請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8151
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 羅仁權(Ren-Chyuan Luo) | |
dc.contributor.author | Shang-Lun Lee | en |
dc.contributor.author | 李尚倫 | zh_TW |
dc.date.accessioned | 2021-05-20T00:49:20Z | - |
dc.date.available | 2020-08-24 | |
dc.date.available | 2021-05-20T00:49:20Z | - |
dc.date.copyright | 2020-08-24 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-18 | |
dc.identifier.citation | A. Sagitov, et al. 'ARTag, AprilTag and CALTag Fiducial Marker Systems: Comparison in a Presence of Partial Marker Occlusion and Rotation.' ICINCO (2). 2017. K. Rainio and A. Boyer. 'ALVAR–A Library for Virtual and Augmented Reality.' VTT Augmented Reality Team. [online]. Available: http://virtual.vtt.fi/virtual/ proj2/multimedia/index.html J. Wang and O. Edwin. 'AprilTag 2: Efficient and robust fiducial detection.' 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2016. C. Cadena, et al. 'Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age.' IEEE Transactions on robotics 32.6 (2016): 1309-1332. C. Stachniss, Robot Mapping WS 2013/14, [online]. Available: http://ais. informatik.uni-freiburg.de/teaching/ws13/mapping G. Grisetti, et al. 'A tutorial on graph-based SLAM.' IEEE Intelligent Transportation Systems Magazine 2.4 (2010): 31-43. G. Grisetti, C. Stachniss and W. Burgard, 'Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters,' in IEEE Transactions on Robotics, vol. 23, no. 1, pp. 34-46, Feb. 2007. S. Kohlbrecher, O. von Stryk, J. Meyer and U. Klingauf, 'A flexible and scalable SLAM system with full 3D motion estimation,' 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics, Kyoto, 2011, pp. 155-160. W. Hess, D. Kohler, H. Rapp and D. Andor, 'Real-time loop closure in 2D LIDAR SLAM,' 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, 2016, pp. 1271-1278. S. Agarwal and M. Keir. 'Ceres solver.' [online]. Available: http://ceres-solver.org/. R. Mur-Artal and J. D. Tardós, 'ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras,' in IEEE Transactions on Robotics, vol. 33, no. 5, pp. 1255-1262, Oct. 2017. J. Engel, T. Schöpsand, D. Cremers. 'LSD-SLAM:Large-scaledirect monocular SLAM,' European conference on computer vision, pp. 834- 849. Springer, Cham, Sep. 2014. C. Kerl, J. Sturm and D. Cremers, 'Dense visual SLAM for RGB-D cameras,' 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, 2013, pp. 2100-2106. F. Endres, J. Hess, J. Sturm, D. Cremers and W. Burgard, '3-D Mapping With an RGB-D Camera,' in IEEE Transactions on Robotics, vol. 30, no. 1, pp. 177-187, Feb. 2014. R. A. Newcombe, et al. 'KinectFusion: Real-time dense surface mapping and tracking.' 2011 10th IEEE International Symposium on Mixed and Augmented Reality. IEEE, 2011. T. Whelan, R. F. Salas-Moreno, B. Glocker, A. J. Davison and S. Leutenegger, 'ElasticFusion: Real-time dense SLAM and light source estimation.' The International Journal of Robotics Research , 35(14), pp.1697-1716. Dec. 2016. A. Dai, et al. 'Bundlefusion: Real-time globally consistent 3d reconstruction using on-the-fly surface reintegration.' ACM Transactions on Graphics (ToG) 36.4. May. 2017. E. Nelson, BLAM: berkeley localization and mapping, [online]. Available: https://github.com/erik-nelson/blam. T. Shan and B. Englot, 'LeGO-LOAM: Lightweight and Ground- Optimized Lidar Odometry and Mapping on Variable Terrain,' 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, 2018, pp. 4758-4765. J. Zhang and S. Singh. 'Laser–visual–inertial odometry and mapping with high robustness and low drift.' Journal of Field Robotics , 35.8, pp.1242-1264. Dec. 2018. M. Labbé and F. Michaud, 'RTAB-Map as an Open-Source Lidar and Visual SLAM Library for Large-Scale and Long-Term Online Operation, ' Journal of Field Robotics, vol. 36, no. 2, pp. 416–446. 2019. M. Klingensmith, S. S. Sirinivasa and M. Kaess, 'Articulated Robot Motion for Simultaneous Localization and Mapping (ARM-SLAM),' in IEEE Robotics and Automation Letters, vol. 1, no. 2, pp. 1156- 1163, July 2016. C. Houseago, M. Bloesch and S. Leutenegger, 'KO-Fusion: Dense Visual SLAM with Tightly-Coupled Kinematic and Odometric Tracking,' 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 2019, pp. 4054-4060. S.Thrun,“Probabilisticrobotics,’’Commun.ACM,vol.45,no.3,pp. 52–57,Mar. 2002. A.Hornung, K.M.Wurm, M.Bennewitz, C.Stachniss and W.Burgard. 'OctoMap: An efficient probabilistic 3D mapping framework based on octrees.' Autonomous robots, 34.3, pp. 189-206, Apr. 2013. A. G. Howard, et al. 'Mobilenets: Efficient convolutional neural networks for mobile vision applications.' arXiv preprint arXiv:1704.04861 (2017). W. Liu, et al. 'Ssd: Single shot multibox detector,' in European conference on computer vision, pp. 21-37. Springer, Cham, Oct. 2016. D. Fischinger, M. Vincze and Y. Jiang, 'Learning grasps for unknown objects in cluttered scenes,' 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, 2013, pp. 609-616. R. C. Luo and W. Shih, 'Topological Map Generation for Intrinsic Visual Navigation of an Intelligent Service Robot,' 2019 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 2019, pp. 1-6. R. C. Luo and M. Chiou, 'Hierarchical Semantic Mapping Using Convolutional Neural Networks for Intelligent Service Robotics,' in IEEE Access, vol. 6, pp. 61287-61294, 2018. T. Foote, 'tf: The transform library,' 2013 IEEE Conference on Technologies for Practical Robot Applications (TePRA), Woburn, MA, 2013, pp. 1-6. S. Chitta, I. Sucan and S. Cousins, 'Moveit![ros topics].' IEEE Robotics Automation Magazine , 19.1, pp.18-19, 2012. S. Ruben, A. Erwin and Orocos Developers, Kinematics and Dynamics Library (KDL), [online]. Avaliable: https://www.orocos.org/kdl R. Siegwart, I. R. Nourbakhsh and D. Scaramuzza, Introduction to autonomous mobile robots. pp. 62-103 MIT press, 2011. M. Wim, ros_control package, [online]. Avaliable: http://wiki.ros.org/ros_control A. Pieter, Scan Matching slide in UC Berkeley cs287-fa12, [online]. Avaliable: https://people.eecs.berkeley.edu/~pabbeel/cs287-fa12/slides/ScanMatching.pdf J. Y. Bouguet, “Camera Calibration Toolbox for Matlab.” Computational Vision at the California Institute of Technology. Camera Calibration Toolbox for MATLAB. Z. Zhang, “A Flexible New Technique for Camera Calibration.” IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 22, No. 11, 2000, pp. 1330–1334. G. Bradski, and A. Kaehler. Learning OpenCV: Computer Vision with the OpenCV Library. Sebastopol, CA: O'Reilly, 2008. J. Heikkila, and O. Silven. “A Four-step Camera Calibration Procedure with Implicit Image Correction.” IEEE International Conference on Computer Vision and Pattern Recognition.1997. R. Y. Tsai, and K. L. Reimar. 'A new technique for fully autonomous and efficient 3D robotics hand/eye calibration.' Robotics and Automation, IEEE Transactions on 5.3 (1989): 345-358. E. Marco, easy_handeye calibration, [online]. Available: https://github.com/IFL-CAMP/easy_handeye/tree/master/easy_handeye P. Bartz, AHRS Firmware for the SparkFun 9DOF Razor IMU, [online]. Available: https://github.com/Razor-AHRS/razor-9dof-ahrs. M. Quigley, et al. 'ROS: an open-source Robot Operating System.' ICRA workshop on open source software. Vol. 3. No. 3.2. 2009. Open Robotics, ROS, [online]. Available: https://www.ros.org/ A. L. Ballardini, al, 'ira_laser_tools: a ROS LaserScan manipulation toolbox.' [online]. Available: https://github.com/iralabdisco/ira_laser_tools R.B. Rusu and C. Steve. '3d is here: Point cloud library (pcl).' 2011 IEEE international conference on robotics and automation. IEEE, 2011. S.O.H.Madgwick, A.J.L.Harrison and R.V aidyanathan, 'Estimation of IMU and MARG orientation using a gradient descent algorithm,' 2011 IEEE International Conference on Rehabilitation Robotics, Zurich, 2011, pp. 1-7. T. Moore and D. Stouch, 'A generalized extended kalman filter implementation for the robot operating system.' Intelligent autonomous systems 13. pp. 335-348, Springer, Cham, 2016. A. L. Ballardini, al, 'ira_laser_tools: a ROS LaserScan manipulation toolbox.' [online]. Available: https://github.com/iralabdisco/ira_laser_tools W. Hess, D. Kohler, H. Rapp, and D. Andor. “Cartographer ROS: Algorithm walkthrough for tuning”. [online]. Available: https://google-cartographer-ros.readthedocs.io P. Besl, H. McKay “A method for registration of 3-D shapes” IEEE Trans. Pattern Anal. Mach. Intell., 14 (2) (1992), pp. 239-256 A. Segal, D. Haehnel, S. Thrun, Generalized-ICP, in: Robotics: Science and Systems, RSS, Seattle, USA, 2009, pp. 26–27 P. Biber, W. Strasser, The normal distributions transform: a new approach to laser scan matching, in: IEEE International Conference on Robotics and Automation, ICRA, vol. 3, IEEE, 2003, pp. 2743–2748 G. Agamennoni, S. Fontana, R. Y. Siegwart and D. G. Sorrenti 'Point Clouds Registration with Probabilistic Data Association', in International Conference on Intelligent Robots and Systems (IROS), 2016. W. Burgard, C. Stachniss, M. Bennewitz, D. Tipaldi, and L. Spinello, “Introduction to Mobile Robotics SS 2013”, [online]. Available: http://ais. informatik.uni-freiburg.de/teaching/ss13/robotics R. Kümmerle, et al. 'g 2 o: A general framework for graph optimization.' 2011 IEEE International Conference on Robotics and Automation. IEEE, 2011. F. Dellaert. Factor graphs and GTSAM: A hands-on introduction. Georgia Institute of Technology, 2012. I.A. Sucan, M. Mark, and E. K. Lydia. 'The open motion planning library.' IEEE Robotics Automation Magazine 19.4 (2012): 72-82. M. Cyrille, “Moveit-External-Octomap-Updater”, [online]. Available: https://github.com/Notou/Moveit-External-Octomap-Updater M. E. Eitan, “move_base: ROS navigation stack”, [online]. Available: http://wiki.ros.org/move_base C. Rösmann, F. Hoffmann and T. Bertram: Integrated online trajectory planning and optimization in distinctive topologies, Robotics and Autonomous Systems, Vol. 88, 2017, pp. 142–153. M. Fallon, et al. 'The mit stata center dataset.' The International Journal of Robotics Research 32.14 (2013): 1695-1699. J. Sturm, et al. 'A benchmark for the evaluation of RGB-D SLAM systems.' 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2012. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8151 | - |
dc.description.abstract | 近年的研究和應用顯示,自主移動工業機器人(Autonomous Mobile Industrial Robot, AMIR)仍是一個受歡迎的機器人平台,因為它的多功能性,能夠藉由可移動的車體、靈活的手臂、夾爪上的深度攝影機(RGB-D Camera),完成最基本也最重要的自主移動夾取(Autonomous Mobile Manipulation)任務,在一系列的智慧服務中這是不可缺少的一項重要功能。而僅具二維定位建圖與導航功能的自主移動平台機器人(Autonomous Mobile Robot),在搭載具有六個自由度的工業手臂(Industrial Robot)後,已不再足以應付空間中的避障需求,勢必得加入三維的感知能力才可以達到避免碰撞的運動規劃,而本篇論文將使用三維同步定位與地圖構建(Simultaneous Localization and Mapping, SLAM)技術來實現這個目標。 為此我們特別設計了一個符合自主移動工業機器人使用的三維同步定位與地圖建構系統,融合機器人上的傳感器數據,例如二維光達(2D LiDAR)、慣性測量單位(IMU)、深度攝影機(RGB-D Camera)、里程計資訊(Odometric Data)和手臂運動學資訊(Kinematic Data),計算最佳化的位姿軌跡、二維和三維的格點佔據式地圖(Occupancy Grid Map)。並且整合這套三維同步定位與地圖建構系統和運動規劃系統,使機器人得以在免於碰撞的情況下完成自主移動夾取。 在這篇論文中我們使用了我們台大智慧機器人及自動化實驗室自己設計開發的一台自主移動工業機器人作為搭載此系統的平台。我們的三維同步定位與地圖建構系統是基於二維的 Cartographer SLAM 上再作延伸。根據 Cartographer 所維持的位姿陣列,通過手臂運動學的資訊將深度相機所註冊的點雲經過濾波後轉換回在地的子地圖坐標系,進行迭代最近點(Iterative Closest Point)將累積的點雲疊合成子地圖。而為了達到全局一致的地圖,我們應用了相似檢測,計算質心距離相近的子地圖的相應關係,作為新的限制條件加入位姿圖中(Pose Graph),和原本 Cartographer 提供的限制條件一起進行基於 Ceres 函式庫的非線性優化(Optimization)。最後再將各個子地圖根據優化後的位姿重新組合成全局的二維和三維的格點佔據式地圖。 在實驗中,首先,我們將我們提出的三維同步定位與地圖建構系統做剝離比較來觀察各個步驟對結果造成的增益。第二,與其他可用於自主移動工業機器人的三維同步定位與地圖建構方法在我們自己的錄製的數據集和公開的同步定位與地圖建構數據集上做比較,實驗結果顯示,我們提出的方法在量化和質化的表現都比其他方法的更好。第三,我們展示了基於我們的三維同步定位與地圖建構系統的自主移動夾取解決方案,並與沒有使用我們的同步定位與三維地圖建構系統的解決方案做實驗相比較,顯示了我們的系統如何成功運行並輔助增強自主移動夾取任務,使其有更全面的避障效果與更方便的設定方式。最後,我們也成功用我們的自主移動工業機器人演示了整個智慧服務的情境,透過我們的三維同步定位與地圖建構系統結合自主移動夾取與避障,完成多工作站的物料配給,一氣呵成。 | zh_TW |
dc.description.abstract | Recent studies and applications have shown that autonomous mobile industrial robots, in short, mobile manipulators remain a popular robotics platform because of its multifunctional ability. With the eye-in-hand RGB-D camera setting, it is able to implement ubiquitous and adaptive mobile manipulation in a bunch of intelligent services. In order to perform the autonomous mobile manipulation, the 3D perception of an environment is necessary for the motion planning algorithm to compute collision-free trajectory. By using 3D simultaneous localization and mapping (SLAM) techniques, we are possible to realize it. We specifically design a 3D SLAM architecture for mobile manipulators. The system fuses data from sensors on the robot such as 2D laser scan, inertial measurement unit (IMU) data, RGB-D camera data, odometric data and kinematic data to compute an optimized pose, 2D occupancy grid map and 3D occupancy grid map built upon octree. Moreover, we integrate our system with motion planning system, making the robot avoid obstacles autonomously during mobile manipulation. The robotic platform of our system is an Autonomous Mobile Industrial Robot (AMIR) which combining autonomous mobile robot (AMR) and industrial robot (IR), designed and developed by our NTU intelligent robotics and automation lab. The SLAM architecture is based on 2D Cartographer SLAM and extended to have a 3D capability. According to the optimized footprint poses maintained by Cartographer pose graph, we use the kinematic data to transform filtered RGB-D point clouds, building up local submaps which consist of several point clouds by performing the Iterative Closest Point (ICP) technique. To achieve global consistency, the approximate detection is applied to insert a new constraint between two close 3D submap into the pose graph. The non-linear optimization is then conducted on the pose graph with constraints from 3D submaps and Cartographer using Ceres library. Finally, we compose all the submaps by transforming them into world coordinate according to the new optimized poses, getting global 2D and 3D occupancy grid maps. We perform the experiments, firstly with an ablation comparison on our architecture, showing how each mechanism improves the performance of the result. Secondly compared with other state-of-art methods with the public SLAM dataset as well as using dataset collected in our own experiment. The result shows that our approach can generate more accurate and more robust maps than other available methods implemented to a mobile manipulator. Third, we demonstrate an autonomous mobile manipulation solution based on our SLAM system, comparing to other available methods without it. The result shows that our system successfully works and enhances motion planning with obstacle avoidance in more comprehensive and convenience way. Last but not the least, we successfully demonstrate an intelligent service scenario of multi-station robotic delivery with our approach from SLAM to autonomous mobile manipulation. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T00:49:20Z (GMT). No. of bitstreams: 1 U0001-1708202019395300.pdf: 83583517 bytes, checksum: 03bd79139e0783136ca5eafe2a44b3ca (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 誌謝 i 中文摘要 ii ABSTRACT iv CONTENTS vi LIST OF FIGURES viii LIST OF TABLES xii Chapter 1 Introduction 1 1.1 Background 1 1.1.1 Modern Autonomous Mobile Industrial Robot 1 1.1.2 AMIR with Simultaneous Localization and Mapping 4 1.1.3 Multi-Sensor Fusion 11 1.2 Previous Research Works on SLAM 13 1.3 Motivations and Objectives 17 Chapter 2 Robotic System and Model 20 2.1 Autonomous Mobile Industrial Robot 20 2.1.1 Industrial Robot Kinematic Model 21 2.1.2 Mobile Robot Motion Model 25 2.2 Robotic Sensing System 30 2.2.1 Laser Scanner Model 30 2.2.2 Camera Calibration 31 2.2.3 Hand-Eye Calibration 33 2.2.4 Inertial Measurement Unit Calibration 34 2.3 Robot Operating System 35 Chapter 3 Simultaneous Localization and Mapping 38 3.1 System Architecture 38 3.2 Coupling with 2D Cartographer Algorithm 41 3.3 Preprocessing 42 3.3.1 IMU Data Fusion for Orientation 42 3.3.2 Wheel Odometry Fusion with Orientation 43 3.3.3 Laser Scan Merger 45 3.4 Local SLAM 46 3.4.1 Point Cloud Filter 46 3.4.2 Submap Builder and Refiner 49 3.5 Global SLAM 52 3.5.1 Loop Closure and Approximate Detector 52 3.5.2 Pose Graph Optimizer 54 3.6 Mapping 56 3.7 Localization 58 Chapter 4 Motion Planning 59 4.1 Object Tracking System 59 4.2 Manipulation with Obstacle Avoidance 60 4.3 Navigation with Obstacle Avoidance 62 4.4 Autonomous Mobile Manipulation System 64 Chapter 5 Experimental Result and Implementation 65 5.1 Experimental Environment and Setup 66 5.1.1 Surrounding in the Real World 66 5.1.2 Software and Hardware Environment 66 5.1.3 Our Recorded Dataset 68 5.1.4 Public MIT Stata Center Dataset 70 5.1.5 SLAM Evaluation Metric 73 5.2 Ablation Study 74 5.2.1 Experimental Setup 74 5.2.2 Comparison of the Experimental Results 75 5.3 SLAM System Evaluation 84 5.3.1 Experimental Setup 84 5.3.2 Quantitative Trajectory Accuracy Comparison on MIT Dataset 85 5.3.3 Qualitative Map Quality Comparison on MIT Dataset 87 5.3.4 Quantitative Trajectory Accuracy Comparison on Our Dataset 93 5.3.5 Qualitative Map Quality Comparison on Our Dataset 96 5.4 Station-to-Station Autonomous Mobile Manipulation Test 101 5.4.1 Experimental Setup 101 5.4.2 Comparison of the Experimental Results 102 5.5 Multi-Station Autonomous Mobile Manipulation Demo 107 Chapter 6 Contributions, Conclusions and Future Works 110 REFERENCE 113 VITA 118 | |
dc.language.iso | en | |
dc.title | 多感測器融合三維同步定位與地圖建構自主移動工業機器人於智慧服務之應用 | zh_TW |
dc.title | Autonomous Mobile Industrial Robot with Multi-Sensor Fusion Based Simultaneous Localization and Mapping for Intelligent Service Applications | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 顏炳郎(Bin-Lan Yen),鄒杰烔(Jie-Tong Zhou) | |
dc.subject.keyword | 同步定位與地圖構建,三維重建,多感測器融合,自主移動工業機器人,自主移動夾取,避障,機器人作業系統, | zh_TW |
dc.subject.keyword | SLAM,3D Reconstruction,Multi-Sensor Fusion,Mobile Manipulation,Autonomous Mobile Industrial Robot,Obstacle Avoidance,Robot Operating System, | en |
dc.relation.page | 118 | |
dc.identifier.doi | 10.6342/NTU202003847 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2020-08-19 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
顯示於系所單位: | 電機工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1708202019395300.pdf | 81.62 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。