Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81303
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor吳文方(Wen-Fang Wu)
dc.contributor.authorLing-Chen Wuen
dc.contributor.author吳綾蓁zh_TW
dc.date.accessioned2022-11-24T03:41:56Z-
dc.date.available2021-08-04
dc.date.available2022-11-24T03:41:56Z-
dc.date.copyright2021-08-04
dc.date.issued2021
dc.date.submitted2021-07-22
dc.identifier.citation[1] 謝育錚、閻大維,國際電動車產業發展現況與商機,財團法人車輛研究測試中心,2019。 [2] R. Xiong and W. Shen, Advanced Battery Management Technologies for Electric Vehicles, Hoboken, NJ: Wiley, 2018. [3] C. Lyu, Y. Song, J. Zheng, W. Luo, G. Hinds, J. Li, and L. Wang, 'In situ monitoring of lithium-ion battery degradation using an electrochemical model,' Applied Energy, Vol. 250, pp. 685-696, 2019. [4] T.R. Tanim and C.D. Rahn, 'Aging formula for lithium-ion batteries with solid electrolyte interphase layer growth,' Journal of Power Sources, Vol. 294, pp. 239-247, 2015. [5] J. Brand, Z. Zhang, and R.K. Agarwal, 'Extraction of battery parameters of the equivalent circuit model using a multi-objective genetic algorithm,' Journal of Power Sources, Vol. 247, pp. 729-737, 2014. [6] Y. Zou, X. Hu, H. Ma and S.E. Li, 'Combined state of charge and state of health estimation over lithium-ion battery cell cycle lifespan for electric vehicles,' Journal of Power Sources, Vol. 273, pp. 793-803, 2015. [7] E. Shi, F. Xia, D. Peng, L. Li, X. Wang and B. Yu, 'State-of-health estimation for lithium battery in electric vehicles based on improved unscented particle filter,' Journal of Renewable and Sustainable Energy, Vol. 11, Article 024101, 2019. [8] P. Guo, Z. Cheng and L. Yang, 'A data-driven remaining capacity estimation approach for lithium-ion batteries based on charging health feature extraction,' Journal of Power Sources, Vol. 412, pp. 442-450, 2019. [9] R.R. Richardson, M.A. Osborne, and D.A. Howey, 'Gaussian process regression for forecasting battery state of health,' Journal of Power Sources, Vol. 357, pp. 209-219, 2017. [10] J. Wu, C. Zhang, and Z. Chen, 'An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks,' Applied Energy, Vol. 173, pp. 134-140, 2016. [11] J. Wei, G. Dong, and Z. Chen, 'Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression,' IEEE Transactions on Industrial Electronics, Vol. 65, pp. 5634-5643, 2018. [12] J. Wang, X. Feng, X. Zhang, and Y. Xiang, 'Improved modeling of lithium-ion battery capacity degradation using an individual-state training method and recurrent softplus neural network,' IEEE Access, Vol. 9, pp. 7845-7855, 2020. [13] J. Wang, P. Liu, J. Hicks-Garner, E. Sherman, S. Soukiazian, M. Verbrugge, H. Tataria, J. Musser, and P. Finamore, 'Cycle-life model for graphite-LiFePO4 cells,' Journal of Power Sources, Vol. 196, pp. 3942-3948, 2011. [14] M. Varini, P.E. Campana, and G. Lindbergh, 'A semi-empirical, electrochemistry-based model for lithium-ion battery performance prediction over lifetime,' Journal of Energy Storage, Vol. 25, Article 100819, 2019. [15] M. Petit, E. Prada, and V. Sauvant-Moynot, 'Development of an empirical aging model for lithium-ion batteries and application to assess the impact of Vehicle-to-Grid strategies on battery lifetime,' Applied Energy, Vol. 172, pp. 398-407, 2016. [16] S.L. Hahn, M. Storch, R. Swaminathan, B. Obry, J. Bandlow, and K.P. Birke, 'Quantitative validation of calendar aging models for lithium-ion batteries,' Journal of Power Sources, Vol. 400, pp. 402-414, 2018. [17] J. Park, W.A. Appiah, S. Byun, D. Jin, M.H. Ryou, and Y.M. Lee, 'Semi-empirical long-term cycle life model coupled with an electrolyte depletion function for large-format graphite/LiFePO4 lithium-ion batteries,' Journal of Power Sources, Vol. 365, pp. 257-265, 2017. [18] R. Xiong, L. Li, and J. Tian, 'Towards a smarter battery management system: A critical review on battery state of health monitoring methods,' Journal of Power Sources, Vol. 405, pp. 18-29, 2018. [19] X. Tang, Y. Wang, C. Zou, K. Yao, Y. Xia, and F. Gao, 'A novel framework for lithium-ion battery modeling considering uncertainties of temperature and aging,' Energy Conversion and Management, Vol. 180, pp. 162-170, 2019. [20] F. Yang, Y. Xing, D. Wanga, and K.L. Tsui, 'A comparative study of three model-based algorithms for estimating state-of-charge of lithium-ion batteries under a new combined dynamic loading profile,' Applied Energy, Vol. 164, pp. 387-399, 2016. [21] W. Tong, W.Q. Koh, E. Birgersson, A.S. Mujumdar, and C. Yap, 'Correlating uncertainties of a lithium-ion battery – A Monte Carlo simulation,' International Journal of Energy Research, Vol. 39, pp. 778-788, 2015. [22] R. Hemmati, 'Optimal design and operation of energy storage systems and generators in the network installed with wind turbines considering practical characteristics of storage units as design variable,' Journal of Cleaner Production, Vol. 185, pp. 680-693, 2018. [23] H. Rallo, L. Canals Casals, D. De La Torre, R. Reinhardt, C. Marchante, and B. Amante, 'Lithium-ion battery 2nd life used as a stationary energy storage system: Ageing and economic analysis in two real cases,' Journal of Cleaner Production, Vol. 272, Article 122584, 2020. [24] 許家興,電動車電池類型與與電池基礎介紹,財團法人車輛研究測試中心,2009。 [25] 尤晴韻,台灣先進儲能材料的未來趨勢,財團法人台灣經濟研究院,2020。 [26] B. Li and D. Xia, 'Anionic redox in rechargeable lithium batteries,' Advanced Materials, Vol. 29, Article 1701054, 2017. [27] T. Waldmann, B.I. Hogg, and M. Wohlfahrt-Mehrens, 'Li plating as unwanted side reaction in commercial lithium-ion cells – A review,' Journal of Power Sources, Vol. 384, pp. 107-124, 2018. [28] O.S. Mendoza-Hernande, E. Hosono, D. Asakura, H. Matsuda, S. Shironita, M. Umeda, and Y. Sonei, 'Impact of calendar degradation on the performance of LiFePO4-graphite lithium-ion cells during charge-discharge cycling at -5°C,' Journal of The Electrochemical Society, Vol. 166, pp. 3525-3530, 2019. [29] S.K. Heiskanen, J. Kim, and B.L. Lucht, 'Generation and evolution of the solid electrolyte interphase of lithium-ion batteries,' Joule, Vol. 3, pp. 2322-2333, 2019. [30] S.M. Rezvanizaniani, Z. Liu, Y. Chen, and J. Lee, 'Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility,' Journal of Power Sources, Vol. 256, pp. 110-124, 2014. [31] M. Xu, R. Wang, B. Reichman, and X. Wang, 'Modeling the effect of two-stage fast charging protocol on thermal behavior and charging energy efficiency of lithium-ion batteries,' Journal of Energy Storage, Vol. 20, pp. 298-309, 2018. [32] S. Saxena, C. Hendricks, and M. Pecht, 'Cycle life testing and modeling of graphite/LiCoO2 cells under different state of charge ranges,' Journal of Power Sources, Vol. 327, pp. 394-400, 2016. [33] M. Alipour, E. Esen, A.R. Varzeghani, and R. Kizilel, 'Performance of high capacity lithium-ion pouch cells over wide range of operating temperatures and discharge rates,' Journal of Electroanalytical Chemistry, Vol. 860, Article 113903, 2020. [34] J. Schmalstieg, S. Käbitz, M. Ecker, and D.U. Sauer, 'A holistic aging model for Li(NiMnCo)O2 based 18650 lithium-ion batteries,' Journal of Power Sources, Vol. 257, pp. 325-334, 2014. [35] C.E. Ebeling, An Introduction to Reliability and Maintainability Engineering, Boston, MA: McGraw-Hill, 1997. [36] T.W. Anderson and D.A. Darling, 'A test of goodness of fit,' Journal of the American Statistical Association, Vol. 49, pp. 765-769, 1954. [37] G. Chen and N. Balakrishnan, 'A general purpose approximate goodness of fit test,' Journal of Quality Technology, Vol. 27, pp. 154-161, 1995. [38] J.M. Hammersley and D.C. Handscomb, Monte Carlo Methods, London: Chapman and Hall, 1964. [39] Center for Advanced Life Cycle Engineering, Lithium-ion battery experimental data, Available: https://web.calce.umd.edu/batteries/index.html. [Browsed March 17, 2021] [40] S. Grolleau, A. Delaille, H. Gualous, P. Gyan, R. Revel, J. Bernard, E. Redondo-Iglesias, and J. Peter, 'Calendar aging of commercial graphite/LiFePO4 cell – Predicting capacity fade under time dependent storage conditions,' Journal of Power Sources, Vol. 255, pp. 450-458, 2014. [41] M. Dubarry, Q. Nan, and P. Brooker, 'Calendar aging of commercial lithium-ion cells of different chemistries – A review,' Current Opinion in Electrochemistry, Vol. 9, pp. 106-113, 2018. [42] M. Ecker, J.B. Gerschler, J. Vogel, S. Käbitz, F. Hust, P. Dechent, and D.U. Sauer, 'Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data,' Journal of Power Sources, Vol. 215, pp. 248-257, 2012. [43] M. Schimpe, M.E. Kuepach, M. Naumann, H.C. Hesse, K. Smith, and A. Jossen, 'Comprehensive modeling of temperature-dependent degradation mechanisms in lithium-ion phosphate batteries,' Journal of The Electrochemical Society, Vol. 165, pp.181-193, 2018. [44] K. Qian, C. Zhou, M. Allan, and Y. Yuan, 'Modeling of load demand due to EV battery charging in distribution systems,' IEEE Transactions on Power Systems, Vol. 26, pp. 802-810, 2011. [45] Idaho National Laboratory, EVs and PHEVs Charging Habits, 2016. [46] P. Keil, S.F. Schuster, J. Wilhelm, J. Travi, A. Hauser, R.C. Karl, and A. Jossen, 'Calendar aging of lithium-ion batteries,' Journal of The Electrochemical Society, Vol. 169, pp. 1872-1880, 2016. [47] J. Kasnatscheew, M. Börner, B. Streipert, P. Meister, R. Wagner, I.C. Laskovic, and M. Winter, 'Lithium-ion battery cells under abusive discharge conditions: Electrode potential development and interactions between positive and negative electrode,' Journal of Power Sources, Vol. 362, pp. 278-282, 2017. [48] 交通部統計處,自用小客車使用狀況調查報告,2019。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81303-
dc.description.abstract"鋰離子電池因具有能量密度高、使用壽命長等優點,已成為電動車電池的主流。本研究旨在建構一個考慮不確定性、以可靠度為基礎的數學模型來描述鋰離子電池的退化現象,並藉以評估電池壽命與可靠度。本研究首先依據實際電池測試數據,考慮不同操作環境下的電池性能退化狀況,並考慮各電池退化之不確定性,依據電池儲存及使用狀態,分別提出其電容量損失模型,以描述電池電容量隨時間或充放電循環次數下降的趨勢,而後據以分析前述電池壽命分布與可靠度,求得電池在任意時間下的失效機率。本研究也將車輛每日行駛距離分布轉換為隨機放電深度分布,探討不同行駛習慣與充電方式對電池退化的影響。研究結果顯示電池荷電狀態(state of charge, SOC)為影響電池退化主要因素之一,而降低電池充電上限、避免在高SOC下頻繁地淺放電(shallow discharge)則能大幅延長電池使用壽命並提升其可靠度。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:41:56Z (GMT). No. of bitstreams: 1
U0001-2107202123171400.pdf: 2068980 bytes, checksum: c6c0b55877da91f08e21428a46dc1358 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vi 表目錄 vii 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.3 研究動機與目的 5 1.4 研究方法與論文架構 5 第二章 基本應用理論概述 7 2.1 鋰離子電池簡介 7 2.1.1 電池專有名詞解釋 7 2.1.2 鋰離子電池發展概況 9 2.2 鋰離子電池退化機制 10 2.3 阿瑞尼斯方程式 13 2.4 可靠度基本理論 13 2.4.1 可靠度函數 14 2.4.2 連續機率分布 15 2.4.3 機率圖紙法 19 2.4.4 適配度檢定 20 2.5 參數估計方法 21 2.6 蒙地卡羅法 22 第三章 鋰離子電池壽命評估模型 23 3.1 電池測試數據 23 3.2 日曆老化模型 26 3.3 循環老化模型 28 3.4 總電容量損失模型 30 第四章 結果與討論 32 4.1 模型參數擬合 32 4.2 不確定因素對電池可靠度之影響 36 4.2.1 可靠度定義 36 4.2.2 品質差異 37 4.2.3 儲存環境 39 4.3 電動車使用情境分析 40 4.3.1 一般使用情境 41 4.3.2 改變標準差 44 4.3.3 改變行駛距離 46 4.3.4 改變充電上限 49 4.3.5 改變充電次數 51 第五章 結論與未來研究方向 55 5.1 結論 55 5.2 未來研究方向 56 參考文獻 57
dc.language.isozh-TW
dc.subject可靠度分析zh_TW
dc.subject電動車zh_TW
dc.subject鋰離子電池zh_TW
dc.subject電容量損失zh_TW
dc.subject壽命分布zh_TW
dc.subjectReliability Analysisen
dc.subjectCapacity Lossen
dc.subjectLithium-ion Batteryen
dc.subjectElectric Vehicleen
dc.subjectLifetime Distributionen
dc.title電動車用鋰離子電池壽命評估模型之建構與可靠度分析zh_TW
dc.titleLife Modeling and Reliability Analysis of Lithium-ion Batteries Used in Electric Vehiclesen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee洪一薰(Hsin-Tsai Liu),詹魁元(Chih-Yang Tseng)
dc.subject.keyword電動車,鋰離子電池,電容量損失,壽命分布,可靠度分析,zh_TW
dc.subject.keywordElectric Vehicle,Lithium-ion Battery,Capacity Loss,Lifetime Distribution,Reliability Analysis,en
dc.relation.page61
dc.identifier.doi10.6342/NTU202101646
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-07-22
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工業工程學研究所zh_TW
Appears in Collections:工業工程學研究所

Files in This Item:
File SizeFormat 
U0001-2107202123171400.pdf
Access limited in NTU ip range
2.02 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved