Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81270
標題: 應用卷積神經網路於股票時間序列進行股市修正之預測
Applying Convolutional Neural Network to Stock Time Series to Predict Corrections of Stock Market
作者: Po-Hsun Chen
陳柏勳
指導教授: 曹承礎(Seng-Cho Chou)
關鍵字: 價格修正,機器學習,交易策略,趨勢預測,卷積神經網路,格拉姆角場,
Price Correction,Machine Learning,Trading Strategy,Trend Prediction,Convolutional Neural Network,Gramian Angular Field,
出版年 : 2021
學位: 碩士
摘要: 在2020 年初,由於Covid-19 的大流行,全球股票市場面臨了災難般地崩跌。這反映了即使處在看漲的「牛市」中,股票價格也隨時都可能崩盤。 在此研究中,我們希望透過避免未來的「價格修正」以獲取超額報酬,藉此改進「買入並持有」的投資策略。我們設計了「價格修正模型」,通過調整此模型的門檻值之組合,此標記演算法便可以精確地針對不同資產標記其「價格修正」。 接著,我們提出了一個2D GADF-CNN 模型以學習「價格修正」之間的共通規律。股票時間序列會先轉換為GAF 矩陣,再輸入到此模型中。在所有模型中,給定NASDAQ 指數最大的ETF-QQQ 之資料,CNN 模型在統計指標和回測報酬率上都表現最好。 最後,為了進一步測試我們模型的強健性,我們將其套用在TSM 和TSLA的資料上,分別為和QQQ 相似以及不相似的股票。2021 年1 至3 月的回測結果顯示,無論是直接對相似資料集進行遷移學習,亦或是針對相似與不相似的資料集微調「價格修正模型」的門檻值,我們的模型皆能習得有用的規律進而避開未來的下跌趨勢,最終得到超越「買入並持有」的投資報酬率。
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81270
DOI: 10.6342/NTU202101742
全文授權: 同意授權(限校園內公開)
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
U0001-2607202111270900.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.27 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved