請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81595完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙玲(Ling Chao) | |
| dc.contributor.author | Ziyu Cui | en |
| dc.contributor.author | 崔子瑜 | zh_TW |
| dc.date.accessioned | 2022-11-24T09:24:33Z | - |
| dc.date.available | 2022-11-24T09:24:33Z | - |
| dc.date.copyright | 2021-09-13 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-07 | |
| dc.identifier.citation | [1]Joseph M. Johnson, Taekjip Ha, Steve Chu, and Steven G. Boxer. Early steps of supported bilayer formation probed by single vesicle fluorescence assays. Biophysical Journal, 83(6):3371–3379, December 2002. [2]Steven G. Thomas. 3 - the structure of resting and activated platelets. In Alan D.Michelson, editor, Platelets (Fourth Edition), pages 47–77. Academic Press, fourth edition, 2019. [3]Shirlyn B. McKenzie and J. Lynne Williams.Clinical Laboratory Hematology[M]: Third Edition. Pearson, 2014. [4]Ralf P. Richter, Rémi Bérat, and Alain R. Brisson. Formation of solid supported lipid bilayers: an integrated view. Langmuir, 22(8): 3497–3505, January 2006. [5]Annette Granéli, Jan Rydström, Bengt Kasemo, and Fredrik Höök. Formation of supported lipid bilayer membranes on SiO2 from proteoliposomes containing transmembrane proteins. Langmuir, 19(3):842–850, February 2003. [6]Abed-ElHakim El-Kadiry and Yahye Merhi. The role of the proteasome in platelet function. International Journal of Molecular Sciences, 22(8):3999, April 2021. [7]Paul Harrison. Platelet function analysis.Blood Reviews, 19(2):111–123, March 2005. [8]Yuyang Gu, Chuyi Chen, Zeyu Wang, PoHsun Huang, Hai Fu, Lin Wang, MengxiWu, Yuchao Chen, Tieyu Gao, Jianying Gong, Jean Kwun, Gowthami M. Arepally, and Tony Jun Huang. Plastic-Based acoustofluidic devices for high throughput, biocompatible platelet separation. Lab on a Chip, 19(3): 394–402, 2019. [9]Simon Pitchford, Simon Cleary, Kate Arkless, and Richard Amison.Pharmacological strategies for targeting platelet activation in asthma. Current opinion in pharmacology, 46: 55–64, 2019. [10]Yoshiyuki Mizoguchi Takao Nishimura. Filter medium for selectively removing leucocytes. https://patents.google.com/patent/EP0267286A4, 1997. [11]Emanuele Ostuni, Robert G. Chapman, Michael N. Liang, Gloria Meluleni, GeraldPier, Donald E. Ingber, and George M. Whitesides. Self Assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells. Langmuir, 17(20): 6336–6343, October 2001. [12]Yan-Wen Chen, Wen-Tyng Li, Yung Chang, Rong-Ho Lee, and Ging-Ho Hsiue. Blood-Typing and irregular antibody screening through multi-channel microfluidic discs with surface antifouling modification. Biomicrofluidics, 13(3):034107, May 2019. [13]Sabrina Nehache, Chin-Cheng Yeh, Mona Semsarilar, André Deratani, YungChang, and Damien Quemener. Anti-bioadhesive coating based on easy to make pseudozwitterionic RAFT block copolymers for blood contacting applications. Macromolecular Bioscience, 16(1):57–62, July 2015. [14]Tilahun Alelign and Beyene Petros. Kidney stone disease: An update on current concepts. Advances in Urology, 2018:1–12, 2018. [15]Saeed R. Khan, Margaret S. Pearle, William G. Robertson, Giovanni Gambaro, Benjamin K. Canales, Steeve Doizi, Olivier Traxer, and Hans-Göran Tiselius. Kidney stones. Nature Reviews Disease Primers, 2(1), February 2016. [16]Neil S. Mandel and Gretchen S. Mandel. Urinary tract stone disease in the united states veteran population. II. geographical analysis of variations in composition. Journal of Urology, 142(6):1516–1521, December 1989. [17]Xiaoxia Sheng, Michael D. Ward, and Jeffrey A. Wesson. Adhesion between molecules and calcium oxalate crystals: critical interactions in kidney stone formation. Journal of the American Chemical Society, 125(10):2854–2855, March 2003. [18]John C. Lieske, Benjamin H. Spargo, and F. Gary Toback. Endocytosis of calcium oxalate crystals and proliferation of renal tubular epithelial cells in a patient with type1 primary hyperoxaluria. Journal of Urology, 148(5 Part 1):1517–1519, November 1992. [19]Susanna Hug, Bernd Grohe, Jari Jalkanen, Brian Chan, Betty Galarreta, KristaVincent, François Lagugné-Labarthet, Gilles Lajoie, Harvey A. Goldberg, MikkoKarttunen, and Graeme K. Hunter. Mechanism of inhibition of calcium oxalate crystal growth by an osteopontin phosphopeptide. Soft Matter, 8(4):1226–1233,2012. [20]M. W. Bigelow, J. H. Wiessner, J. G. Kleinman, and N. S. Mandel. The dependence on membrane fluidity of calcium oxalate crystal attachment to IMCD membranes. Calcified Tissue International, 60(4):375–379, April 1997. [21]M. W. Bigelow, J. H. Wiessner, J. G. Kleinman, and N. S. Mandel. Surface exposure of phosphatidylserine increases calcium oxalate crystal attachment to IMCD cells. American Journal of Physiology-Renal Physiology, 272(1): F55–F62, January 1997. [22]J. C. Lieske, R. Leonard, H. Swift, and F. G. Toback. Adhesion of calcium oxalate monohydrate crystals to anionic sites on the surface of renal epithelial cells. American Journal of Physiology-Renal Physiology, 270(1):F192–F199, January 1996. [23]Kenjiro Kohri, Mitsumasa Kodama, Yasuaki Ishikawa, Yoshikazu Katayama, Hisao Masuda, Masaaki Imanishi, Masahiko Takada, Yoshinari Katoh, Kiyoneri Kataoka,Takahide Akiyama, Masanori Iguchi, and Takashi Kurita. Immunofluorescent study on the interaction between collagen and calcium oxalate crystals in the renal tubules. European Urology, 19(3):249–252, 1991. [24]T. Yamate, K. Kohri, T. Umekawa, N. Amasaki, Y. Isikawa, M. Iguchi, and T. Kurita.The effect of osteopontin on the adhesion of calcium oxalate crystals to madindar by canine kidney cells. European Urology, 30(3):388–393, 1996. [25]Scott Whipps, Saeed R. Khan, F. Jeffrey O'Palko, Rénal Backov, and Daniel R.Talham. Growth of calcium oxalate monohydrate at phospholipid Langmuir monolayers. Journal of Crystal Growth, 192(12):243–249, August 1998. [26]Rénal Backov, Christine M. Lee, Saeed R. Khan, Christophe Mingotaud, Gail E.Fanucci, and Daniel R. Talham. Calcium oxalate monohydrate precipitation at phosphatidylglycerol langmuir monolayers. Langmuir, 16(14):6013–6019, June 2000. [27]Andreas Barth and Christian Zscherp. What vibrations tell about proteins. Quarterly Reviews of Biophysics, 35(4):369–430, November 2002. [28]Ewen Smith and Geoffrey Dent.Modern Raman Spectroscopy - A Practical Approach. John Wiley Sons, Ltd, December 2004. [29]A. Rygula, K. Majzner, K. M. Marzec, A. Kaczor, M. Pilarczyk, and M. Baranska.Raman spectroscopy of proteins: a review. Journal of Raman Spectroscopy, 44(8):1061–1076, July 2013. [30]K. Czamara, K. Majzner, M. Z. Pacia, K. Kochan, A. Kaczor, and M. Baranska.Raman spectroscopy of lipids: a review. Journal of Raman Spectroscopy, 46(1):4–20, December 2014. [31]Katrin Kneipp, Harald Kneipp, Irving Itzkan, Ramachandra R. Dasari, andMichael S. Feld. Ultrasensitive chemical analysis by raman spectroscopy. Chemical Reviews, 99(10):2957–2976, October 1999. [32]Chung-Ta Han and Ling Chao. Creating air-stable supported lipid bilayers by physical confinement induced by phospholipase a2. ACS Applied Materials Interfaces, 6(9):6378–6383, April 2014. [33]Hoare SRJ. Analyzing kinetic binding data. https://www.ncbi.nlm.nih.gov/books/NBK569501/, Apr 2021. [34]P.T.T. Wong and H.H. Mantsch. Reorientational and conformational ordering processes at elevated pressures in 1, 2-dioleoyl phosphatidylcholine. Biophysical Journal, 54(5):781–790, November 1988. [35]Norbert Kucerka, Mu-Ping Nieh, and John Katsaras. Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature. Biochimica et Biophysica Acta (BBA) Biomembranes,1808(11):2761–2771, 2011. [36]Vittorio Tazzoli and Ch Domeneghetti. The crystal structures of whewellite and weddellite: reexamination and comparison. American Mineralogist, 65(34):327–334, 1980. [37]X. Sheng, T. Jung, J. A. Wesson, and M. D. Ward. From the cover: Adhesion at calcium oxalate crystal surfaces and the effect of urinary constituents. Proceedings of the National Academy of Sciences, 102(2):267–272, December 2004. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81595 | - |
| dc.description.abstract | 生物的細胞膜是維持細胞結構和生理的關鍵要素。它的脂質雙層膜結構也對細胞運作起到了非常關鍵的作用。本論文中,我們利用支撐式脂質雙層膜平臺,研究脂質膜和不同生物顆粒的貼附狀況,期望能夠對生物體內的貼附行為有進一步的認識。首先,我們研究是否可藉由調整脂質膜的電性來選擇性收集良好狀態血小板。血小板具有廣泛醫療用途,但它易沾黏和聚集的特性讓它在收集和研究上存在瓶頸。我們將已知具有抗沾黏特性的磷脂醯膽鹼和不同電性的脂質分子混合形成支撐式脂質膜平臺,結果顯示帶有正電的脂質膜上可以收集到形狀完整、狀態良好的血小板,且我們觀察貼附的時間和移除血液的流速都會影響到收集到的血小板數量。我們期許通過此平臺之收集,血小板能有機會可以被更多的表面分析儀器所研究。本論文的第二個部分為研究腎結石主要成分之一草酸鈣結晶與脂雙層的貼附行為。目前大多的研究都關注在草酸鈣結晶和蛋白之間的作用,鮮有研究討論結晶貼附與脂質膜的關係。透過螢光顯微鏡和拉曼顯微鏡的觀察,我們發現草酸鈣結晶會引起脂質膜的相變化,並且透過此相變化來達到更好的黏著效果。我們也測試了兩種不同的磷脂醯膽鹼,結果顯示脂質分子截面積大小與草酸鈣結晶晶格的匹配度會顯著影響結晶貼附的狀況。另外,我們在真實的細胞發出的細胞囊泡所建構的脂雙層膜平台上發現了草酸鈣結晶對膜有很強的吸引力。為了更好的解釋這一現象我們還在脂雙層中混入蛋白質來進一步模擬真實細胞膜,發現蛋白質會增強特定晶面的草酸鈣結晶的黏著效果。此新發現應可對未來研究腎結石貼附機制提供一些新方向。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T09:24:33Z (GMT). No. of bitstreams: 1 U0001-0609202110492300.pdf: 35130905 bytes, checksum: 491e171b5cf329261ab79edb561dd81a (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i 摘要 ii Abstract iii Contents v List of Figures ix List of Tables xii Chapter 1 Introduction 1 1.1 Supported Lipid Bilayers 1 1.2 Overview of Platelet and Traditional Approaches to Study Platelet Activity 2 1.3 Platelet Collection 3 1.4 Nonspecific Binding Materials 4 1.5 Overview of Kidney Stone 6 1.6 Raman Spectroscopy 8 Chapter 2 Material and Methods 9 2.1 Materials 9 2.2 Apparatus 13 2.3 Preparation of Artificial Liposome 15 2.4 Preparation of Polydimethylsioxane (PDMS) 16 2.4.1 Basic PDMS Preparation 16 2.4.2 Flow Chamber Preparation 16 2.5 Preparation of Solid Substrates 17 2.6 Supported Lipid Bilayer Formation 17 2.6.1 Basic Supported Artificial Lipid Membrane Formation 17 2.6.2 Fluidly 16:014:0 PC Supported Lipid Membrane Formation 17 2.6.3 Supported Lipid Membrane Formation in Microfluidic Channels 18 2.6.4 Binding of Streptavidin and Biotin 18 2.6.5 Preparation of Fluorescent Giant Plasma Membrane Vesicles (GPMVs) from HeLa Cells 19 2.7 Whole Blood Collection 20 2.8 Calcium Oxalate Monohydrate Formation 20 2.9 Channel Fabrication 20 2.10 Microscope 21 2.11 Raman Microscope 22 2.11.1 Raman Microscopy Observation 22 2.11.2 Raman Data Analysis 22 Chapter 3 Adjusting the Surface Charge of Supported Lipid Bilayers to Selectively Collect Platelets 23 3.1 Antifouling Property of 18:1 PC Lipid Bilayer Surface 23 3.2 Zeta Potential of Charged Liposomes24 3.3 Platelet Adhesion with Different Charged Lipids 25 3.4 Adhered Platelet Morphology Observation through Microscopy 27 3.5 Platelet Adhesion with Different Adhesion Time 28 3.6 Platelet Adhesion with Different Removal Flow Rates 31 Chapter 4 Bilayers Adhesion Behavior of Calcium Oxalate Monohydrate to Lipid 34 4.1 Observation of Calcium Oxalate Monohydrate Adhesion on 18:1 PC 34 4.2 Observation of Calcium Oxalate Monohydrate Adhesion on 16:014:0 PC 37 4.2.1 The fluidity of 16:014:0 PC Supported Lipid Bilayers 38 4.2.2 Calcium Oxalate Monohydrate Adhesion at Different Fluidity Bilayers 39 4.2.3 Fluorescence Intensity Analysis 40 4.2.4 Raman Analysis of 16:014:0 PC 43 4.3 Size Matching Effect Hypothesis 44 4.4 Observation of Calcium Oxalate Monohydrate Adhesion on Native Lipid Bilayers 47 4.5 Lipid Bilayers with Different Concentrations of BiotinStreptavidin Potein 48 4.5.1 Calcium Oxalate Monohydrate Adhesion on 18:1 PC Supported Lipid Bilayers with Streptavidin Proteins 50 4.5.2 Evaluation of Crystals Adhesion 52 4.6 Calcium Oxalate Monohydrate Adhesion on 16:014:0 PC Supported Lipid Bilayers with 5% BiotinStreptavidin 54 Chapter 5 Conclusion 58 References 60 Appendix A — Raman Spectrum 66 | |
| dc.language.iso | en | |
| dc.subject | 支撐式脂雙層 | zh_TW |
| dc.subject | 一水草酸鈣結晶 | zh_TW |
| dc.subject | 貼附 | zh_TW |
| dc.subject | 血小板 | zh_TW |
| dc.subject | calcium oxalate monohydrate | en |
| dc.subject | supported lipid bilayers | en |
| dc.subject | platelet | en |
| dc.subject | adhesion | en |
| dc.title | 利用支撐式脂雙層膜平台研究生物粒子的貼附行為 | zh_TW |
| dc.title | Study of Adhesion Behavior of Bio-particles on Supported Lipid Bilayers | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張雍(Hsin-Tsai Liu),謝之真(Chih-Yang Tseng) | |
| dc.subject.keyword | 一水草酸鈣結晶,貼附,支撐式脂雙層,血小板, | zh_TW |
| dc.subject.keyword | supported lipid bilayers,platelet,calcium oxalate monohydrate,adhesion, | en |
| dc.relation.page | 66 | |
| dc.identifier.doi | 10.6342/NTU202103002 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-09-08 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0609202110492300.pdf 未授權公開取用 | 34.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
