請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8124完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊爵因(Jiue-In Yang) | |
| dc.contributor.author | Meng-Shan Hsieh | en |
| dc.contributor.author | 謝孟珊 | zh_TW |
| dc.date.accessioned | 2021-05-20T00:49:05Z | - |
| dc.date.available | 2022-08-20 | |
| dc.date.available | 2021-05-20T00:49:05Z | - |
| dc.date.copyright | 2020-09-28 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-20 | |
| dc.identifier.citation | 曾顯雄, 曾國欽, 張清安, 蔡東纂, 和嚴新富, 2019. 台灣植物病害名彙. 第五版. 劉滄棽 郭, 朱戩良, 連深, 2007. 台灣東部蛇紋岩母質化育土壤地區重金屬特性之初探 台灣農業研究 56, 65-78. 賴建任, 2019. 根瘤線蟲電漿激活水防治系統之開發與運用: 國立臺灣大學. Abad P, Gouzy J and Aury JM, et al., 2008. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature Biotechnology 26, 909-15. Abbasi SA and Soni R, 1983. Stress-Induced Enhancement of Reproduction in Earthworm Octochaetus-Pattoni Exposed to Chromium (VI) and Mercury (II) - Implications in Environmental-Management. International Journal of Environmental Studies 22, 43-7. Ahamed M, 2011. Toxic response of nickel nanoparticles in human lung epithelial A549 cells. Toxicology In Vitro 25, 930-6. Allouche M, Nasri A, Harrath AH, Mansour L, Beyrem H and Boufahja F, 2020. Migratory behavior of free-living marine nematodes surrounded by sediments experimentally contaminated by mixtures of polycyclic aromatic hydrocarbons. Journal of King Saud University Science 32, 1339-45. Amoroso MJ, Schubert D, Mitscherlich P, Schumann P and Kothe E, 2000. Evidence for high affinity nickel transporter genes in heavy metal resistant Streptomyces spec. Journal of Basic Microbiolgy 40, 295-301. Babich H and Stotzky G, 1983. Toxicity of nickel to microbes: environmental aspects. Advances in Applied Microbiology 29, 195-265. Bardgett RD, Speir TW, Ross DJ, Yeates GW and Kettels HA, 1994. Impact of pasture contamination by copper, chromium, and arsenic timber preservative on soil microbial properties and nematodes. Biology and Fertility of Soils 18, 71-9. Batten CK and Powell NT, 1971. The Rhizoctonia-Meloidogyne Disease Complex in Flue-cured Tobacco. Journal of Nematology 3, 164-9. Bazylinski DA, Dean AJ, Schuler D, Phillips EJ and Lovley DR, 2000. N2-dependent growth and nitrogenase activity in the metal-metabolizing bacteria, Geobacter and Magnetospirillum species. Environmental Microbiology 2, 266-73. Blaxter ML and Robertson WM, 1998. The Physiology and Biochemistry of Free-living and Plant-parasitic Nematodes. England: CABI. Bongers T, 1990. The Maturity Index - an Ecological Measure of Environmental Disturbance Based on Nematode Species Composition. Oecologia 83, 14-9. Boufahja F, Hedfi A, Amorri J, Aissa P, Beyrem H and Mahmoudi E, 2011. An Assessment of the Impact of Chromium-Amended Sediment on a Marine Nematode Assemblage Using Microcosm Bioassays. Biological Trace Element Research 142, 242-55. Bouyoucos GJ, 1936. Directions for making mechanical analyses of soils by the hydrometer method. Soil Science 42, 225-9. Boyle S, and Kakouli-Duarte T, 2008. The effects of chromium VI on the fitness and on the beta-tubulin genes during in vivo development of the nematode Steinernema feltiae. Science of the Total Environment 404, 56-67. Branco S and Ree RH, 2010. Serpentine soils do not limit mycorrhizal fungal diversity. PLoS One 5. Caporaso JG, Kuczynski J and Stombaugh J, et al., 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7, 335-6. Carlson HE, 1984. Inhibition of prolactin and growth hormone secretion by nickel. Life Science 35, 1747-54. Castagnone-Sereno P, Danchin EG, Perfus-Barbeoch L and Abad P, 2013. Diversity and evolution of root-knot nematodes, genus Meloidogyne: new insights from the genomic era. Annunal Review Phytopathology 51, 203-20. Chang YT, Hseu ZY, Lizuka Y and Yu CD, 2013. Morphology, Geochemistry, and Mineralogy of Serpentine soils under a tropical forest in southeastern taiwan. Taiwan Journal of Forest Science 28, 185-201. Chen B, Shen J, Zhang X, Pan F, Yang X and Feng Y, 2014a. The endophytic bacterium, Sphingomonas SaMR12, improves the potential for zinc phytoremediation by its host, Sedum alfredii. PLoS One 9, e106826. Chen B, Zhang Y, Rafiq MT, et al., 2014b. Improvement of cadmium uptake and accumulation in Sedum alfredii by endophytic bacteria Sphingomonas SaMR12: effects on plant growth and root exudates. Chemosphere 117, 367-73. Chen W, 2012. The Study of Bioremediation on Heavy Metal of Cultured Seawater by Sphingomonas sp. XJ2 Immobilized Sphingomonas Strain. Advanced Materials Research 347-353, 1436-41. Chen ZC and Hongyu BS, 1987. Enhancement of hydrogenase and nitrogenase activities in Rhadopseudomonas capsulata by nickel. FEMS Microbiology Letters 12, 359-363. Cheng CH, Jien SH, Lizuka YT, H. , Chang YH and Hseu ZY, 2011. Pedogenic Chromium and Nickel Partitioning in Serpentine Soils along a Toposequence. Pedology 75, 659-68. Cheng CH, Jien SH, Tsai H, Chang YH, Chen YC and Hseu ZY, 2009. Geochemical Element Differentiation in Serpentine Soils From the Ophiolite Complexes, Eastern Taiwan. Soil Science 174(5), 283-91. Cooper GR, 1978. Greenhouse experiments with maize grown in ultramafic soils. Soil Science 85, 437-44. Danchin EGJ, Rosso MN, Vieira P, et al., 2010. Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes. Proceedings of the National Academy of Sciences of the United States of America 107, 17651-6. David A, Singh Chauhan P, Kumar A, et al., 2018. Coproduction of protease and mannanase from Bacillus nealsonii PN-11 in solid state fermentation and their combined application as detergent additives. International Journal of Biological Macromolecules 108, 1176-84. De Ley P, De Ley IT, Morris K, et al., 2005. An integrated approach to fast and informative morphological vouchering of nematodes for applications in molecular barcoding. Philosophical Transactions of the Royal Society B-Biological Sciences 360, 1945-58. Dell B, Xu D, Rogers C and Huang L, 2002. Eucalyptus Plantations: Research, Management and Development Singapore: World Scientific. Doubkova P, Suda J, and Sudova R, 2012. The symbiosis with arbuscular mycorrhizal fungi contributes to plant tolerance to serpentine edaphic stress. Soil Biology Biochemistry 44, 56-64. Doubkova P, Vlasakova E and Sudova R, 2013. Arbuscular mycorrhizal symbiosis alleviates drought stress imposed on Knautia arvensis plants in serpentine soil. Plant and Soil 370, 149-61. Duruibe JO, Ogwuegbu MOC and Egwurugwu JN, 2007. Heavy metal pollution and human biotoxic effects. International Journal of the Physical Sciences 2, 112-8. Edgar RC, 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods 10, 996-+. Edgar RC, Haas BJ, Clemente JC, Quince C and Knight R, 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194-200. Elling AA, 2013. Major emerging problems with minor meloidogyne species. Phytopathology 103, 1092-102. Freitas VM, Silva JGP, Gomes CB, Castro JMC, Correa VR, and Carneiro RMDG, 2017. Host status of selected cultivated fruit crops to Meloidogyne enterolobii. European Journal of Plant Pathology 148, 307-19. Fuller ME, Scow KM, Lau S and Ferris H, 1997. Trichloroethylene (TCE) and toluene effects on the structure and function of the soil community. Soil Biology Biochemistry 29, 75-89. Gahoi S and Gautam B, 2016. Identification and analysis of insulin like peptides in nematode secretomes provide targets for parasite control. Bioinformation 12, 412-5. Gheysen G and Mitchum MG, 2019. Phytoparasitic Nematode Control of Plant Hormone Pathways. Plant Physiol 179, 1212-26. Golebiewski M, Deja-Sikora E, Cichosz M, Tretyn A and Wrobel B, 2014. 16S rDNA Pyrosequencing Analysis of Bacterial Community in Heavy Metals Polluted Soils. Microbial Ecology 67, 635-47. Gupta D, Bhandari S, and Bhusal DR, 2019. Variation of nematode indices under contrasting pest management practices in a tomato growing agro-ecosystem. Heliyon 5. Gutierrez C, Fernandez C, Escuer M, et al., 2016. Effect of soil properties, heavy metals and emerging contaminants in the soil nematodes diversity. Environ Pollut 213, 184-94. Haas BJ, Gevers D, Earl AM, et al., 2011. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Research 21, 494-504. Haegeman A, Jones JT and Danchin EG, 2011. Horizontal gene transfer in nematodes: a catalyst for plant parasitism? Mol Plant Microbe Interact 24, 879-87. Harrison S, 1997. How natural habitat patchiness affects the distribution of diversity in Californian serpentine chaparral. Ecology 78, 1898-906. Hedfi A, Boufahja F, Aïssa P, Mahmoudi E and Beyrem H, 2012. Do trace metals (chromium, copper, and nickel) influence toxicity of diesel fuel for free-living marine nematodes? Environmental Science and pollution Research 20, 3760-70. Heininger P, Hoss S, Claus E, Pelzer J and Traunspurger W, 2007. Nematode communities in contaminated river sediments. Environ Pollut 146, 64-76. Hong C, Si YX, Xing Y and Li Y, 2015. Illumina MiSeq sequencing investigation on the contrasting soil bacterial community structures in different iron mining areas. Environmental Science and pollution Research 22, 10788-99. Hopkins LLJ, Ransome-Kuti O and Majaj AS, 1968. Improvement of impaired carbohydrate metabolism by chromium 3 in manourished infants. Am J Clin Nutr 21, 203-11. Hseu ZY, 2006. Concentration and Distribution of Chromium and Nickel Fractions Along A Serpentinitic Toposequence. Soil Science 171, 341-53. Hseu ZY, 2018. Biogeochemistry of Serpentine Soils. USA: Nova. Hseu Z-Y, Chen Z-S, Tsai C-C, Jien S-H, 2016. Portable X-Ray Fluorescence (pXRF) for Determining Cr and Ni Contents of Serpentine Soils in the Field. In., 37-50. Hungate BA, Jaeger Iii CH, Gamara G, Chapin Iii FS, And Field CB, 2000. Soil microbiota in two annual grasslands: responses to elevated atmospheric CO2. Oecologia 124, 589-98. Hu MX, Zhuo K and Liao JL, 2011. Multiplex PCR for the simultaneous identification and detection of Meloidogyne incognita, M. enterolobii, and M. javanica using DNA extracted directly from individual galls. Phytopathology 101, 1270-7. Hungate BA, Jaeger Iii CH, Gamara G, Chapin Iii FS and Field CB, 2000. Soil microbiota in two annual grasslands: responses to elevated atmospheric CO2. Oecologia 124, 589-98. Igwe AN and Vannette RL, 2019. Bacterial communities differ between plant species and soil type, and differentially influence seedling establishment on serpentine soils. Plant and Soil 441, 423-37. Jami E et al., Exploring the bovine rumen bacterial community from birth to adulthood. ISME J 7 (6), 1069-79. Jiang Y, Chen J, Wu Y, Wang Q and Li H, 2016. Sublethal Toxicity Endpoints of Heavy Metals to the Nematode Caenorhabditis elegans. PLoS One 11, e0148014. Jones JT, Haegeman A, Danchin EG, et al., 2013. Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology 14, 946-61. Kabata-Pendias A, 2001. Trace Elements in soils and plants. UK: Applied Geochemistry Research GroupImperial College. Keeling PJ, 2009. Functional and ecological impacts of horizontal gene transfer in eukaryotes. Current Opinion Genetetic Development 19, 613-9. Khan MR, Khan MW and Singh K, 1996. Effects of nickel and root-knot nematode on the growth and protein content of chickpea. Nematology. 24, 87-90. Khan MR, Khan SM, Mohiddin FA and Askary TH, 2006. Effects of high nickel soil on root-knot Nematode disease of tomato. Nematropica 36, 79-87. Klindworth A, Pruesse E, Schweer T, et al., 2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41, e1. Kikuchi T, Jones JT, Aikawa T, Kosaka H and Ogura N, 2004. A family of glycosyl hydrolase family 45 cellulases from the pine wood nematode Bursaphelenchus xylophilus. FEBS Letters 572, 201-5. Kong L, Gao X, Zhu J, Zhang T, Xue Y and Tang M, 2017. Reproductive toxicity induced by nickel nanoparticles in Caenorhabditis elegans. Environmental Toxicology 32, 1530-8. Korthals GW, Alexiev AD, Lexmond TM, Kammenga JE and Bongers T, 1996. Long-term effects of copper and pH on the nematode community in an agroecosystem. Environmental Toxicology and Chemistry 15, 979-85. Liu BF, Ren NQ, Ding J, Xie GJ and Guo WQ, 2009. The effect of Ni2+, Fe2+ and Mg2+ concentration on photo-hydrogen production by Rhodopseudomonas faecalis RLD-53. International Journal of Hydrogen Energy 34, 721-6. Long JY, Gao XN, Su MH, Li HP, Chen DY and Zhou SY, 2018. Performance and mechanism of biosorption of nickel from aqueous solution by non-living Streptomyces roseorubens SY. Colloids and Surfaces A: Physicochemical and Engineering Aspects 548, 125-33. Lorenson MY, Robson DL and Jacobs LS, 1983. Divalent cation inhibition of hormone release from isolated adenohypophysial secretory granules. Jounrnal of Biological Chemistry 258, 8618-22. Losi M and Frankenberger W, 1994. Chromium-resistant microorganisms isolated from evaporation ponds of a metal processing plant. Water Air and Soil Pollution 74, 405-13. Lu M and Zhang ZZ, 2014. Phytoremediation of soil co-contaminated with heavy metals and deca-BDE by co-planting of Sedum alfredii with tall fescue associated with Bacillus cereus JP12. Plant and Soil 382, 89-102. Lu XH, Solangi GS, Li DJ, Huang JL, Zhang Y and Liu ZM, 2019. First Report of Root-Knot Nematode Meloidogyne enterolobii on Gardenia jasminoides in China. Plant Disease 103, 1434-5. Lukac N, Bardos L, Stawarz R, et al., 2011. In vitro effect of nickel on bovine spermatozoa motility and annexin V-labeled membrane changes. Journal of Applied Toxicology 31, 144-9. Magoc T and Salzberg SL, 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957-63. Mattarozzi M, Manfredi M, Montanini B, et al., 2017. A metaproteomic approach dissecting major bacterial functions in the rhizosphere of plants living in serpentine soil. Analytical and Bioanalytical Chemistry 409, 2327-39. Mayer WE, Schuster LN, Bartelmes G, Dieterich C and Sommer RJ, 2011. Horizontal gene transfer of microbial cellulases into nematode genomes is associated with functional assimilation and gene turnover. Bmc Evolutionary Biology 11. McLean EO (1982) Soil pH and lime requirement. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, Part 2, Chemical and microbiological properties, 2nd edn. pp 199–224. Madison: Agronomy Monograph No 9. American Society of Agronomy and Soil Science Society of America. Mcqueen JP and Treonis AM, 2019. Cacao agroforestry in Belize: Effects on soil nematode community structure. Agroforestry Systems 94, 1123-1132 Mcsorley R, 1992. Nematological Problems in Tropical and Subtropical Fruit Tree Crops. Nematropica 22, 103-16. Meindl GA, Bain DJ and Ashman TL, 2014. Nickel accumulation in leaves, floral organs and rewards varies by serpentine soil affinity. Aob Plants 6, plu036. Mendes ML, Dickson DW, Schoellhorn R, Cetintas R and Brito JA, 2007. Host status of petunia cultivars to root-knot nematodes. Nematology. 35, 91-4. Monokrousos N, Charalampidis G, Boutsis G, Sousanidou V, Papatheodorou EM and Argyropoulou MD, 2014. Plant-induced differentiation of soil variables and nematode community structure in a Mediterranean serpentine ecosystem. Soil Research 52, 593-603. Morales DK, Ocampo W and Zambrano MM, 2007. Efficient removal of hexavalent chromium by a tolerant Streptomyces sp. affected by the toxic effect of metal exposure. Journal of Applied Microbiology 103, 2704-12. Nabais C, Freitas H, Hagemeyer J and Breckle SW, 1996. Radial distribution of Ni in stemwood of Quercus ilex L. trees grown on serpentine and sandy loam (umbric leptosol) soils of NE-Portugal. Plant and Soil 183, 181-5. Nagy P, 1999. Effect of an artificial metal pollution on nematode assemblage of a calcareous loamy chernozem soil. Plant and Soil 212, 35-43. Nasri A, Hannachi A, Allouche M, et al., 2020. Chronic ecotoxicity of ciprofloxacin exposure on taxonomic diversity of a meiobenthic nematode community in microcosm experiments. Journal of King Saud University Science 32, 1470-5. Neher DA, 1999. Nematode communities in organically and conventionally managed agricultural soils. Journal of Nematology 31, 142-54. Nelson KE, Clayton RA, Gill SR, et al., 1999. Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature 399, 323-9. Novelli ELB, Rodrigues NL, Sforcin JM and Ribas BO, 1997. Toxic effects of nickel exposure on heart and liver of rats. Toxic Substance Mechanisms 16, 251-8. Opperman CH, Bird DM, Williamson VM, et al., 2008. Sequence and genetic map of Meloidogyne hapla: A compact nematode genome for plant parasitism. Proc Natl Acad Sci U S A 105, 14802-7. Oyetibo GO, Miyauchi K, Huang Y, et al., 2019. Comparative geochemical evaluation of toxic metals pollution and bacterial communities of industrial effluent tributary and a receiving estuary in Nigeria. Chemosphere 227, 638-46. Oze C, Fendorf, S. B, K. D, Cleman ARG, 2004. Chromium geochemistry in serpentinized ultramafic rocks and serpentine soils from the Franciscan complex of California. American Journal of Science 304, 67-101. Ozturk A, Artan T and Ayar A, 2004. Biosorption of nickel(II) and copper(II) ions from aqueous solution by Streptomyces coelicolor A3(2). Colloids Surf B Biointerfaces 34, 105-11. Pal A, Ghosh S and Paul AK, 2006. Biosorption of cobalt by fungi from serpentine soil of Andaman. Bioresour Technology 97, 1253-8. Pal A, Wauters G and Paul AK, 2007. Nickel tolerance and accumulation by bacteria from rhizosphere of nickel hyperaccumulators in serpentine soil ecosystem of Andaman, India. Plant and Soil 293, 37-48. Pandey V, Dixit V and Shyam R, 2005. Antioxidative responses in relation to growth of mustard (Brassica juncea cv. Pusa Jaikisan) plants exposed to hexavalent chromium. Chemosphere 61, 40-7. Park BY, Lee JK, Ro HM, and Kim YH, 2011. Effects of heavy metal contamination from an abandoned mine on nematode community structure as an indicator of soil ecosystem health. Applied Soil Ecology 51, 17-24. Pasternak J, Mudry T and Haight M, 1982. Toxicity of Seven Heavy Metals On Panagrell Us Silusiae: the Efficacy of the Free-Living Nematode as an in Vivo Toxicological Bioassay. Nematologica, 3–11. Pino EC, Webster CM, Carr CE and Soukas AA, 2013. Biochemical and high throughput microscopic assessment of fat mass in Caenorhabditis elegans. JoVE Visible Experiment. Porter SS, Chang PL, Conow CA, Dunham JP and Friesen ML, 2017. Association mapping reveals novel serpentine adaptation gene clusters in a population of symbiotic Mesorhizobium. ISME J 11, 248-62. Proctor J, 1999. Toxin, nutrient shortages and droughts: the serpentine challenge. Trends in Ecology and Evolution 14, 334-5. Proctor J and Baker AJM, 1994. The importance of nickel for plant growth in ultramafic(serpentine) soils. . In Toxic metals in soil-plant system, 417-32. Rajapaksha AU, Vithanage M, Ok YS and Oze C, 2013. Cr(VI) Formation related to Cr(Hungate et al.)-muscovite and birnessite interactions in ultramafic environments. Environmental Science Technology 47, 9722-9. Rako L and Hoffmann AA, 2006. Complexity of the cold acclimation response in Drosophila melanogaster. Journal of Insect Physiology 52, 94-104. Reddy DDR. Analysis of crop losses in tomato due to Meloidogyne incognita, 1985. Indian Journal of Nematology 15, 55-59. Revesz C, Forgacs Z, Lazar P, et al., 2004. Effect of nickel (Ni2+) on primary human ovarian granulosa cells in vitro. Toxicology Mechanisms and Methods 14, 287-92. Rich JR, Brito JA, Kaur R and Ferrell JA, 2009. Weed Species as Hosts of Meloidogyne: A Review. Nematropica 39, 157-85. Roh JY, Lee J and Choi J, 2009. Assessment of stress-related gene expression in the heavy metal-exposed nematode Caenorhabditis elegans: a potential biomarker for metal-induced toxicity monitoring and environmental risk assessment. Environmental Toxicology Chemistry 25, 2946-56. Roland P, Maurice M, S. AJL, 2009. Root-Knot nematode. England: CABI. Rudel D, Douglas CD, Huffnagle IM, Besser JM and Ingersoll CG, 2013. Assaying Environmental Nickel Toxicity Using Model Nematodes. PLoS One 8, e77079. Ruess L, Schmidt IK, Michelsen A and Jonasson S, 2001. Manipulations of a microbial based soil food web at two arctic sites - evidence of species redundancy among the nematode fauna? Applied Soil Ecology 17, 19-30. Saha R, Nandi R and Saha B, 2011. Sources and toxicity of hexavalent chromium. Journal of Coordination Chemistry 64, 1782-806. Salamun P, Brazova T, Miklisova D and Hanzelova V, 2015. Influence of selected heavy metals (As, Cd, Cr, Cu) on nematode communities in experimental soil microcosm. Helminthologia 52, 341-7. Saltiel AR and Kahn CR, 2001. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414, 799-806. Samoiloff MR, Schulz S, Jordan Y, Denich K and Arnott E, 1980. A Rapid Simple Long-Term Toxicity Assay for Aquatic Contaminants Using the Nematode Panagrellus-Redivivus. Canadian Journal of Fisheries and Aquatic Sciences 37, 1167-74. Sarathchandra SU, Ghani A, Yeates GW, Burch G and Cox NR, 2001. Effect of nitrogen and phosphate fertilisers on microbial and nematode diversity in pasture soils. Soil Biology Biochemistry 33, 953-64. Schechter SP, Bruns TD, 2008. Serpentine and non-serpentine ecotypes of Collinsia sparsiflora associate with distinct arbuscular mycorrhizal fungal assemblages. Molecular Ecology 17, 3198-210. Schloss PD, Westcott SL, Ryabin T, et al., 2009. Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Applied and Environmental Microbiology 75, 7537-41. Semsar H, Fotovati A, Lakzian A, Khorassani R and Mogaddam EM, 2011. The effect of heavy metals (lead, nickel and cadmium) and cow manure on population changes of indigenous soil nematodes. Electronic journal of soil management and sustainable production 1, 119-135. Shannon CE, 1948. A Mathematical Theory of Communication. Bell System Technical Journal 27, 379-423. Shewry PR and Peterson PJ, 1976. Distribution of chromium and nickel in plants and soil from serpentine and other sites. Journal of Ecology 64, 195-212. Shoeb E, Badar U, Akhter J, Shams H, Sultana M and Ansari MA, 2012. Horizontal gene transfer of stress resistance genes through plasmid transport. World Journal of Microbiology Biotechnology 28, 1021-5. Simpson EH, 1949. Measurement of Diversity. Nature 163, 688-. Sommer RJ and Streit A, 2011. Comparative genetics and genomics of nematodes: genome structure, development, and lifestyle. Annual Review of Genetics 45, 1-20. Soni R and Abbasi SA, 1981. Mortality and Reproduction in Earthworms Pheretima Posthuma Exposed to Chromium(VI). International Journal of Environmental Studies 17, 147-9. Sorensen JG and Loeschcke V, 2004. Effects of relative emergence time on heat stress resistance traits, longevity and hsp70 expression level in Drosophila melanogaster. Journal of Thermal Biology 29, 195-203. Spatharis S, Roelke DL, Dimitrakopoulos PG and Kokkoris GD, 2011. Analyzing the (mis)behavior of Shannon index in eutrophication studies using field and simulated phytoplankton assemblages. Ecological Indicators 11, 697-703. Spellerberg IF and Fedor PJ, 2003. A tribute to Claude Shannon (1916-2001) and a plea for more rigorous use of species richness, species diversity and the 'Shannon-Wiener' Index. Global Ecology and Biogeography 12, 177-9. Strong WL, 2016. Biased richness and evenness relationships within Shannon-Wiener index values. Ecological Indicators 67, 703-13. Subbotin SA, Vierstraete A, De Ley P, et al., 2001. Phylogenetic relationships within the cyst-forming nematodes (Nematoda, Heteroderidae) based on analysis of sequences from the ITS regions of ribosomal DNA. Molecular Phylogenetics and Evolution 21, 1-16. Takakuwa S, 1987. Nickel Uptake in Rhodopseudomonas-Capsulata. Archives of Microbiology 149, 57-61. Trudgill DL, 1997. Parthenogenetic root-knot nematodes (Meloidogyne spp); How can these biotrophic endoparasites have such an enormous host range? Plant Pathology 46, 26-32. Van Den Hoogen J, Geisen S, Routh D, et al., 2019. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194-+. Vranken G, And Tiré C Heip C, 1989. Effect of Temperature and Food on Hexavalent Chromium Toxicity to the Marine Nematode Monhystera disjuncta. Marine Environmental Research 27, 127-36. Vranken G, Tire C and Heip C, 1988. The Toxicity of Paired Metal Mixtures to the Nematode Monhystera-Disjuncta (Bastian, 1865). Marine Environmental Research 26, 161-79. Wang D and Wang Y, 2008. Nickel sulfate induces numerous defects in Caenorhabditis elegans that can also be transferred to progeny. Environmental Pollution 151, 585-92. Wang DY and Xing XJ, 2008. Assessment of locomotion behavioral defects induced by acute toxicity from heavy metal exposure in nematode Caenorhabditis elegans. Journal of Environmental Sciences 20, 1132-7. Whittaker RH, Evolution and measurement of species diversity. 1972: pp. 213-251. USA: WILEY Wu Q, Qu Y, Li X and Wang D, 2012. Chromium exhibits adverse effects at environmental relevant concentrations in chronic toxicity assay system of nematode Caenorhabditis elegans. Chemosphere 87, 1281-7. Wu Z, Gao G and Wang Y, 2019. Effects of soil properties, heavy metals, and PBDEs on microbial community of e-waste contaminated soil. Ecotoxicology Environmental Safety 180, 705-14. Yin HQ, Niu JJ, Ren YH et al., 2015. An integrated insight into the response of sedimentary microbial communities to heavy metal contamination. Scientific Reports 5. Zemanova J, Lukac N, Massanyi P et al., 2007. Nickel seminal concentrations in various animals and correlation to spermatozoa quality. Journal of Veterinary Medicine Series a-Physiology Pathology Clinical Medicine 54, 281-6. Zhaxybayeva O, Swithers KS, Lapierre P, et al., 2009. On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales. Proceedings of the National Academy of Sciences of the United States of America 106, 5865-70. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8124 | - |
| dc.description.abstract | 蛇紋岩土壤為一富含鎳、鉻的天然環境,低鈣鎂比為此土壤特性。目前台灣蛇紋岩土壤中微生物群相未知,本研究於2019年1月起調查蛇紋岩土壤中線蟲群相,採集我國宜花東共23個區域之蛇紋岩土壤與非蛇紋岩土壤,各分離出20與22科線蟲。比較相同樣本數下分離的線蟲總量,發現蛇紋岩土壤中的線蟲遠少於非蛇紋岩土壤,推論高濃度的鎳、鉻環境不利於線蟲生存。探究線蟲分群類別,Qudsianmenatidae科僅在蛇紋岩土壤中被發現,Anguinidae、Dolichodoridae、Rhabdolaimidae等科之線蟲則僅出現於非蛇紋岩土壤中。在非蛇紋岩土壤中出現頻率最高的Meloidogyne, Heterocephalobellus兩屬線蟲在蛇紋岩土壤中豐度明顯下降,推測該兩屬線蟲可能對於重金屬為較敏感,耐受性較低。因此,本研究首先探究高濃度鎳、鉻於根瘤線蟲體內所產生之生理影響。本研究挑選新興重要入侵病原象耳豆根瘤線蟲作為試驗材料,發現其在鎳、鉻環境中,繁殖、侵染、發育及代謝等生理能力皆受到影響,且高濃度下不利其生存;鎳濃度高於200 ppm時,象耳豆根瘤線蟲的死亡率會顯著上升,而高於50 ppm的鉻,則使象耳豆根瘤線蟲有100%死亡率。當環境中含有鎳時,象耳豆根瘤線蟲的卵孵化率、侵染能力及代謝速度皆下降,然而其卵及幼蟲發育速度皆加快。而環境中的鉻,則使象耳豆根瘤線蟲的卵孵化率、侵染植株及代謝等能力下降,並使幼蟲發育速度加快。於本研究調查中,發現蛇紋岩土壤中有一種對鎳、鉻具有高度耐受性之根瘤線蟲,推測該種類可能獲得環境中微生物之協助而產生較佳適應性。因此,本研究調查蛇紋岩土壤中的細菌群相,進行細菌功能性分析,結果發現,共有十七個屬 (Dongia, Pirellula, Anaerolinea , Haliangium, Sphinogomonas, Geobacter, Streptomyces Gaiella, Pseudolabrys, Rhodopseudomonas, Candidatus, Pedomicrobium, Pseudaminobacter, Steroidobacter, Reyrannella, Bacillus, Bradyrhizobium) 於蛇紋岩土壤中具有較高的相對豐度。其中,Sphinogomonas, Geobacter, Streptomyces, Pseudolabrys, Rhodopseudomonas, Candidatus_Solibacter, Steroidobacter, Reyrannella等八個屬,過去曾被報導於高濃度金屬環境中具耐受性,且有金屬吸附及螯合等能力。本研究發現,Bacillus nealsonii及Solitalea koreensis 與Acidobacteria bacterium等三菌株與土壤中鎳、鉻濃度具有高度正相關性。本研究中所篩選出之與重金屬相關菌群,可做為後續研究高鉻、鎳環境中線蟲-細菌交互作用的潛力菌株。 | zh_TW |
| dc.description.abstract | Serpentine soil is a rich nickel and chromium soil, and the low Mg/Ca ratio is its feature. Microbiome in serpentine soil is unknown. Since January 2019, the study investigated the soil microbiome in serpentine soil and compared them with non-serpentine soils in the same region. There were fewer nematodes in serpentine soil than non-serpentine soil, which suggested high concentration of environmental nickel and chromium are harmful to nematode. Among the 23 samples collected from the eastern Taiwan, a total of 20 families of nematodes were found in serpentine soils, while 22 families were found in non-serpentine soil. The family Qudsianmenatidae was only discovered in serpentine soil, while Anguinidae, Dolichodoridae, Rhabdolaimidae were only observed in non-serpentine soils. The top two abundant genera in non-serpentine soils, Meloidogyne spp. and Herterocephalobellus spp., only present significant low abundance in serpentine soil. Therefore, we assumed the two genera are sensitive and have lower tolerance level to heavy metals. We explored the physiological effects of Meloidogyne spp. in high concentration nickel and chromium environment. The emerging guava root-knot nematode, Meloidogyne enterolobii, was select as the experimental material in this study. This study revealed that the reproduction, development, invasion, and metabolism of the nematode were impacted by nickel and chromium, and that the high concentration of the two metals in the environment are toxic to nematodes and harm their survival. When the environmental nickel concentration is higher than 200 ppm, the mortality of M. enterolobii was significantly increased. Also, 100% M. enterolobii mortality would be reached when the environment contains higher than 50 ppm chromium. When the environment contains nickel, the egg hatching rate, invasion ability and metabolism of M. enterolobii were decreased, but the development rate of egg and juvenile were both increased. On the other hand, chromium decreased the egg hatching rate, invasion ability and metabolism of M. enterolobii, and increased development rate of juvenile. One Meloidogyne species, code species S, was discovered in serpentine soil, and had higher tolerance to nickel and chromium than other Meloidogyne species. We hypothesized Meloidogyne species S adapted to the environment with the help of microbes in the same environment. Therefore, this study investigated the bacteria communities in serpentine soil, and analyzed their potential gene functions. As results, seventeen genra were found to have higher relative abundance in serpentine soil: Dongia, Pirellula, Anaerolinea , Haliangium, Sphinogomonas, Geobacter, Streptomyces Gaiella, Pseudolabrys, Rhodopseudomonas, Candidatus , Pedomicrobium, Pseudaminobacter, Steroidobacter, Reyrannella, Bacillus and Bradyrhizobium. Among them, 8 genera (Sphinogomonas, Geobacter, Streptomyces, Pseudolabrys, Rhodopseudomonas, Candidatus_Solibacter, Steroidobacter, and Reyrannella) were previously reported to have higher tolerance to high metal concentrations, and were able to absorb metal and carry chelation. In our study, Bacillus nealsonii, Solitalea koreensis and Acidobacteria bacterium were found to have strong positive correlation to the concentration of nickel and chromium. The heavy-metal related bacteria revealed in this study can be use as candidate strains to study the interaction of nematode and bacteria in the high- nickel and chromium environments. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T00:49:05Z (GMT). No. of bitstreams: 1 U0001-1908202023090800.pdf: 4842851 bytes, checksum: 2ad24351625b703bd07d45f402385bbc (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 摘要 i Abstract iii 目錄 v 第一章‧ 緒論 1 1.1 研究背景 1 1.2 研究動機 2 第二章‧ 蛇紋岩土壤微生物相調查 4 2.1 簡介 4 2.1.1 蛇紋岩土壤微生物生態 4 2.1.2 細菌多樣性分析指標 6 2.1.3 線蟲成熟指數分析環境汙染程度 7 2.1.4 水平基因轉移 8 2.1.5 研究目的 8 2.2 材料與方法 9 2.2.1 蛇紋岩土壤樣本採集及性質分析 9 2.2.1.1 土壤樣品採集與保存 9 2.2.1.2 手攜式X射線螢光光譜儀分析與土壤分類 9 2.2.1.3 酸鹼值 (pH) 測定 9 2.2.1.4 電導度 (EC) 測定 9 2.2.1.5 土壤質地分析 9 2.2.1.6 重金屬之BCR序列萃取 10 2.2.2 土壤細菌相分析 11 2.2.2.1 核酸萃取 11 2.2.2.2 細菌群相定序 11 2.2.2.3 序列分析 12 2.2.2.4 數據分析 12 2.2.3 線蟲相 13 2.2.3.1 線蟲分離及核酸萃取 13 2.2.3.2 線蟲形態鑑定 13 2.2.3.3 線蟲核醣體核酸之定序 13 2.2.3.3.1 線蟲目標片段增幅 13 2.2.3.3.2 建構目標片段質體 14 2.2.3.3.3 轉殖 15 2.2.3.3.4 質體純化 16 2.2.3.3.5 定序與解序 16 2.2.3.4 根瘤線蟲種類鑑定 17 2.2.3.4.1 雌成蟲陰部膜紋鑑定 17 2.2.3.4.2 Multiplex PCR 18 2.2.3.4.3 增幅18S, ITS, LSU目標區段 19 2.2.3.5 成熟度指數計算 19 2.3 結果 20 2.3.1 土壤性質測定 20 2.3.2 線蟲群相 21 2.3.2.1 分離及鑑定之線蟲結果 21 2.3.2.2 植被分佈與土壤種類影響環境中線蟲數量 21 2.3.2.3 土壤種類影響線蟲群相 22 2.3.2.4 植被分佈變化更能顯示線蟲成熟度指標差異 23 2.3.2.5 對鎳、鉻耐受性高的根瘤線蟲S 23 2.3.2.5 對鎳、鉻耐受性高的根瘤線蟲S 23 2.3.2.5.1 根瘤線蟲S第曼公式指標及陰部膜紋 23 2.3.2.5.2 根瘤線蟲S分子鑑定 23 2.3.2.5.3 根瘤線蟲S能存活於高濃度鎳、鉻溶液中 23 2.3.3 細菌群相 24 2.3.3.1 環境中菌群種類相對豐度比較 24 2.3.3.2 土壤中細菌豐度與環境因子相關性 25 2.4 討論 26 第三章‧ 鎳、鉻對象耳豆根瘤線蟲生理影響 31 3.1 簡介 31 3.1.1 鎳對線蟲的影響 31 3.1.2 鉻對線蟲的影響 32 3.1.3 根瘤線蟲 33 3.1.4 研究目的 34 3.2 材料與方法 35 3.2.1 象耳豆根瘤線蟲培養 35 3.2.2 金屬溶液配製 36 3.2.3 存亡試驗 36 3.2.4 孵化率試驗 36 3.2.5 根部侵染試驗 37 3.2.6 胚胎發育試驗 38 3.2.7 齡期發育試驗 39 3.2.8 脂質染色試驗 40 3.2.9 接種試驗 41 3.2.10 數據分析 41 3.3 結果 42 3.3.1 線蟲對環境中鉻、鎳具有敏感性 42 3.3.2 鎳鉻抑制卵孵化率 42 3.3.3 鎳與鉻皆降低線蟲侵染植物的能力 43 3.3.4 鎳加快胚胎發育 43 3.3.5 鎳鉻加速幼蟲發育 44 3.3.6 鎳鉻降低代謝速度 44 3.3.7 在含有鎳鉻環境下仍可完成世代 45 3.4 討論 45 第四章‧ 結論 50 引用文獻 51 圖表 65 | |
| dc.language.iso | zh-TW | |
| dc.title | 蛇紋岩土壤鎳及鉻對微生物族群及根瘤線蟲的影響
| zh_TW |
| dc.title | Effects of nickel and chromium on microbial communities and root-knot nematode in serpentine soil | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許正一(Zeng-Yi Hseu),楊姍樺(Shan-Hua Yang),廖秀娟(Hsiu-Chuan Liao) | |
| dc.subject.keyword | 蛇紋岩土壤,鎳,鉻,根瘤線蟲,微生物相, | zh_TW |
| dc.subject.keyword | Serpentine soil,Nickel,Chromium,Meloidogyne,microbiome, | en |
| dc.relation.page | 102 | |
| dc.identifier.doi | 10.6342/NTU202004110 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2020-08-20 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1908202023090800.pdf | 4.73 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
