminates Normal Sinus Rhythm and Atrial Fibrillation on a Single Lead ECG. Annu Int Conf IEEE Eng Med Biol Soc. 2018;2018:5990-3. [60] Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis. Proceedings: Mathematical, Physical and Engineering Sciences. 1998;454:903-95. [61] Ramakrishnan J KB. Analysis of non-seizure and seizure activity using intracranial EEG signals and empirical mode decomposition based approximate entropy. Biomedical Research. 2018:S47-S51. [62] Pan J, Tompkins WJ. A real-time QRS detection algorithm. IEEE Trans Biomed Eng. 1985;32:230-6. [63] Len TK, Neary JP. Cerebrovascular pathophysiology following mild traumatic brain injury. Clin Physiol Funct Imaging. 2011;31:85-93. [64] Epstein MA, Sperling MR, O'Connor MJ. Cardiac rhythm during temporal lobe seizures. Neurology. 1992;42:50-3. [65] Behbahani S, Dabanloo NJ, Nasrabadi AM, Teixeira CA, Dourado A. Pre-ictal heart rate variability assessment of epileptic seizures by means of linear and non-linear analyses. Anadolu Kardiyol Derg. 2013;13:797-803. [66] Moridani MK, Farhadi H. Heart rate variability as a biomarker for epilepsy seizure prediction. Bratisl Lek Listy. 2017;118:3-8. [67] Fujiwara K, Miyajima M, Yamakawa T, Abe E, Suzuki Y, Sawada Y, et al. Epileptic Seizure Prediction Based on Multivariate Statistical Process Control of Heart Rate Variability Features. IEEE Trans Biomed Eng. 2016;63:1321-32. [68] Karabacak K, Celik M, Kaya E, Kadan M, Arslan G, Demirkilic U. Autonomic imbalance assessed by time-domain heart rate variability indices in primary Raynaud's phenomenon. Cardiovasc J Afr. 2015;26:214-6. [69] Maetzler W, Karam M, Berger MF, Heger T, Maetzler C, Ruediger H, et al. Time- and frequency-domain parameters of heart rate variability and sympathetic skin response in Parkinson's disease. J Neural Transm (Vienna). 2015;122:419-25. [70] Karabacak K, Celik M, Kaya E, Kadan M, Arslan G, Demirkilic U. Autonomic imbalance assessed by time-domain heart rate variability indices in primary Raynaud's phenomenon. Cardiovasc J Afr. 2015;26:1-4. [71] Maetzler W, Karam M, Berger MF, Heger T, Maetzler C, Ruediger H, et al. Time- and frequency-domain parameters of heart rate variability and sympathetic skin response in Parkinson's disease. J Neural Transm. 2015;122:419-25. [72] Tang SC, Jen HI, Lin YH, Hung CS, Jou WJ, Huang PW, et al. Complexity of heart rate variability predicts outcome in intensive care unit admitted patients with acute stroke. J Neurol Neurosurg Psychiatry. 2015;86:95-100. [73] Zebrowski JJ, Kowalik I, Orlowska-Baranowska E, Andrzejewska M, Baranowski R, Gieraltowski J. On the risk of aortic valve replacement surgery assessed by heart rate variability parameters. Physiol Meas. 2015;36:163-75. [74] Laborde S, Furley P, Schempp C. The relationship between working memory, reinvestment, and heart rate variability. Physiol Behav. 2015;139:430-6. [75] Lerma C, Infante O, Perez-Grovas H, Jose MV. Poincare plot indexes of heart rate variability capture dynamic adaptations after haemodialysis in chronic renal failure patients. Clin Physiol Funct Imaging. 2003;23:72-80. [76] Toledo E, Gurevitz O, Hod H, Eldar M, Akselrod S. Wavelet analysis of instantaneous heart rate: a study of autonomic control during thrombolysis. Am J Physiol Regul Integr Comp Physiol. 2003;284:R1079-91. [77] Guzik P, Piskorski J, Krauze T, Schneider R, Wesseling KH, Wykretowicz A, et al. Correlations between the Poincare plot and conventional heart rate variability parameters assessed during paced breathing. J Physiol Sci. 2007;57:63-71. [78] Pincus SM, Gladstone IM, Ehrenkranz RA. A regularity statistic for medical data analysis. J Clin Monit. 1991;7:335-45. [79] Sabeti M, Katebi S, Boostani R. Entropy and complexity measures for EEG signal classification of schizophrenic and control participants. Artif Intell Med. 2009;47:263-74. [80] Al-Thanoon NA, Qasim OS, Algamal ZY. Tuning parameter estimation in SCAD-support vector machine using firefly algorithm with application in gene selection and cancer classification. Comput Biol Med. 2018;103:262-8. [81] Netoff T, Park Y, Parhi K. Seizure prediction using cost-sensitive support vector machine. Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:3322-5. [82] Li G, Chung WY. Detection of driver drowsiness using wavelet analysis of heart rate variability and a support vector machine classifier. Sensors (Basel). 2013;13:16494-511. [83] Acir N, Oztura I, Kuntalp M, Baklan B, Guzelis C. Automatic detection of epileptiform events in EEG by a three-stage procedure based on artificial neural networks. IEEE Trans Biomed Eng. 2005;52:30-40. [84] Liu Y, Zhou W, Yuan Q, Chen S. Automatic seizure detection using wavelet transform and SVM in long-term intracranial EEG. IEEE Trans Neural Syst Rehabil Eng. 2012;20:749-55. [85] Ramgopal S, Thome-Souza S, Jackson M, Kadish NE, Sanchez Fernandez I, Klehm J, et al. Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy. Epilepsy Behav. 2014;37:291-307. [86] Cawley GC, Talbot NL. Fast exact leave-one-out cross-validation of sparse least-squares support vector machines. Neural Netw. 2004;17:1467-75. [87] Bal M, Amasyali MF, Sever H, Kose G, Demirhan A. Performance evaluation of the machine learning algorithms used in inference mechanism of a medical decision support system. ScientificWorldJournal. 2014;2014:137896. [88] Ajam K, Gold LS, Beck SS, Damon S, Phelps R, Rea TD. Reliability of the Cerebral Performance Category to classify neurological status among survivors of ventricular fibrillation arrest: a cohort study. Scand J Trauma Resusc Emerg Med. 2011;19:38. [89] Cox TR, Crimmins SD, Shannon AM, Atkins KL, Tesoriero R, Malinow AM. Liver lacerations as a complication of CPR during pregnancy. Resuscitation. 2018;122:121-5. [90] Nelson DB, Dearmon V, Nelson MD. Spontaneous rupture of the liver during pregnancy: a case report. J Obstet Gynecol Neonatal Nurs. 1989;18:106-13. [91] Tsai MS, Sung CW, Chen WJ, Chuang PY, Wang CH, Wu YW, et al. Stenosis and revascularization of the coronary artery are associated with outcomes in presumed cardiogenic arrest survivors: A multi-center retrospective cohort study. Resuscitation. 2019;137:52-60. [92] Olsen JA, Lerner EB, Persse D, Sterz F, Lozano M, Jr., Brouwer MA, et al. Chest compression duration influences outcome between integrated load-distributing band and manual CPR during cardiac arrest. Acta Anaesthesiol Scand. 2016;60:222-9. [93] Brodal Syversen K, Souvannasacd E, Renger R. Validating the LUCAS(R) mechanical chest compression fit specifications. Am J Emerg Med. 2019;37:371-3. [94] Suh GJ, Park J, Lee JC, Na SH, Kwon WY, Kim KS, et al. End-tidal CO2-guided automated robot CPR system in the pig. Preliminary communication. Resuscitation. 2018;127:119-24. [95] Koster RW, Beenen LF, van der Boom EB, Spijkerboer AM, Tepaske R, van der Wal AC, et al. Safety of mechanical chest compression devices AutoPulse and LUCAS in cardiac arrest: a randomized clinical trial for non-inferiority. Eur Heart J. 2017;38:3006-13. [96] Giraud R, Siegenthaler N, Schussler O, Kalangos A, Muller H, Bendjelid K, et al. The LUCAS 2 chest compression device is not always efficient: an echographic confirmation. Ann Emerg Med. 2015;65:23-6. [97] Fujiwara K, Abe E, Kamata K, Nakayama C, Suzuki Y, Yamakawa T, et al. Heart Rate Variability-Based Driver Drowsiness Detection and Its Validation With EEG. IEEE Trans Biomed Eng. 2019;66:1769-78. [98] Silvani A, Calandra-Buonaura G, Dampney RA, Cortelli P. Brain-heart interactions: physiology and clinical implications. Philos Trans A Math Phys Eng Sci. 2016;374. [99] Liao KH, Sung CW, Chu SF, Chiu WT, Chiang YH, Hoffer B, et al. Reduced power spectra of heart rate variability are correlated with anxiety in patients with mild traumatic brain injury. Psychiatry Res. 2016;243:349-56. [100] Sung CW, Lee HC, Chiang YH, Chiu WT, Chu SF, Ou JC, et al. Early dysautonomia detected by heart rate variability predicts late depression in female patients following mild traumatic brain injury. Psychophysiology. 2016;53:455-64. [101] Ho CN, Fu PH, Chen JY, Hung KC, Chang JH, Peng CK, et al. Heart rate variability and surgical pleth index under anesthesia in poor and normal sleepers. J Clin Monit Comput. 2020;34:1311-9. [102] da Silva VP, Ramalho Oliveira BR, Tavares Mello RG, Moraes H, Deslandes AC, Laks J. Heart Rate Variability Indexes in Dementia: A Systematic Review with a Quantitative Analysis. Curr Alzheimer Res. 2018;15:80-8. [103] Richard C. Stress-related cardiomyopathies. Ann Intensive Care. 2011;1:39. [104] Tinuper P, Bisulli F, Cerullo A, Carcangiu R, Marini C, Pierangeli G, et al. Ictal bradycardia in partial epileptic seizures: Autonomic investigation in three cases and literature review. Brain. 2001;124:2361-71. [105] Calandra-Buonaura G, Toschi N, Provini F, Corazza I, Bisulli F, Barletta G, et al. Physiologic autonomic arousal heralds motor manifestations of seizures in nocturnal frontal lobe epilepsy: implications for pathophysiology. Sleep Med. 2012;13:252-62. [106] Akeju O, Song AH, Hamilos AE, Pavone KJ, Flores FJ, Brown EN, et al. Electroencephalogram signatures of ketamine anesthesia-induced unconsciousness. Clin Neurophysiol. 2016;127:2414-22. [107] Myat A, Song KJ, Rea T. Out-of-hospital cardiac arrest: current concepts. Lancet. 2018;391:970-9. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81634 | - |
| dc.description.abstract | " 隨著急重症醫學暨醫療儀器進步,許多急症的預後都呈現顯著性的改善。然而,突發性心跳停止仍是急診醫師的夢魘,至今仍為臨床上最為棘手的疾病之一。根據我國2017年的資料,心跳停止後經治療順利出院的存活率不到15%,此比例相較於搶救其他疾病仍低,急救失敗造成病人驟逝,對家屬帶來無限衝擊與潛在經濟、社會損失。 「高品質心肺復甦術」與「心跳停止復甦後照護」為2020美國心臟醫學會建議的生命之鏈組合之二。「高品質心肺復甦術」有助於使心跳停止的病人恢復自發性心跳,為了達到高品質心肺復甦術,機械胸部按壓裝置的使用改善了傳統徒手心臟按摩因施救者疲勞導致的急救品質下降,但使用均一化的按壓產生了使用上的問題,包含按壓併發症、未能因對象而客製化調整。「心跳停止復甦後照護」有助於這些病人能有較佳的預後,能夠初步復甦僅是病人康復的起點,沒有良好的復甦後照護很難獲得好的預後,能即時監測病人於此治療時間更是重要。 本研究旨在設計一套個人化心肺復甦系統,包含一個改良型機械胸部按壓裝置以及雙閉迴路控制系統,以復甦安妮當作載體進行心肺復甦急救模擬。此機構具快速調整定位與適用於任何族群的特色,使用極座標取代傳統的座標軸,減少施救者操作複雜度,並且提供可替換的機械手臂,能夠使用在嬰幼兒族群。模擬結果顯示,本設計與當今醫療器材或急診醫師相比,有良好的長時間按壓穩定性,其重新架設時間相比於現在廣泛使用機器縮短14秒。 雙閉迴路控制系統使用「距離感測控制系統」與「壓力感測保護系統」,前者使用超音波即時回饋按壓深度,於每次按壓藉由閉迴路控制系統調整,能夠根據不同病人,給予不同心肺復甦術之頻率與深度,以維持高品質急救並增加成功率,後者能偵測每次按壓位置的力量,於非正常按壓位置的條件下能夠自動中斷機器,以減少潛在因急救造成的併發症,兼具保護機構之功能。模擬結果顯示在三種不同溫度分別執行三次2分鐘之急救,按壓深度均極接近三分之一胸骨前後徑,且當按壓力量不在正常工作區域時,將自動成功中斷按壓。未來將輸入當下急救狀態與臨床參數,輔以大數據資料分析,分析急救成功率給急救者,成為具人工智慧之急救醫師。 在完成高品質心肺復甦術後,成功恢復自主心跳之病人仍處在極度不穩定及危險狀態,心跳停止期間長時間的缺氧,產生了心跳停止後症候群,導致身體許多機能受損,包含腦、心、凝血等系統,病人整體預後仍不理想。其中,腦細胞的受損將可能引發癲癇發作,此一臨床併發的出現症往往暗示極差的生存及神經學預後。急診照護環境下監測腦電圖十分不易,連續腦電圖訊號更是罕見。本研究於台灣大學附設醫院急診加護病房設置即時連續生理信號數據採集系統 (physiological medical signal data acquisition system, PMSDA),此平台以無線通訊收集台大醫院急診加護病房自2018年8月至2020年10月心跳停止經復甦後病人治療期間之生理訊號,此訊號將自住院起連續收集72小時,包含了心電圖與腦電圖,預期利用心電圖連續R波改變之心率變異分析,輔助暨偕同腦波圖,以反應病人潛在癲癇。 本研究利用近似熵得到多元經驗模態之非線性腦波的特徵,從腦波圖中汲取近似熵後,以臨床神經科醫師閱讀腦波圖後認可的癲癇發作為目標;利用機器學習支援向量機演算法進行監督式學習,從心電圖汲取心率變異分析參數,並進行機器學習特徵擷取。此癲癇偵測模型顯示四個心率變異的特徵,包含了正常心跳間距之標準差、高頻訊號熵、低頻對高頻功率比值、以及樣本熵,可用於建立癲癇偵測的模型,模型的敏感度為74%,特異度為81%。本研究開發了連續即時收集電生理訊號系統,基於心跳的心率變異分析,可用於偵測經心肺復甦並入住急診加護病房的心跳停止病人之住院期間癲癇事件。未來可將此模型進一步取得最佳心率變異預測癲癇發作的時間區段後,偕同前瞻性世代分析驗證,開發癲癇預警系統,提升心跳停止急救後照護品質,提高病人存活暨良好神經學恢復率。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T09:25:00Z (GMT). No. of bitstreams: 1 U0001-3107202113562300.pdf: 4280350 bytes, checksum: e0239b7ef856636ff3e04d15d0574fe4 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "CONTENTS 口試委員會審定書 誌謝 i 中文摘要 iii ABSTRACT v CONTENTS ix LIST OF FIGURES xvi LIST OF TABLES xx Chapter 1 Introduction 1 1.1 Smart technology in Emergency Medicine 1 1.2 Out-of-hospital cardiac arrest 3 1.2.1 Definition and epidemiology 3 1.2.2 Risk factors 4 1.2.3 Prognostic factors 5 1.3 The chain of survival 7 1.3.1 High-quality cardiopulmonary resuscitation and evolution 9 1.3.2 Current devices in high-quality resuscitation 11 1.4 Intensive care in return of spontaneous circulation 12 1.4.1 Complications during cardiopulmonary resuscitation 12 1.4.2 Post-cardiac arrest syndrome 14 1.4.3 Seizures in comatose survivors 14 1.5 Challenges in resuscitation and critical care 16 1.6 Specific aims 18 1.7 Dissertation overview 20 Chapter 2 Novel and precise cardiopulmonary resuscitation system 23 2.1 Concept of personalized resuscitation 23 2.1.1 Comparison of current chest compression devices 25 2.2 Precision machinery 28 2.2.1 Basic concept and idea 28 2.2.2 Mechanical device architecture 29 2.2.2.1 Compression unit 31 2.2.2.2 Height adjustment unit 38 2.2.2.3 Tilt and slide unit 40 2.2.3 Power consideration and manufacturing 41 2.3 Precision resuscitation 43 2.3.1 Modified device for chest compression 43 2.3.2 Dual closed-loop feedback control 46 2.3.3 Real-time precise chest compression depth 49 2.3.3.1 Distance measurement by ultrasound sensor 49 2.3.3.2 System on a chip 51 2.3.3.3 Liquid crystal display 52 2.3.3.4 Compression depth control system 53 2.3.4 Real-time compression force detection system 56 2.4 Chapter summary 59 Chapter 3 Implementation of personalized system in cardiopulmonary resuscitation 61 3.1 The novel mechanical device for CPR 61 3.1.1 Environmental setting and testing protocol 61 3.1.2 Simulation results 64 3.1.3 Performance comparison 71 3.2 Real-time personalized CPR system 73 3.2.1 Environmental setting and testing protocol 73 3.2.1.1 The compression depth control system 75 3.2.1.2 The compression force detection system 76 3.2.2 Simulation of the compression depth control system 78 3.2.2.1 Ultrasound probe performance 78 3.2.2.2 Simulation of chest compression in different temperature 79 3.2.3 Simulation of the compression force detection system 82 3.2.3.1 The threshold of safe compression during resuscitation 82 3.2.3.2 Simulation of pressure sensor 83 3.3 Chapter summary 89 Chapter 4 Continuous biosignals recording and advanced signal processing in seizure detection 91 4.1 Study Design 91 4.1.1 Study population and recruitment 92 4.1.2 Inclusion criteria 93 4.1.3 Exclusion criteria 94 4.2 Data collection and processing steps 95 4.2.1 Wireless biosignal collection 95 4.2.2 Electroencephalography 101 4.2.2.1 Empirical Mode Decomposition 102 4.2.2.2 Approximate entropy 104 4.2.2.3 Seizure determination 105 4.2.3 Electrocardiography analysis 106 4.2.4 Data safety and patient privacy 107 4.3 Heart rate variability 107 4.3.1 Time domain analysis 109 4.3.2 Frequency domain analysis 110 4.3.3 Nonlinear analysis 114 4.4 Machine learning 115 4.4.1 Data cleansing and preprocessing 115 4.4.2 Support vector machine 118 4.4.3 Leave-one-out cross validation 121 4.4.4 Prediction model and performance evaluation 121 4.5 Variables and outcomes 124 4.5.1 Variables 124 4.5.2 Primary and secondary outcomes 124 4.6 Statistical analysis 125 4.7 Demographic data of the enrolled patients 126 4.8 Empirical mode decomposition of EEG 128 4.9 Heart rate variability and properties 131 4.10 Prediction model and performance 135 4.11 Chapter summary 136 Chapter 5 Discussion 137 5.1 Simulation for precise and personalized CPR 137 5.1.1 A novel device for precise CPR 137 5.1.1.1 The performance comparison with LUCAS-2 137 5.1.1.2 Comparison between the current design and manual CPR 139 5.1.1.3 Deployment time in mechanical CPR 140 5.1.2 Personalized CPR system 141 5.1.2.4 Automatic adjustment of chest compression depth 141 5.1.2.5 Automatic detection of compression force 142 5.1.2.6 The features of our design and comparison with product 144 5.1.3 Future trend: personalized CPR 145 5.2 Continuous biosignals for seizure detection 146 5.2.1 Long term continuous EEG signals for seizure 146 5.2.2 A surrogate ECG-based biosignal for seizure 147 5.2.3 Physiological database for post resuscitation care 149 5.3 Study limitations 150 5.3.1 Simulation in Resusci Anne 150 5.3.2 Low incidence, high complexity in seizure post cardiac arrest 152 5.4 Chapter summary 153 Chapter 6 Conclusion and future work 155 6.1 Achievements of the current study 155 6.2 Future work 156 6.2.1 Pseudo chief resident in high-quality resuscitation 156 6.2.2 Prospective seizure prediction and warning system 159 6.2.3 Continuous biosignals for prognosis in critical care medicine 160 APPENDIX 163 REFERENCES 169 LIST OF FIGURES Figure 1.1 Chain of survival in adults 8 Figure 1.2 The aims of the current study 18 Figure 2.1 Commercial mechanical CPR devices 27 Figure 2.2 The architecture of the design 31 Figure 2.3 The cam mechanism 32 Figure 2.4 The slider-crank mechanism 34 Figure 2.5 The mechanical analysis of slider-crank mechanism 34 Figure 2.6 Stroke Adjustment Mechanism 36 Figure 2.7 The proposed mechanical hands in two compression modes 37 Figure 2.8 Height adjustment unit 39 Figure 2.9 The tilt and slide unit in two modes 41 Figure 2.10 Stepper motor AZM66MK-PS1 42 Figure 2.11 The force distribution between single- and dual-arm structure 44 Figure 2.12 Schematic view of the two-arm CPR device 45 Figure 2.13 A standard closed-loop system 47 Figure 2.14 The dual closed-loop control system 48 Figure 2.15 Schematic diagram of US-100 for distance measurement 50 Figure 2.16 PIC18F4520 microcontroller pinout 52 Figure 2.17 MAX485/RS485 circuit structure 54 Figure 2.18 Schematic diagram of compression depth control system 55 Figure 2.19 Arduino Uno R3 microcontroller board 57 Figure 2.20 The sectional view of CPR simulated with a specialized Resusci Annie 58 Figure 3.1 Tekscan’s CONFORMat system 62 Figure 3.2 The Resusci Anne 63 Figure 3.3 Illustration of compression pressure with time 66 Figure 3.4 Simulation of chest compression performance in different rescuers 67 Figure 3.5 The performance of long-term chest compression 69 Figure 3.6 The performance of chest wall recoil 70 Figure 3.7 The real-time personalized CPR system 73 Figure 3.8 The compression depth control system 75 Figure 3.9 The location of 4 pressure sensors 77 Figure 3.10 Initial calibration of the ultrasound probe 78 Figure 3.11 The scatter plot of compression depth and measured APD 81 Figure 3.12 Decision of normal operation region 82 Figure 3.13 The force distribution between our design and manual CPR 86 Figure 3.14 The compression force detection system simulation 88 Figure 4.1 Block diagram of the study design 92 Figure 4.2 EEG receiving location in a 10–20 system 96 Figure 4.3 Moxa NPort W2250A wireless signal transmitter 97 Figure 4.4 RJ45 and RS232 transfer diagram 97 Figure 4.5 General layout of the emergency intensive care unit. 98 Figure 4.6 User interface for real-time recording of biosignals 100 Figure 4.7 Hardware of the data collection system 101 Figure 4.8 A flow chart of the empirical mode decomposition 104 Figure 4.9 Pan-Tompkin algorithm for extraction of R-R intervals 106 Figure 4.10 Frequency domain component after Fourier transformation 111 Figure 4.11 Data processing in machine learning 116 Figure 4.12 The principle of SVM classifier 120 Figure 4.13 Intrinsic mode functions (IMFs) extraction in a non-seizure event: (a). IMF-1; (b). IMF-2; (c). IMF-3; (d). IMF-4; (e). IMF-5; (f). IMF-6; (g). IMF-7; (h). IMF-8; (i). IMF-9. 129 Figure 4.14 Intrinsic mode functions (IMFs) extraction in a seizure event: (a). IMF-1; (b). IMF-2; (c). IMF-3; (d). IMF-4; (e). IMF-5; (f). IMF-6; (g). IMF-7; (h). IMF-8. 130 Figure 4.15 Comparison of the 4 important features in detection model for seizure 133 Figure 4.16 Poincare plot 134 Figure 4.17 The detailed algorithm for seizure detection 135 Figure 6.1 Summary of the completion in the current study 156 Figure 6.2 Smart medicine — CPR system concept diagram 158 Figure 6.3 The strategy for searching optimal prediction of time zone 160 Figure 6.4 Continuous biosignal monitoring for comprehensive critical care 161 LIST OF TABLES Table 1.1 The essentials of high-quality CPR 10 Table 2.1 AZM66MK-PS1 specifications 43 Table 3.1 Specifications and comparison between our design and other products 72 Table 3.2 The function of each component in the personalized CPR system 74 Table 3.3 Comparison of measured APD and compression depth between different temperature 79 Table 3.4 Comparison of chest compression at different pressure sensors 84 Table 3.5 Post hoc analysis with Bonferroni correction 85 Table 4.1 Summary of the parameters of HRV frequency domain analysis 113 Table 4.2 The confusion matrix 121 Table 4.3 The baseline characteristics of the enrolled patients 127 Table 4.4 Comparison of HRV parameters between seizure and non-seizure events 132 Table 5.1 Comparison between commercial product and our design 145" | |
| dc.language.iso | zh-TW | |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 迴路控制 | zh_TW |
| dc.subject | 按壓裝置 | zh_TW |
| dc.subject | 癲癇 | zh_TW |
| dc.subject | 心率變異分析 | zh_TW |
| dc.subject | 心肺復甦術 | zh_TW |
| dc.subject | closed-loop control | en |
| dc.subject | heart rate variability analysis | en |
| dc.subject | chest compression device | en |
| dc.subject | seizure | en |
| dc.subject | machine learning | en |
| dc.subject | cardiopulmonary resuscitation | en |
| dc.title | 精準化心肺復甦急救模擬暨心跳停止後癲癇偵測系統 | zh_TW |
| dc.title | Precision cardiopulmonary resuscitation simulation and seizure detection in post-cardiac arrest care | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.author-orcid | 0000-0003-3312-2752 | |
| dc.contributor.coadvisor | 謝建興(Jiann-Shing Shieh) | |
| dc.contributor.oralexamcommittee | 張維典(Hsin-Tsai Liu),王家儀(Chih-Yang Tseng),楊燿州,陳右穎 | |
| dc.subject.keyword | 心肺復甦術,迴路控制,按壓裝置,癲癇,心率變異分析,機器學習, | zh_TW |
| dc.subject.keyword | cardiopulmonary resuscitation,closed-loop control,chest compression device,seizure,heart rate variability analysis,machine learning, | en |
| dc.relation.page | 184 | |
| dc.identifier.doi | 10.6342/NTU202101962 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-08-02 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-3107202113562300.pdf 未授權公開取用 | 4.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
