Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81361
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor施博仁(Po-Jen Shih)
dc.contributor.authorCheng-Yi Luen
dc.contributor.author呂承頤zh_TW
dc.date.accessioned2022-11-24T03:45:29Z-
dc.date.available2022-07-15
dc.date.available2022-11-24T03:45:29Z-
dc.date.copyright2021-08-18
dc.date.issued2021
dc.date.submitted2021-07-15
dc.identifier.citationGain, P., et al., Global Survey of Corneal Transplantation and Eye Banking. Jama Ophthalmology, 2016. 134(2): p. 167-173. Morgan, D.O., The Cell Cycle. 2007: New Science Press. Wilson, S.E. and J.W. Hong, Bowman's layer structure and function: critical or dispensable to corneal function? A hypothesis. Cornea, 2000. 19(4): p. 417-20. Wilson, S.E., Bowman's layer in the cornea- structure and function and regeneration. Exp Eye Res, 2020. 195: p. 108033. Wilson, S.A. and A. Last, Management of corneal abrasions. Am Fam Physician, 2004. 70(1): p. 123-8. Prahl, L.S. and D.J. Odde, Modeling Cell Migration Mechanics. Adv Exp Med Biol, 2018. 1092: p. 159-187. Pegoraro, A.F., P. Janmey, and D.A. Weitz, Mechanical Properties of the Cytoskeleton and Cells. Cold Spring Harbor Perspectives in Biology, 2017. 9(11). Bangasser, B.L., et al., Shifting the optimal stiffness for cell migration. Nat Commun, 2017. 8: p. 15313. Keren, K., et al., Mechanism of shape determination in motile cells. Nature, 2008. 453(7194): p. 475-80. Bodor, D.L., et al., Of Cell Shapes and Motion: The Physical Basis of Animal Cell Migration. Dev Cell, 2020. 52(5): p. 550-562. Costanza Simoncini, T.L., Roman Thibeaux, Nancy Guillen, Alexandre Dufour, Jean-Christophe Olivo-Marin, Fluid dynamics modeling of cell and membrane deformations. 2014 IEEE 11th International Symposium on Biomedical Imaging, 2014: p. 262-265. Petrie, R.J. and K.M. Yamada, At the leading edge of three-dimensional cell migration. Journal of Cell Science, 2012. 125(24): p. 5917-5926. Meleney, H.E., Protozoology, 2nd edition. American Journal of Public Health and the Nations Health, 1940. 30(5): p. 555-555. te Boekhorst, V., L. Preziosi, and P. Friedl, Plasticity of Cell Migration In Vivo and In Silico. Annual Review of Cell and Developmental Biology, Vol 32, 2016. 32: p. 491-+. Shen, Z. and P. Niethammer, A cellular sense of space and pressure. Science, 2020. 370(6514): p. 295-296. Lomakin, A.J., et al., The nucleus acts as a ruler tailoring cell responses to spatial constraints. Science, 2020. 370(6514): p. 310-+. Venturini, V., et al., The nucleus measures shape changes for cellular proprioception to control dynamic cell behavior. Science, 2020. 370(6514): p. 311-+. Bartek, J., C. Lukas, and J. Lukas, Checking on DNA damage in S phase. Nat Rev Mol Cell Biol, 2004. 5(10): p. 792-804. Cadart, C., et al., Size control in mammalian cells involves modulation of both growth rate and cell cycle duration. Nat Commun, 2018. 9(1): p. 3275. Taira, K. and T. Colonius, The immersed boundary method: A projection approach. Journal of Computational Physics, 2007. 225(2): p. 2118-2137. Steinbach, I., Phase-field models in materials science. Modelling and Simulation in Materials Science and Engineering, 2009. 17(7). Zhao, J. and Q. Wang, Modeling cytokinesis of eukaryotic cells driven by the actomyosin contractile ring. International Journal for Numerical Methods in Biomedical Engineering, 2016. 32(12). Polacheck, W.J., J.L. Charest, and R.D. Kamm, Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proc Natl Acad Sci U S A, 2011. 108(27): p. 11115-20. Lee, S., et al., An Immersed Boundary Method for a Contractile Elastic Ring in a Three-Dimensional Newtonian Fluid. Journal of Scientific Computing, 2016. 67(3): p. 909-925. M. E. Rosar, C.S.P., Fluid flow in collapsible elastic tubes: A three-dimensional numerical model. New York Journal of Mathematics, 2001. 7: p. 281-302. McQueen, C.S.P.a.D.M., A Three-Dimensional Computational Method for Blood Flow in the Heart I. Immersed Elastic FIbers in a Viscous Incompressible Fluid. Computational Physics, 1987. 81: p. 372-405. Chorin, A.J., Numerical solution of the Navier-Stokes equations. Mathematics of Computation, 1968. 22: p. 745-762. Rogers, S.E. and D. Kwak, An Upwind Differencing Scheme for the Incompressible Navier-Stokes Equations. Applied Numerical Mathematics, 1991. 8(1): p. 43-64. Roache, P.J., Artificial Viscosity. Journal of Computational Physics, 1972. 10(2): p. 169-+. Reuben Hersh, R.J.G., Brownian Motion and Potential Theory. Scientific American, 1966. 220: p. 66-77.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81361-
dc.description.abstract"人工角膜可用於填補角膜捐贈的短缺,然而聚合物製成之人工角膜仍有排斥疑慮。今藉由組織工程以自體細胞培養之可避免此問題,然而人工培養細胞仍存在不確定性。為了解決此問題,先前藉由改良Odde學者之細胞遷移理論模型,加入Keren學者的膜力理論,建構出新的細胞遷移模型,已分析多個細胞之間力學的交互作用。然先前細胞遷移模型僅模擬固定數目的多顆細胞,探討其遷移及排列情形;未考慮細胞培養時的細胞週期進行成長、分裂等行為。為使模型更加完善,本研究在原模型裡增加細胞週期控制系統,做為控制細胞行為的依據。並依據現有研究理論,我們加入成長、分裂、感測周遭空間大小等功能,以建立更完整的細胞遷移模型。模擬結果顯示:分裂之新細胞對其他細胞遷移時的平衡位置有影響,我們藉由參考布朗運動的分析方法,驗證新增功能之細胞遷移模型表現出足夠的隨機性,並干擾既有細胞的運動。本研究的模擬部分,我們參考細胞分裂數值模擬流程(Seunggyu Lee),藉由投影法(Projection method, Chorin)和沉浸邊界法,再以數值方法計算細胞分裂時收縮環的收縮情形,並嘗試以不同網格排列方式進行運算。受限於MATLAB的記憶體極限,本研究的模擬的結果仍符合實驗觀測。研究貢獻在於將先前之細胞遷移模型,從力學分析提升至能進行細胞分裂的培養模擬,並加入之細胞週期的時間控制機制作為往後新增細胞行為之框架。我們更進一步進行細胞分裂數值模擬探討與其相關計算細節之探索。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:45:29Z (GMT). No. of bitstreams: 1
U0001-1407202115145900.pdf: 7898633 bytes, checksum: 5c4808c9a16255df71dfa4a0f89b8ca5 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents謝誌 i 中文摘要 ii ABSTRACT iii LIST OF FIGURES viii LIST OF TABLES x Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Corneal physiology 3 1.3 Cell mechanical structure 5 1.4 Cell migration motion 8 1.5 Cell division 12 Chapter 2 Paper Review 14 2.1 Cell biomechanical model 14 2.1.1 The Odde’s cell migration simulation (CMS) model 14 2.1.2 The Keren’s actin morphology model 15 2.2 Cellular sense of space and pressure 16 2.3 Cell cycle 18 2.4 The cytokinesis and simulation model 22 Chapter 3 Methods and Material 26 3.1 Cell cycles 26 3.1.1 The progression of cell cycle 27 3.1.2 Cell volume 31 3.1.3 Cytokinesis progression 33 3.2 Cytokinesis simulation 36 3.2.1 The mechanism and math of the phenomena 36 3.2.2 Implementation of the simulation 40 Chapter 4 Results and Discussion 50 4.1 Cell migration simulation 50 4.1.1 The influence of cytokinesis 53 4.1.2 Randomness analysis 57 4.2 Cytokinesis Simulation 63 Chapter 5 Conclusion and Future works 69 5.1 Conclusion 69 5.2 Future works 71 REFERENCE 73
dc.language.isoen
dc.subject細胞分裂模擬zh_TW
dc.subject細胞遷移模型zh_TW
dc.subject細胞力學zh_TW
dc.subject細胞動態模擬zh_TW
dc.subject人工眼角膜zh_TW
dc.subjectartificial corneasen
dc.subjectcytokinesis simulationen
dc.subjectcell migration modelen
dc.subjectcell mechanicsen
dc.subjectcell motion simulatoren
dc.title細胞週期進程M期收縮環的模擬及其在細胞集體遷移中的應用zh_TW
dc.titleSimulation of Contraction Ring in M Phase of Cell Cycle Progression and Application to Collective Cell Migrationen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee梁祥光(Hsin-Tsai Liu),周光武(Chih-Yang Tseng)
dc.subject.keyword細胞遷移模型,細胞力學,細胞動態模擬,人工眼角膜,細胞分裂模擬,zh_TW
dc.subject.keywordcell migration model,cell mechanics,cell motion simulator,artificial corneas,cytokinesis simulation,en
dc.relation.page75
dc.identifier.doi10.6342/NTU202101464
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-07-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1407202115145900.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
7.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved