Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81589Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 林順福(Shun-Fu Lin) | |
| dc.contributor.author | Po-Chun Lin | en |
| dc.contributor.author | 林伯駿 | zh_TW |
| dc.date.accessioned | 2022-11-24T09:24:29Z | - |
| dc.date.available | 2022-11-24T09:24:29Z | - |
| dc.date.copyright | 2021-11-06 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-05 | |
| dc.identifier.citation | 卓緯玄。2017。建立台灣兩系雜交水稻育種平台。中興大學農藝學系博士論文。取自https://hdl.handle.net/11296/x277mm。 卓緯玄、陳宗禮、李長沛、賴明信、吳東鴻、顏信沐。2017。超級雜交稻在台灣的產量潛力分析。台灣農業研究 66(4):343-355。 周思儀、吳永培、廖大經。2021。氣候變遷下耐鹽水稻的發展。農業試驗所125:11-14。 胡如英、趙明富、鄭建華、吳春株、楊聚寶。2001。水稻核不育系SE21S的選育與利用。福建農業學報3:1-4。 陳冠秀。2019。生產稉稻兩系雜交種用之雄不稔品系的選育。臺灣大學農藝學研究所碩士論文。取自https://hdl.handle.net/11296/39hekq。 陳鎮、馬雪麗、曾漢來。2015。水稻光溫敏核不育調控基因及作用機理研究進展。世界科技研究與發展37(1):97。 Abbas, A., Yu, P., Sun, L., Yang, Z., Chen, D., Cheng, S., Cao, L. (2021). Exploiting genic male sterility in rice: from molecular dissection to breeding applications. Frontiers in Plant Science, 12, 220. Ali, J., Paz, M. D., Robiso, C. J. (2021). Advances in two-line heterosis breeding in rice via the temperature-sensitive genetic male sterility system. Rice Improvement, 99. Ashraf, M. F., Peng, G., Liu, Z., Noman, A., Alamri, S., Hashem, M., Qari S. H., Mahmoud al Z., O. (2020). Molecular control and application of male fertility for two-line hybrid rice breeding. International Journal of Molecular Sciences, 21(21), 7868. Aydinalp, C., Cresser, M. S. (2008). The effects of global climate change on agriculture. American-Eurasian Journal of Agricultural Environmental Sciences, 3(5), 672-676. Bateson, W. (1909). Heredity and variation in modern lights. Darwin and Modern Science. Broman, K. W., Wu, H., Sen, Ś., Churchill, G. A. (2003). R/qtl: QTL mapping in experimental crosses. Bioinformatics, 19(7), 889-890. Chalker‐Scott, L. (1999). Environmental significance of anthocyanins in plant stress responses. Photochemistry and Photobiology, 70(1), 1-9. Chen, H., Zhang, Z., Ni, E., Lin, J., Peng, G., Huang, J., Zhu, L., Deng, L., Yang, F., Luo, Q., Sun, w., Liu, Z., Zhuang, C., Liu, Y. G., Zhou, H. (2020). HMS1 interacts with HMS1I to regulate very‐long‐chain fatty acid biosynthesis and the humidity‐sensitive genic male sterility in rice (Oryza sativa). New Phytologist, 225(5), 2077-2093. Chen, L., Liu, Y. G. (2014). Male sterility and fertility restoration in crops. Annual Review of Plant Biology, 65, 579-606. Chen, L., Zhao, Z., Liu, X., Liu, L., Jiang, L., Liu, S., Zhang, W., Wang, Y., Liu, Y., Wan, J. (2011). Marker-assisted breeding of a photoperiod-sensitive male sterile japonica rice with high cross-compatibility with indica rice. Molecular Breeding, 27(2), 247-258. Chen, M., Presting, G., Barbazuk, W. B., Goicoechea, J. L., Blackmon, B., Fang, G., Kim, H., Frisch, D., Yu, Y., Sun, S., Higingbottom, S., Phimphilai, J., Phimphilai, D., Thurmond, S., Gaudette, B., Li, P., Liu, L., Hatfield, J., Main, D., Farrar, K., Henderson, C., Barnett, L., Costa, R., Williams, B., Walser, S., Atkins, M., Hall, C., Budiman, M. A., Tomkins, J. P., Luo, M., Bancroft, I., Salse, J., Regad, F., Mohapatra, T., Singh, N. K., Tyagi, A. K., Soderlund, C., Dean, R.A., Wing, R. A. (2002). An integrated physical and genetic map of the rice genome. The Plant Cell, 14(3), 537-545. Chen, R., Zhao, X., Shao, Z., Wei, Z., Wang, Y., Zhu, L., Zhao, J., Sun, M., He, G. (2007). Rice UDP-glucose pyrophosphorylase1 is essential for pollen callose deposition and its cosuppression results in a new type of thermosensitive genic male sterility. The Plant Cell, 19(3), 847-861. Cheng, S. H., Zhuang, J. Y., Fan, Y. Y., Du, J. H., Cao, L. Y. (2007). Progress in research and development on hybrid rice: a super-domesticate in China. Annals of Botany, 100(5), 959-966. Chin, H. S., Wu, Y. P., Hour, A. L., Hong, C. Y., Lin, Y. R. (2016). Genetic and evolutionary analysis of purple leaf sheath in rice. Rice, 9(1), 1-14. Cui, Y., Zhu, M., Xu, Z., Xu, Q. (2019). Assessment of the effect of ten heading time genes on reproductive transition and yield components in rice using a CRISPR/Cas9 system. Theoretical and Applied Genetics, 132(6), 1887-1896. Delseny, M., Salses, J., Cooke, R., Sallaud, C., Regad, F., Lagoda, P., Guiderdoni, E., Ventelon, M., Brugidou, C., Ghesquière, A. (2001). Rice genomics: present and future. Plant Physiology and Biochemistry, 39(3-4), 323-334. Deng, X., Wang, H., Tang, X., Zhou, J., Chen, H., He, G., Chen, L., Xu, Z. (2013). Hybrid rice breeding welcomes a new era of molecular crop design. Scientia Sinica Vitae, 43(10), 864-868. Ding, J., Lu, Q., Ouyang, Y., Mao, H., Zhang, P., Yao, J., Xu, C., Li, X., Xiao, J. Zhang, Q. (2012). A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proceedings of the National Academy of Sciences, 109(7), 2654-2659. Dobzhansky, T. (1982). Genetics and the Origin of Species (No. 11). Columbia University Press. Doi, K., Izawa, T., Fuse, T., Yamanouchi, U., Kubo, T., Shimatani, Z., Yano, M., Yoshimura, A. (2004). Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Development, 18(8), 926-936. Dong, N. V., Subudhi, P. K., Luong, P. N., Quang, V. D., Quy, T. D., Zheng, H. G., Wang, B., Nguyen, H. T. (2000). Molecular mapping of a rice gene conditioning thermosensitive genic male sterility using AFLP, RFLP and SSR techniques. Theoretical and Applied Genetics, 100(5), 727-734. Doyle, J. J. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13-15. Eizenga, G. C., Sanchez, P. L., Jackson, A. K., Edwards, J. D., Hurwitz, B. L., Wing, R. A., Kudrna, D. (2017). Genetic variation for domestication-related traits revealed in a cultivated rice, Nipponbare (Oryza sativa ssp. japonica)× ancestral rice, O. nivara, mapping population. Molecular Breeding, 37(11), 1-22. El-Mowafi, H. F., AlKahtani, M. D., El-Hity, M. A., Reda, A. M., Al Husnain, L., El-Degwy, E. S., Abdallah, R. M., AlGwaiz, H. I., Hadifa, A. Attia, K. A. (2021). Characterization of fertility alteration and marker validation for male sterility genes in novel PTGMS lines hybrid rice. Saudi Journal of Biological Sciences, 28(8), 4109. Endo-Higashi, N., Izawa, T. (2011). Flowering time genes Heading date 1 and Early heading date 1 together control panicle development in rice. Plant and Cell Physiology, 52(6), 1083-1094. Fan, Y., Yang, J., Mathioni, S. M., Yu, J., Shen, J., Yang, X., Wang, L., Zhang, Q., Cai, Z., Xu, C., Li, X., Xiao, J., Meyers, B. C., Zhang, Q. (2016). PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice. Proceedings of the National Academy of Sciences, 113(52), 15144-15149. Fan, Y., Zhang, Q. (2014). Understanding a key gene for thermosensitive genic male sterility in rice. Science China. Life Sciences, 57(12), 1241. Fan, Y., Zhang, Q. (2018). Genetic and molecular characterization of photoperiod and thermo-sensitive male sterility in rice. Plant Reproduction, 31(1), 3-14. Fishman, L., Sweigart, A. L. (2018). When two rights make a wrong: the evolutionary genetics of plant hybrid incompatibilities. Annual Review of Plant Biology, 69, 707-731. Guo, J., Xu, X., Li, W., Zhu, W., Zhu, H., Liu, Z., Luan, X., Dai, Z., Liu, G., Zhang, Z., Zeng, R., Tang, G., Fu, X., Wang, S., Zhang, G. (2016). Overcoming inter-subspecific hybrid sterility in rice by developing indica-compatible japonica lines. Scientific Reports, 6(1), 1-9. Hadagal, B. N., Manjunath, A., Goud, J. V. (1981). Linkage of genes for anthocyanin pigmentation in rice (Oryza sativa L.). Euphytica, 30(3), 747-754. Haley, C. S., Knott, S. A. (1992). A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity, 69(4), 315-324. Hayama, R., Yokoi, S., Tamaki, S., Yano, M., Shimamoto, K. (2003). Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature, 422(6933), 719-722. Hori, K., Matsubara, K., Yano, M. (2016). Genetic control of flowering time in rice: integration of Mendelian genetics and genomics. Theoretical and Applied Genetics, 129(12), 2241-2252. Hu, W., Zhou, T., Han, Z., Tan, C., Xing, Y. (2020). Dominant complementary interaction between OsC1 and two tightly linked genes, Rb1 and Rb2, controls the purple leaf sheath in rice. Theoretical and Applied Genetics, 133, 2555-2566. Hu, Z. X., Tian, Y., Xu, Q. S. (2016). Review of extension and analysis on current status of hybrid rice in China. Hybrid Rice, 31(2), 1-8. Huang, X., Yang, S., Gong, J., Zhao, Y., Feng, Q., Gong, H., Li, W., Zhan, Q., Cheng, B., Xia, J., Chen, N., Hao, Z., Liu, K., Zhu, C., Huang, T., Zhao, Q., Zhang, L., Fan, D., Zhou, C., Lu, Y., Weng, Q., Wang, Z. X., Li, J., Han, B. (2015). Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nature Communications, 6(1), 1-9. Hussain, A. J., Ali, J., Siddiq, E. A., Gupta, V. S., Reddy, U. K., Ranjekar, P. K. (2012). Mapping of tms8 gene for temperature‐sensitive genic male sterility (TGMS) in rice (Oryza sativa L.). Plant Breeding, 131(1), 42-47. Ikehashi, H., Araki, H. (1987). Screening and genetic analysis of wide-compatibility in F1 hybrids of distant crosses in rice, Oryza sativa L. Bull, 22. Ithal, N., Reddy, A. R. (2004). Rice flavonoid pathway genes, OsDfr and OsAns, are induced by dehydration, high salt and ABA, and contain stress responsive promoter elements that interact with the transcription activator, OsC1-MYB. Plant Science, 166(6), 1505-1513. Jia, J. H., Zhang, D. S., Li, C. Y., Qu, X. P., Wang, S. W., Chamarerk, V., Nguyen, H., Wang, B. (2001). Molecular mapping of the reverse thermo-sensitive genic male-sterile gene (rtms1) in rice. Theoretical and Applied Genetics, 103(4), 607-612. Kao, C. H., Zeng, Z. B., Teasdale, R. D. (1999). Multiple interval mapping for quantitative trait loci. Genetics, 152(3), 1203-1216. Kim, B., Jang, S. M., Chu, S. H., Bordiya, Y., Akter, M. B., Lee, J., Chin, J. H., Koh, H. J. (2014). Analysis of segregation distortion and its relationship to hybrid barriers in rice. Rice, 7(1), 3. Komiya, R., Ikegami, A., Tamaki, S., Yokoi, S., Shimamoto, K. (2008). Hd3a and RFT1 are essential for flowering in rice. Development, 135:767-774. Komiya, R., Yokoi, S., Shimamoto, K. (2009). A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development, 136(20), 3443-3450. Lee, D. S., Chen, L. J., Suh, H. S. (2005). Genetic characterization and fine mapping of a novel thermo-sensitive genic male-sterile gene tms6 in rice (Oryza sativa L.). Theoretical and Applied Genetics, 111(7), 1271-1277. Li, G., Jin, J., Zhou, Y., Bai, X., Mao, D., Tan, C., Wang, G., Ouyang, Y. (2019). Genome-wide dissection of segregation distortion using multiple inter-subspecific crosses in rice. Science China Life Sciences, 62(4), 507-516. Li, H., Yuan, Z., Vizcay-Barrena, G., Yang, C., Liang, W., Zong, J., Wilson, Z. A., Zhang, D. (2011). PERSISTENT TAPETAL CELL1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in rice. Plant Physiology, 156(2), 615-630. Li, X., Zheng, H., Wu, W., Liu, H., Wang, J., Jia, Y., Li, J., Yang, L., Lei, L., Zou, D., Zhao, H. (2020). QTL mapping and candidate gene analysis for alkali tolerance in Japonica rice at the bud stage based on linkage mapping and genome-wide association study. Rice, 13(1), 1-11. Liu, X., Li, X., Zhang, X., Wang, S. (2010). Genetic analysis and mapping of a thermosensitive genic male sterility gene, tms6 (t), in rice (Oryza sativa L.). Genome, 53(2), 119-124. Long, Y., Zhao, L., Niu, B., Su, J., Wu, H., Chen, Y., Zhang, Q., Guo, J., Zhuang, C., Mei, M., Xia, J., Wang, L., Wu, H., Liu, Y. G. (2008). Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes. Proceedings of the National Academy of Sciences, 105(48), 18871-18876. Matsubara, K., Yano, M. (2018). Genetic and molecular dissection of flowering time control in rice. Rice Genomics, Genetics and Breeding, 177-190. Springer, Singapore. McCouch, S. R., Teytelman, L., Xu, Y., Lobos, K. B., Clare, K., Walton, M., Fu, B., Maghirang, R., Li, Z., Xing, Y., Zhang, Q., Kono, I., Yano, M., Fjellstrom, R., DeClerck, G., Schneider, D., Cartinhour, S., Ware, D., Stein, L. (2002). Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Research, 9(6), 199-207. Mizuta, Y., Harushima, Y., Kurata, N. (2010). Rice pollen hybrid incompatibility caused by reciprocal gene loss of duplicated genes. Proceedings of the National Academy of Sciences, 107(47), 20417-20422. Mo, Y., Jeong, J. M., Ha, S. K., Kim, J., Lee, C., Lee, G. P., Jeung, J. U. (2020). Characterization of QTLs and candidate genes for days to heading in rice recombinant inbred lines. Genes, 11(9), 957. Mou, T. M., Xing-Gui, L., Hoan, N. T., Virmani, S. S. (2003). Two-line hybrid rice breeding in and outside China. Hybrid rice for food security, poverty alleviation, and environmental protection, 31-52. International Rice Research Institute, Manila, Philippines. Muller, H. (1942). Isolating mechanisms, evolution, and temperature. Biol. Symp., 6, 71-125. Nguyen, G. N., Yamagata, Y., Shigematsu, Y., Watanabe, M., Miyazaki, Y., Doi, K., Tashiro, K., Kuhara, S., Kanamori, H., Wu, J., Matsumoto, T., Yasui, H., Yoshimura, A. (2017). Duplication and loss of function of genes encoding RNA polymerase III subunit C4 causes hybrid incompatibility in rice. G3: Genes, Genomes, Genetics, 7(8), 2565-2575. Orjuela, J., Garavito, A., Bouniol, M., Arbelaez, J. D., Moreno, L., Kimball, J., Wilson, G., Rami J. F., Tohme, J., McCouch, S. R., Lorieux, M. (2010). A universal core genetic map for rice. Theoretical and Applied Genetics, 120(3), 563-572. Ouyang, Y. (2016). Progress of indica-japonica hybrid sterility and wide-compatibility in rice. Chinese Science Bulletin, 61(35), 3833-3841. Ouyang, Y., Zhang, Q. (2013). Understanding reproductive isolation based on the rice model. Annual Review of Plant Biology, 64, 111-135. Pavani, M., Sundaram, R. M., Ramesha, M. S., Kishor, P. K., Kemparaju, K. B. (2018). Prediction of heterosis in rice based on divergence of morphological and molecular markers. Journal of Genetics, 97(5), 1263-1279. Peng, H. F., Chen, X. H., Lu, Y. P., Peng, Y. F., Wan, B. H., Chen, N. D., Wu, B., Xin, S., Zhang, G. Q. (2010). Fine mapping of a gene for non-pollen type thermosensitive genic male sterility in rice (Oryza sativa L.). Theoretical and Applied Genetics, 120(5), 1013-1020. Qi, Y., Liu, Q., Zhang, L., Mao, B., Yan, D., Jin, Q., He, Z. (2014). Fine mapping and candidate gene analysis of the novel thermo-sensitive genic male sterility tms9-1 gene in rice. Theoretical and Applied Genetics, 127(5), 1173-1182. Qian, Q., Guo, L., Smith, S. M., Li, J. (2016). Breeding high-yield superior quality hybrid super rice by rational design. National Science Review, 3(3), 283-294. Reddy, O. U. K., Siddiq, E. A., Sarma, N. P., Ali, J., Hussain, A. J., Nimmakayala, P., Pammi, S., Reddy, A. S. (2000). Genetic analysis of temperature-sensitive male sterilty in rice. Theoretical and Applied Genetics, 100(5), 794-801. Reddy, V. S., Goud, K. V., Sharma, R., Reddy, A. R. (1994). Ultraviolet-B-responsive anthocyanin production in a rice cultivar is associated with a specific phase of phenylalanine ammonia lyase biosynthesis. Plant Physiology, 105(4), 1059-1066. Shen, R., Wang, L., Liu, X., Wu, J., Jin, W., Zhao, X., Xie, X., Zhu, Q., Tang, H., Li, Q., Chen, L. Liu, Y. G. (2017). Genomic structural variation-mediated allelic suppression causes hybrid male sterility in rice. Nature Communications, 8(1), 1-10. Sheng, Z., Wei, X., Shao, G., Chen, M., Song, J., Tang, S., Luo, J., Hu, Y., Hu, P., Chen, L. (2013). Genetic analysis and fine mapping of tms9, a novel thermosensitive genic male‐sterile gene in rice (Oryza sativa L.). Plant Breeding, 132(2), 159-164. Shrestha, R., Gómez-Ariza, J., Brambilla, V., Fornara, F. (2014). Molecular control of seasonal flowering in rice, arabidopsis and temperate cereals. Annals of Botany, 114(7), 1445-1458. Song, S., Wang, T., Li, Y., Hu, J., Kan, R., Qiu, M., Deng, Y., Liu, P., Zhang, L., Dong, H., Li, C., Yu, D., Li, X., Yuan, D., Yuan, L., Li, L. (2021). A novel strategy for creating a new system of third‐generation hybrid rice technology using a cytoplasmic sterility gene and a genic male‐sterile gene. Plant Biotechnology Journal, 19(2), 251. Subudhi, P., Borkakati, R., Virmani, S. S., Huang, N. (1997). Molecular mapping of a thermosensitive genetic male sterility gene in rice using bulked segregant analysis. Genome, 40(2), 188-194. Tamaki, S., Matsuo, S., Wong, H. L., Yokoi, S., Shimamoto, K. (2007). Hd3a protein is a mobile flowering signal in rice. Science, 316(5827), 1033-1036. Wang, B., Xu, W. W., Wang, J. Z., Wu, W., Zheng, H. G., Yang, Z. Y., Ray, J., Nguyen, H. T. (1995). Tagging and mapping the thermo-sensitive genic male-sterile gene in rice (Oryza sativa L.) with molecular markers. Theoretical and Applied Genetics, 91(6), 1111-1114. Wang, C., Zhang, P., Ma, Z., Zhang, M., Sun, G., Ling, D. (2004). Development of a genetic marker linked to a new thermo-sensitive male sterile gene in rice (Oryza sativa L.). Euphytica, 140(3), 217-222. Wang, W. Y., Ding, H. F., Li, G. X., Jiang, M. S., Li, R. F., Liu, X., Zhang, Y. Yao, F. Y. (2009). Delimitation of the PSH1(t) gene for rice purple leaf sheath to a 23.5 kb DNA fragment. Genome, 52(3), 268-274. Wang, Y., Wang, L., Zhou, J., Hu, S., Chen, H., Xiang, J., Zhang, Y., Zeng, Y., Shi, Q., Zhu, D., Zhang, Y. (2019). Research progress on heat stress of rice at flowering stage. Rice Science, 26(1), 1-10. Wei, X., Xu, J., Guo, H., Jiang, L., Chen, S., Yu, C., Zhou, Z., Hu, P., Zhai, H. Wan, J. (2010). DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiology, 153(4), 1747-1758. Wei, Y., Yang, T. M., Chen, J. H. (2008). Analysis on law of high temperature in summer and its influence on single-season rice planting in Anhui Province. J Anhui Agric Sci, 36, 15811-15813. Xie, Y., Xu, P., Huang, J., Ma, S., Xie, X., Tao, D., Chen, L., Liu, Y. G. (2017a). Interspecific hybrid sterility in rice is mediated by OgTPR1 at the S1 locus encoding a peptidase-like protein. Molecular Plant, 10(8), 1137-1140. Xie, Y., Niu, B., Long, Y., Li, G., Tang, J., Zhang, Y., Ren, D., Liu, Y. G., Chen, L. (2017b). Suppression or knockout of SaF/SaM overcomes the Sa‐mediated hybrid male sterility in rice. Journal of Integrative Plant Biology, 59(9), 669-679. Xie, Y., Shen, R., Chen, L., Liu, Y. G. (2019a). Molecular mechanisms of hybrid sterility in rice. Science China Life Sciences, 62(6), 737-743. Xie, Y., Tang, J., Xie, X., Li, X., Huang, J., Fei, Y., Han, J., Chen, S., Tang, H., Zhao, X., Tao, D., Xu, P., Liu, Y. G., Chen, L. (2019b). An asymmetric allelic interaction drives allele transmission bias in interspecific rice hybrids. Nature Communications, 10(1), 1-10. Xue, W., Xing, Y., Weng, X., Zhao, Y., Tang, W., Wang, L., Zhou, H., Yu, S., Xu, C., Li, X. Zhang, Q. (2008). Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genetics, 40(6), 761-767. Yamagata, Y., Yamamoto, E., Aya, K., Win, K. T., Doi, K., Ito, T., Kanamori, H., Wu, J., Matsumoto, T., Matsuoka, M., Ashikari, M., Yoshimura, A. (2010). Mitochondrial gene in the nuclear genome induces reproductive barrier in rice. Proceedings of the National Academy of Sciences, 107(4), 1494-1499. Yamaguchi, Y., Hirasawa, H., Minami, M., Ujihara, A. (1997). Linkage analysis of thermosensitive genic male sterility gene, tms-2 in rice (Oryza sativa L.). Japanese Journal of Breeding, 47(4), 371-373. Yang, J., Zhao, X., Cheng, K., Du, H., Ouyang, Y., Chen, J., Qiu, S., Huang, J., Jiang, Y., Jiang, L., Ding, J., Wang, J., Xu, C., Li, X., Zhang, Q. (2012). A killer-protector system regulates both hybrid sterility and segregation distortion in rice. Science, 337(6100), 1336-1340. Yang, Z., Liu, L., Sun, L., Yu, P., Zhang, P., Abbas, A., Xiang, X., Wu, W., Zhang, Y., Cao, L., Cheng, S. (2019). OsMS1 functions as a transcriptional activator to regulate programmed tapetum development and pollen exine formation in rice. Plant Molecular Biology, 99(1-2), 175-191. Yano, M., Katayose, Y., Ashikari, M., Yamanouchi, U., Monna, L., Fuse, T., Baba, T., Yamamoto, K., Umehara, Y., Nagamura, Y. Sasaki, T. (2000). Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. The Plant Cell, 12(12), 2473-2483. Yu, J., Han, J., Kim, Y. J., Song, M., Yang, Z., He, Y., Fu, R., Luo, Z., Hu, J., Liang, W., Zhang, D. (2017). Two rice receptor-like kinases maintain male fertility under changing temperatures. Proceedings of the National Academy of Sciences, 114(46), 12327-12332. Yu, X., Zhao, Z., Zheng, X., Zhou, J., Kong, W., Wang, P., Bai, W., Zheng, H., Zhang, H., Li, J., Liu, J., Wang, Q., Zhang, L., Liu, K., Yu, Y., Guo, X., Wang, J., Lin, Q., Wu, F., Ren, Y., Zhu, S., Zhang, X., Cheng, Z., Lei, C., Liu, S., Liu, X., Tian, Y., Jiang, L., Ge, S., Wu, C., Tao, D., Wang, H., Wan, J. (2018). A selfish genetic element confers non-Mendelian inheritance in rice. Science, 360(6393), 1130-1132. Yue, B., Cui, K., Yu, S., Xue, W., Luo, L., Xing, Y. (2006). Molecular marker-assisted dissection of quantitative trait loci for seven morphological traits in rice (Oryza sativa L.). Euphytica, 150(1), 131-139. Zhang, B., Liu, H., Qi, F., Zhang, Z., Li, Q., Han, Z., Xing, Y. (2019). Genetic interactions among Ghd7, Ghd8, OsPRR37 and Hd1 contribute to large variation in heading date in rice. Rice, 12(1), 1-13. Zhang, H. L., Chen, X. Y., Huang, J. Z., Zhi-Guo, E., Gong, J., Shu, Q. (2015). Identification and transition analysis of photo-/thermo-sensitive genic male sterile genes in two-line hybrid rice in China. Sci Agr Sin, 48, 1-9. Zhang, H., Xu, C., He, Y., Zong, J., Yang, X., Si, H., Sun, Z., Hu, J., Liang, W., Zhang, D. (2013). Mutation in CSA creates a new photoperiod-sensitive genic male sterile line applicable for hybrid rice seed production. Proceedings of the National Academy of Sciences, 110(1), 76-81. Zhang, H., Zhang, C. Q., Sun, Z. Z., Yu, W., Gu, M. H., Liu, Q. Q., Li, Y. S. (2011). A major locus qS12, located in a duplicated segment of chromosome 12, causes spikelet sterility in an indica-japonica rice hybrid. Theoretical and Applied Genetics, 123(7), 1247-1256. Zhang, J., Guo, T., Yang, J., Mingzhu, H., Wang, H., Sun, K., Chen, Z., Wang, H. (2020). QTL mapping and haplotype analysis revealed candidate genes for grain thickness in rice (Oryza sativa L.). Molecular Breeding, 40(5). Zhang, J., Zhou, X., Yan, W., Zhang, Z., Lu, L., Han, Z., Zhou, H., Liu, H., Song, P., Hu, Y., Shen, G., He, Q., Guo, S., Gao, G., Wang, G. Xing, Y. (2015). Combinations of the Ghd7, Ghd8 and Hd1 genes largely define the ecogeographical adaptation and yield potential of cultivated rice. New Phytologist, 208(4), 1056-1066. Zhang, Q., Shen, B. Z., Dai, X. K., Mei, M. H., Maroof, M. S., Li, Z. B. (1994). Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility in rice. Proceedings of the National Academy of Sciences, 91(18), 8675-8679. Zhou, H., Liu, Q., Li, J., Jiang, D., Zhou, L., Wu, P., Lu, S., Li, F., Zhu, L., Liu, Z., Chen, L., Liu, Y. G., Zhuang, C. (2012). Photoperiod-and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Research, 22(4), 649-660. Zhou, H., He, M., Li, J., Chen, L., Huang, Z., Zheng, S., Zhu, L., Ni, E., Jiang, D., Zhao, B., Zhuang, C. (2016). Development of commercial thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system. Scientific Reports, 6(1), 1-12. Zhou, H., Zhou, M., Yang, Y., Li, J., Zhu, L., Jiang, D., Dong, J., Liu, Q., Gu, L., Zhou, L., Feng, M., Qin, P., Hu, X., Song, C., Shi, J., Song, X., Ni, E., Wu, X., Deng, Q., Liu, Z., Chen, M., Liu, Y. G., Cao, X., Zhuang, C. (2014). RNase ZS1 processes UbL40 mRNAs and controls thermosensitive genic male sterility in rice. Nature Communications, 5(1), 1-9. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81589 | - |
| dc.description.abstract | 使用溫敏性雄不稔特性以育成兩系雜交水稻品種可有效利用雜種優勢以提高水稻產量,而目前臺灣仍未建立穩定生產兩系雜種水稻之系統。因此,本研究目的為定位溫敏性雄不稔數量性狀基因座,以探討其遺傳機制,並選拔出溫敏性雄不稔品系作為兩系雜交用之母本,同時探討影響稔實率之雜交不親和性等性狀。本研究以具溫敏性雄不稔性狀之台大品系A與稉稻台南13號雜交產生F1再自交所獲得164株之F2族群為材料,並以129個SSR分子標誌建立連鎖圖譜,提高分子標誌之密度。結合分子標誌基因型與稔實率等外表型進行數量性狀基因定位,結果共測得4個與稔實率相關之QTL:其中位於第1對染色體之QTL於常溫環境下測得,為影響秈稻與稉稻亞種間雜交不親和之QTL,且與前人所測之位置相近;而於第3對與第11對染色體上定位到溫敏性雄不稔QTL,且分別與不同前人測得之溫敏性雄不稔QTL位置相符合,與此兩QTL緊密連鎖之分子標誌可應用於選育兩系水稻雜交系統之具有雄不稔特性之母本品系;而定位於第6對染色體上之QTL由於其影響稔實率之對偶基因來自稉稻父本台南13號,推測此基因座為耐高溫相關之基因座,若將此QTL中之秈稻對偶基因導入稉稻品系中,可望提升臺灣稉稻品系之耐高溫程度,以因應全球氣候暖化。此外,利用上述兩溫敏性雄不稔數量性狀基因座緊密連鎖之分子標誌進行雄不稔個體選拔,獲選稔實率為0%個體均符合緊密連鎖分子標誌之基因型,顯示此兩分子標誌可作為未來選拔雄不稔品系之優良工具。本研究亦定位與雜種水稻生產相關之紫色葉鞘性狀與抽穗期等性狀,可供生產雜交種之參考。綜合影響稔實率之4個QTL分析結果,本研究共推薦6個溫敏性雄不稔品系與6個耐高溫品系,可作為建立水稻兩系雄不稔系統之材料。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T09:24:29Z (GMT). No. of bitstreams: 1 U0001-1309202113290100.pdf: 2033050 bytes, checksum: ce184a400a4743dc12a3eb59385015f8 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "致謝 i 中文摘要 ii Abstract iii 表目錄 vii 圖目錄 viii 前言 1 前人研究 3 一、水稻雄不稔相關研究 3 二、水稻雜交不親和性與雜種優勢相關研究 5 三、紫色葉鞘相關研究 7 四、抽穗期相關研究 7 五、研究目的 8 材料與方法 9 一、試驗材料 9 二、外表型調查 10 (一)稔實率(fertility rate)性狀調查 10 (二)雜交不親和性(hybrid-incompatibility, HI)性狀調查 10 (三)紫色葉鞘(purple leaf sheath, PLS)性狀調查 10 (四)抽穗期(days to heading, HD)性狀調查 10 三、基因型分析 11 (一)水稻DNA萃取 11 (二)簡單重複序列分子標誌引子合成 11 (三)聚合酶連鎖反應及瓊脂膠電泳分析 11 四、數量性狀基因座定位與分析 12 (一)連鎖圖譜之建立 12 (二)數量性狀基因座定位 13 五、雄不稔以及雜交不親和性之遺傳背景分析 13 結果 14 一、連鎖圖譜之建立 14 二、基因型比例分佈 18 三、外表型分佈 21 (一)稔實率 21 (二)雜交不親和性 23 (三)紫色葉鞘 24 (四)抽穗期 25 四、數量性狀基因座定位與遺傳分析 26 (一)稔實率之基因定位 26 (二)雜交不親和性之基因定位 31 (三)紫色葉鞘之基因定位 34 (四)抽穗期之基因定位 37 五、雄不稔以及雜交不親和性與遺傳背景之相關性 41 (一)雄不稔與遺傳背景之相關性 41 (二)雜交不親和性與遺傳背景之相關性 45 六、優良個體之推薦與後續追蹤 47 討論 49 一、連鎖圖譜之建立 49 二、基因型比例分佈 50 三、數量性狀基因座位置測定 51 (一)稔實率 51 (二)雜交不親和性 55 (三)紫色葉鞘 56 (四)抽穗期 57 三、雄不稔以及雜交不親和與遺傳背景之相關性 58 (一)雄不稔與遺傳背景之相關性 58 (二)雜交不親和性與遺傳背景之相關性 59 (三)遺傳背景之研究 59 四、優良植株之推薦與後續追蹤 60 五、目前面臨之難題與未來展望 60 結論 62 參考文獻 63 " | |
| dc.language.iso | zh-TW | |
| dc.subject | 水稻 | zh_TW |
| dc.subject | 雄不稔 | zh_TW |
| dc.subject | 雜交不親和性 | zh_TW |
| dc.subject | male sterility | en |
| dc.subject | incompatibility | en |
| dc.subject | rice | en |
| dc.title | 水稻雄不稔與亞種間雜交不親和性之遺傳機制 | zh_TW |
| dc.title | Genetic Mechanisms of Male Sterility and Intersubspecific Incompatibility in Rice | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 賴明信(Hsin-Tsai Liu),陳榮坤(Chih-Yang Tseng) | |
| dc.subject.keyword | 雄不稔,雜交不親和性,水稻, | zh_TW |
| dc.subject.keyword | male sterility,incompatibility,rice, | en |
| dc.relation.page | 77 | |
| dc.identifier.doi | 10.6342/NTU202103144 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-10-07 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| Appears in Collections: | 農藝學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-1309202113290100.pdf Restricted Access | 1.99 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
