Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81245
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊宗傑(Tsung-Chieh Yang)
dc.contributor.authorKuei-Lien Chouen
dc.contributor.author周桂蓮zh_TW
dc.date.accessioned2022-11-24T03:38:24Z-
dc.date.available2021-08-31
dc.date.available2022-11-24T03:38:24Z-
dc.date.copyright2021-08-31
dc.date.issued2021
dc.date.submitted2021-07-29
dc.identifier.citation[1] Hsu CY, Yang TC, Wang TM, Lin LD. Effects of fabrication techniques on denture base adaptation: An in vitro study. J Prosthet Dent 2020;124:740-7. [2] Bolender Z, Zarb G, Eckert S. Prosthodontic treatment for edentulous patients: Complete denture and implant-supported prostheses. 2004. [3] Macentee MI, Walton JN. The economics of complete dentures and implant-related services: a framework for analysis and preliminary outcomes. J Prosthet Dent 1998;79:24-30. [4] Jacobson TE, Krol AJ. A contemporary review of the factors involved in complete denture retention, stability, and support. Part I: retention. J Prosthet Dent 1983;49:5-15. [5] Jacobson TE, Krol AJ. A contemporary review of the factors involved in complete dentures. Part III: support. J Prosthet Dent 1983;49:306-13. [6] Alfadda SA. The relationship between various parameters of complete denture quality and patients' satisfaction. J Am Dent Assoc 2014;145:941-8. [7] Azzam MK, Yurkstas AA, Kronman J. The sublingual crescent extension and its relation to the stability and retention of mandibular complete dentures. J Prosthet Dent 1992;67:205-10. [8] Wright CR. Evaluation of the factors necessary to develop stability in mandibular dentures. J Prosthet Dent 1966;16:414-30. [9] Murray Md DB. The evolution of the complete denture base. Theories of complete denture retention—a review. Part 1. Austral Dent J. 1993;38. [10] Gad MM, Fouda SM, Al-Harbi FA, Näpänkangas R, Raustia A. PMMA denture base material enhancement: a review of fiber, filler, and nanofiller addition. Int. J. Nanomedicine 2017;12:3801-12. [11] Farmer JB. Preventive prosthodontics: maxillary denture fracture. J Prosthet Dent 1983;50:172-5. [12] Tomita A, Gonda T, Takahashi T, Maeda Y, Tomita A, Gonda T, Takahashi T, Maeda Y. Survey of Denture Repair Cases: Denture Reinforcement Makes Patients Able to Use Their Dentures for Longer Periods. Int J Prosthodont 2018;31. [13] Nakazawa I. A clinical survey of removable partial dentures Analysis of follow-up examinations over a sixteen-year period. Bull. Tokyo Dent. Coll. 1977;24:125-37. [14] Ayman A-D. The residual monomer content and mechanical properties of CAD\CAM resins used in the fabrication of complete dentures as compared to heat cured resins. Electronic physician 2017;9:4766. [15] Kawara M, Komiyama O, Kimoto S, Kobayashi N, Kobayashi K, Nemoto K. Distortion behavior of heat-activated acrylic denture-base resin in conventional and long, low-temperature processing methods. J. Dent. Res. 1998;77:1446-53. [16] Turd MD, Lang BR, Wilcox DE, Meiers JC. Direct measurement of dimensional accuracy with three denture-processing techniques. Int J Prosthodont 1992;5. [17] Sanders JL, Levin B, Reitz PV. Comparison of the adaptation of acrylic resin cured by microwave energy and conventional water bath. Quintessence Int. 1991;22. [18] Firtell DN, Green AJ, Elahi JM. Posterior peripheral seal distortion related to processing temperature. J Prosthet Dent 1981;45:598-601. [19] Zappini G, Kammann A, Wachter W. Comparison of fracture tests of denture base materials. J Prosthet Dent 2003;90:578-85. [20] Keenan PL, Radford DR, Clark RK. Dimensional change in complete dentures fabricated by injection molding and microwave processing. J Prosthet Dent 2003;89:37-44. [21] Levin B, Sanders JL, Reitz PV. The use of microwave energy for processing acrylic resins. J Prosthet Dent 1989;61:381-3. [22] Nogueira SS, Ogle RE, Davis EL. Comparison of accuracy between compression-and injection-molded complete dentures. J Prosthet Dent 1999;82:291-300. [23] Bilhan H, Erdogan O, Ergin S, Celik M, Ates G, Geckili O. Complication rates and patient satisfaction with removable dentures. J Adv Prosthodont 2012;4:109. [24] Prombonas AE, Vlissidis DS. Comparison of the midline stress fields in maxillary and mandibular complete dentures: a pilot study. J Prosthet Dent 2006;95:63-70. [25] Darbar UR, Huggett R, Harrison A. Stress analysis techniques in complete dentures. J Dent 1994;22:259-64. [26] Schneider RL. Diagnosing functional complete denture fractures. J Prosthet Dent 1985;54:809-14. [27] Phunthikaphadr T, Takahashi H, Arksornnukit M. Pressure transmission and distribution under impact load using artificial denture teeth made of different materials. J Prosthet Dent 2009;102:319-27. [28] Sasaki H, Hamanaka I, Takahashi Y, Kawaguchi T. Effect of long-term water immersion or thermal shock on mechanical properties of high-impact acrylic denture base resins. Dent Mater J 2016;35:204-9. [29] Pandurić J, Husnjak M, Guljas K, Kraljević K, Zivko-Babić J. The simulation and calculation of the fatigue of the lower complete denture in function by means of the finite element analysis. J Oral Rehabil 1998;25:560-5. [30] Lambrecht JR, Kydd WL. A functional stress analysis of the maxillary complete denture base. J Prosthet Dent 1962;12:865-72. [31] Cilingir A, Bilhan H, Baysal G, Sunbuloglu E, Bozdag E. The impact of frenulum height on strains in maxillary denture bases. J Adv Prosthodont 2013;5:409-15. [32] Stafford G, Glantz P-O. Intraoral strain gauge measurements on complete dentures: a methodological study. J Dent 1991;19:80-4. [33] Regli CP, Gaskill HL. Denture base deformation during function. J Prosthet Dent 1954;4:548-54. [34] Bidra AS, Taylor TD, Agar JR. Computer-aided technology for fabricating complete dentures: Systematic review of historical background, current status, and future perspectives. J Prosthet Dent 2013;109:361-6. [35] Duret F, Preston J. CAD/CAM imaging in dentistry. Current opinion in dentistry 1991;1:150-4. [36] Kawahata N, Ono H, Nishi Y, Hamano T, Nagaoka E. Trial of duplication procedure for complete dentures by CAD/CAM. J Oral Rehabil 1997;24:540-8. [37] Goodacre CJ, Garbacea A, Naylor WP, Daher T, Marchack CB, Lowry J. CAD/CAM fabricated complete dentures: concepts and clinical methods of obtaining required morphological data. J Prosthet Dent 2012;107:34-46. [38] Han W, Li Y, Zhang Y. Design and fabrication of complete dentures using CAD/CAM technology. Medicine 2017;96. [39] Stawarczyk B, Sener B, Trottmann A, Roos M, Oezcan M, Haemmerle CH. Discoloration of manually fabricated resins and industrially fabricated CAD/CAM blocks versus glass-ceramic: effect of storage media, duration, and subsequent polishing. Dent Mater J 2012;31:377-83. [40] Goodacre BJ, Goodacre CJ, Baba NZ, Kattadiyil MT. Comparison of denture base adaptation between CAD-CAM and conventional fabrication techniques. J Prosthet Dent 2016;116:249-56. [41] Alhelal A, Alrumaih HS, Kattadiyil MT, Baba NZ, Goodacre CJ. Comparison of retention between maxillary milled and conventional denture bases: A clinical study. J Prosthet Dent 2017;117:233-8. [42] Kattadiyil MT, Jekki R, Goodacre CJ, Baba NZ. Comparison of treatment outcomes in digital and conventional complete removable dental prosthesis fabrications in a predoctoral setting. J Prosthet Dent 2015;114:818-25. [43] Schwindling FS, Stober T. A comparison of two digital techniques for the fabrication of complete removable dental prostheses: A pilot clinical study. J Prosthet Dent 2016;116:756-63. [44] Yamamoto S, Kanazawa M, Hirayama D, Nakamura T, Arakida T, Minakuchi S. In vitro evaluation of basal shapes and offset values of artificial teeth for CAD/CAM complete dentures. Computers in biology and medicine 2016;68:84-9. [45] Wu J, Wang X, Zhao X, Zhang C, Gao B. A study on the fabrication method of removable partial denture framework by computer‐aided design and rapid prototyping. Rapid Prototyp J 2012. [46] Kattadiyil MT, Mursic Z, Alrumaih H, Goodacre CJ. Intraoral scanning of hard and soft tissues for partial removable dental prosthesis fabrication. J Prosthet Dent 2014;112:444-8. [47] Huang Z, Zhang L, Zhu J, Zhang X. Clinical marginal and internal fit of metal ceramic crowns fabricated with a selective laser melting technology. J Prosthet Dent 2015;113:623-7. [48] Quante K, Ludwig K, Kern M. Marginal and internal fit of metal-ceramic crowns fabricated with a new laser melting technology. Dent Mater 2008;24:1311-5. [49] Kattadiyil M, Goodacre C, Baba N. CAD/CAM complete dentures: a review of two commercial fabrication systems. J Calif Dent Assoc 2013;41:407-16. [50] Bilgin MS, Erdem A, Aglarci OS, Dilber E. Fabricating complete dentures with CAD/CAM and RP technologies. J Prosthodont 2015;24:576-9. [51] Bilgin MS, Baytaroğlu EN, Erdem A, Dilber E. A review of computer-aided design/computer-aided manufacture techniques for removable denture fabrication. Eur J Dent 2016;10:286-91. [52] Maeda Y, Minoura M, Tsutsumi S, Okada M, Nokubi T. A CAD/CAM system for removable denture. Part I: Fabrication of complete dentures. Int J Prosthodont 1994;7. [53] Sun Y, Lü P, Wang Y. Study on CAD RP for removable complete denture. Comput Methods Programs Biomed 2009;93:266-72. [54] Kim H-A, Lim H-P, Kang H, Yang H, Park S-W, Yun K-D. Fabrication of additive manufacturing interim denture and comparison with conventional interim denture: A case report. J Korean Acad Prosthodont 2019;57:483-9. [55] Alghazzawi TF. Advancements in CAD/CAM technology: Options for practical implementation. J. Prosthodont. Res. 2016;60:72-84. [56] Inokoshi M, Kanazawa M, Minakuchi S. Evaluation of a complete denture trial method applying rapid prototyping. Dent Mater J 2012:1201190221-. [57] Jagger D, Harrison A, Jandt K. The reinforcement of dentures. J Oral Rehabil 1999;26:185-94. [58] Anusavice KJ, Shen C, Rawls HR. Phillips' science of dental materials. Elsevier Health Sciences2012. [59] Diaz-Arnold AM, Vargas MA, Shaull KL, Laffoon JE, Qian F. Flexural and fatigue strengths of denture base resin. J Prosthet Dent 2008;100:47-51. [60] Srinivasan M, Gjengedal H, Cattani-Lorente M, Moussa M, Durual S, Schimmel M, Müller F. CAD/CAM milled complete removable dental prostheses: An in vitro evaluation of biocompatibility, mechanical properties, and surface roughness. Dent Mater J 2018;37:526-33. [61] Steinmassl O, Offermanns V, Stockl W, Dumfahrt H, Grunert I, Steinmassl PA. In Vitro Analysis of the Fracture Resistance of CAD/CAM Denture Base Resins. Materials (Basel) 2018;11. [62] Aguirre BC, Chen JH, Kontogiorgos ED, Murchison DF, Nagy WW. Flexural strength of denture base acrylic resins processed by conventional and CAD-CAM methods. J Prosthet Dent 2020;123:641-6. [63] Alp G, Murat S, Yilmaz B. Comparison of Flexural Strength of Different CAD/CAM PMMA‐Based Polymers. J Prosthodont 2019;28:e491-e5. [64] Prpic V, Schauperl Z, Catic A, Dulcic N, Cimic S. Comparison of Mechanical Properties of 3D-Printed, CAD/CAM, and Conventional Denture Base Materials. J Prosthodont 2020;29:524-8. [65] Regli CP, Kydd WL. A preliminary study of the lateral deformation of metal base dentures in relation to plastic base dentures. J Prosthet Dent 1953;3:326-30. [66] Vallittu PK, Lassila VP. Reinforcement of acrylic resin denture base material with metal or fibre strengtheners. J Oral Rehabil 1992;19:225-30. [67] Takahashi Y, Yoshida K, Shimizu H. Effect of location of glass fiber-reinforced composite reinforcement on the flexural properties of a maxillary complete denture in vitro. Acta Odontol Scand 2011;69:215-21. [68] Takahashi T, Gonda T, Maeda Y. Influence of reinforcing materials on strain of maxillary complete denture. Acta Odontol Scand 2013;71:307-11. [69] Im SM, Huh YH, Cho LR, Park CJ. Comparison of the fracture resistances of glass fiber mesh- and metal mesh-reinforced maxillary complete denture under dynamic fatigue loading. J Adv Prosthodont 2017;9:22-30. [70] Consani R, Domitti SS, Barbosa R, Consani S. Effect of commercial acrylic resins on dimensional accuracy of the maxillary denture base. Braz Dent J 2002. [71] Cheng YY, Cheung WL, Chow TW. Strain analysis of maxillary complete denture with three-dimensional finite element method. J Prosthet Dent 2010;103:309-18. [72] Lassila V, Holmlund I, Koivumaa KK. Bite force and its correlations in different denture types. Acta Odontologica Scandinavica 1985;43:127-32. [73] Rahn AO, Ivanhoe JR, Plummer KD. Textbook of complete dentures. PMPH-USA2009. [74] Yıldız C. ÖYK. Complete Denture Prosthodontics. 2018. [75] Kumar MV, Bhagath S, Jei JB. Historical interest of denture base materials. J Dent Sci 2010;1:103-5. [76] Anderson GC, Schulte JK, Arnold TG. Dimensional stability of injection and conventional processing of denture base acrylic resin. J Prosthet Dent 1988;60:394-8. [77] Anthony D, Peyton F. Dimensional accuracy of various denture-base materials. J Prosthet Dent 1962;12:67-81. [78] Takamata T, Setcos JC. Resin denture bases: review of accuracy and methods of polymerization. Int J Prosthodont 1989;2. [79] Vallittu PK. A review of fiber‐reinforced denture base resins. J Prosthodont 1996;5:270-6. [80] Chen JC, Lacefield WR, Castleberry DJ. Effect of denture thickness and curing cycle on the dimensional stability of acrylic resin denture bases. Dent Mater 1988;4:20-4. [81] ADA.ANSI/ADA Standard No. 139 (ISO 20795-1), Denture Base Polymers. American Dental Association 2013. [82] Srinivasan M, Cantin Y, Mehl A, Gjengedal H, Müller F, Schimmel M. CAD/CAM milled removable complete dentures: an in vitro evaluation of trueness. Clinical oral investigations 2017;21:2007-19. [83] Al‐Dwairi ZN, Tahboub KY, Baba NZ, Goodacre CJ. A comparison of the flexural and impact strengths and flexural modulus of CAD/CAM and conventional heat‐cured polymethyl methacrylate (PMMA). J Prosthodont 2020;29:341-9. [84] Prpic V, Slacanin I, Schauperl Z, Catic A, Dulcic N, Cimic S. A study of the flexural strength and surface hardness of different materials and technologies for occlusal device fabrication. J Prosthet Dent 2019;121:955-9. [85] Takeda Y, Lau J, Nouh H, Hirayama H. A 3D printing replication technique for fabricating digital dentures. J Prosthet Dent 2020;124:251-6. [86] Ruffino AR. Effect of steel strengtheners on fracture resistance of the acrylic resin complete denture base. J Prosthet Dent 1985;54:75-8. [87] Carroll CE, Von Fraunhofer JA. Wire reinforcement of acrylic resin prostheses. J Prosthet Dent 1984;52:639-41. [88] El Ghazali S, Glantz PO, Strandman E, Randow K. On the clinical deformation of maxillary complete dentures. Influence of denture-base design and shape of denture-bearing tissue. Acta Odontol Scand 1989;47:69-76. [89] Uchida H, Kobayashi K, Nagao M. Measurement in vivo of masticatory mucosal thickness with 20 MHz B-mode ultrasonic diagnostic equipment. J Dent Res 1989;68:95-100. [90] Dong J, Zhang FY, Wu GH, Zhang W, Yin J. Measurement of mucosal thickness in denture-bearing area of edentulous mandible. Chin Med J (Engl) 2015;128:342-7. [91] Müller HP, Schaller N, Eger T, Heinecke A. Thickness of masticatory mucosa. J Clin Periodontol 2000;27:431-6. [92] Hirano S. Study on analysis of viscoelastic property of palatal mucoperiosteum--about the creep recovery. Kokubyo Gakkai Zasshi 1992;59:124-41. [93] Takeuchi S, Sato Y, Sato Y, Kitagawa N, Shimodaira O, Hara S, Isobe A. Measurements of viscoelasticity of oral mucosa–establishing a simultaneous measurement method for load and change of the mucosa thickness. Ann Jpn Prosthodont Soc 2010;2:70-7. [94] Hada T, Suzuki T, Minakuchi S, Takahashi H. Reduction in maxillary complete denture deformation using framework material made by computer-aided design and manufacturing systems. J Mech Behav Biomed Mater 2020;103:103514. [95] Ates M, Cilingir A, Sulun T, Sunbuloglu E, Bozdag E. The effect of occlusal contact localization on the stress distribution in complete maxillary denture. J Oral Rehabil 2006;33:509-13. [96] Cagna DR, Massad JJ, Schiesser FJ. The neutral zone revisited: from historical concepts to modern application. J Prosthet Dent 2009;101:405-12. [97] Prombonas A, Vlissidis D. Effects of the position of artificial teeth and load levels on stress in the complete maxillary denture. J Prosthet Dent 2002;88:415-22. [98] Choi M, Acharya V, Berg RW, Marotta J, Green CC, Barbizam JV, White SN. Resinous denture base fracture resistance: effects of thickness and teeth. Int J Prosthodont 2012;25:53-9. [99] Koivumaa KK. On the properties of flexible dentures: A theoretical and experimental survey. Acta Odontologica Scandinavica 1958;16:159-75. [100] Watanabe T. Study of masticatory forces of complete denture wearers. Kokubyo Gakkai Zasshi 1990;57:16-31. [101] Gonda T, Ikebe K, Dong J, Nokubi T. Effect of Reinforcement on Overdenture Strain. J. Dent. Res. 2007;86:667-71. [102] Prombonas AE, Vlissidis DS, Maria PA, Nikolas PA. The stress state of the fraenal notch region in complete upper dentures. Medical Engineering Physics 2012;34:1477-82. [103] Beyli MS, Von Fraunhofer JA. An analysis of causes of fracture of acrylic resin dentures. J Prosthet Dent 1981;46:238-41. [104] Ajaj-Alkordy NM, Alsaadi MH. Elastic modulus and flexural strength comparisons of high-impact and traditional denture base acrylic resins. Saudi Dent J 2014;26:15-8. [105] Parvizi A, Lindquist T, Schneider R, Williamson D, Boyer D, Dawson DV. Comparison of the dimensional accuracy of injection‐molded denture base materials to that of conventional pressure‐pack acrylic resin. J Prosthodont 2004;13:83-9. [106] Steinmassl O, Offermanns V, Stöckl W, Dumfahrt H, Grunert I, Steinmassl P-A. In vitro analysis of the fracture resistance of CAD/CAM denture base resins. Materials 2018;11:401. [107] Lin C-H, Lin Y-M, Lai Y-L, Lee S-Y. Mechanical properties, accuracy, and cytotoxicity of UV-polymerized 3D printing resins composed of Bis-EMA, UDMA, and TEGDMA. J Prosthet Dent 2020;123:349-54. [108] Puebla K, Arcaute K, Quintana R, Wicker RB. Effects of environmental conditions, aging, and build orientations on the mechanical properties of ASTM type I specimens manufactured via stereolithography. Rapid Prototyp J 2012;18:374-88. [109] Chockalingam K, Jawahar N, Chandrasekhar U. Influence of layer thickness on mechanical properties in stereolithography. Rapid Prototyp J 2006. [110] Alt V, Hannig M, Wöstmann B, Balkenhol M. Fracture strength of temporary fixed partial dentures: CAD/CAM versus directly fabricated restorations. Dent Materials 2011;27:339-47. [111] Berli C, Thieringer FM, Sharma N, Muller JA, Dedem P, Fischer J, Rohr N. Comparing the mechanical properties of pressed, milled, and 3D-printed resins for occlusal devices. J Prosthet Dent 2020;124:780-6. [112] Hargreaves A. The prevalence of fractured dentures. A survey. Br Dent J 1969;126:451-5. [113] Tokgoz S, Ozdiler A, Gencel B, Bozdag E, Isik-Ozkol G. Effects of Denture Base Thicknesses and Reinforcement on Fracture Strength in Mandibular Implant Overdenture with Bar Attachment: Under Various Acrylic Resin Types. Eur J Dent 2019;13:64-8. [114] Mathew E, Wain E. Stresses in denture base. Br Dent J 1956;100:167. [115] Hirajima Y, Takahashi H, Minakuchi S. Influence of a denture strengthener on the deformation of a maxillary complete denture. Dent Mater J 2009;28:507-12. [116] Berger G, Pereira LFO, Souza EM, Rached RN. A 3D finite element analysis of glass fiber reinforcement designs on the stress of an implant-supported overdenture. J Prosthet Dent 2019;121:865 e1- e7. [117] Narva KK, Lassila LV, Vallittu PK. The static strength and modulus of fiber reinforced denture base polymer. Dent Mater 2005;21:421-8. [118] Vallittu PK, Lassila VP. Effect of metal strengthener's surface roughness on fracture resistance of acrylic denture base material. J Oral Rehabil 1992;19:385-91.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81245-
dc.description.abstract"實驗目的:本研究目的在檢測樹脂熱聚合加壓及注射方式與數位化技術電腦設計切削及3D列印所製作之下顎全口活動義齒基底及咬合堤,在受力後的應變分布,及3D列印所製作之下顎咬合堤強化加工後對應變分布的影響。 材料與方法:基於本研究團隊[1]先前研究製作出的下顎鈷鉻合金( cobalt-chrome alloy )金屬參考模,以透明壓克力樹脂翻製成測試模型,並以2 mm厚之矽膠印模材製作出軟組織墊片置於測試模型上,用以模擬下顎無牙嵴之黏膜構造。而後,依據金屬參考模之組織面,分別採用下列三種製程、各二種材料( 共計六種材料 )製備出下顎全口活動義齒基底及咬合堤:(1) 樹脂熱聚合製程[(注射成型( injection molding, IM group )、加壓成型( compression molding, CM group )];(2) CAD/CAM切削製程( 由樹脂塊POLYWAX完成的,簡稱CCM-P group;由樹脂塊YAMAHACHI完成的,簡稱CCM-Y group );(3) 3D列印製程( 由可列印樹脂( printable resin )BV005或BB base完成的,簡稱3DP-B group;由可列印樹脂( printable resin )Nextdent完成的,簡稱3DP-N group ),每種材料各包含五個樣品,共計30個下顎全口活動義齒基底及30個咬合堤以供測試。義齒基底及咬合堤完成後,於拋光面黏貼應變規( strain gauge ),以測得CH1:唇繫帶切跡( labial notch )、CH2:舌繫帶切跡( lingual notch )、CH3:左側頰繫帶切跡( left buccal notch )、CH4 CH5:左側齒槽脊前緣及後緣( left anterior and posterior ridge crest )、CH6:左側頰棚( left buccal shelf )、CH7:左側下頷舌骨脊( left mylohyoid ridge )、CH8 CH9:縱向及橫向臼齒後墊( left retromolar pad – axial and transverse )等九處不同走向或位置之受力應變。就義齒基底及咬合堤受力後之應變分布,採取之測試方式為:將測試模型固定於萬能試驗機( universal testing machine )上,並將待測試之義齒基底放置於測試模型上,施以5公斤重垂直定力後,記錄應變數值,完成初始測量;而在3D列印咬合堤( 3DP-B group、3DP-N group )金屬強化加工後之受力應變測試方法為:在咬合堤的舌側拋光面切削出平滑的長方形凹槽,用鎳鉻金屬鑄造出符合長方形凹槽的金屬支架並黏著在咬合堤,再按照前述咬合堤受力應變之測試方法,完成金屬強化後之應變測量。本研究之統計方式使用Mann-Whitney U test進行樹脂熱聚合、CAD/CAM切削與3D列印三種製程中兩種不同材料的比較,及相同材料的義齒基底及咬合堤的比較。另以Kruskal -Wallis test進行三種製程間的比較,及咬合堤的樹脂熱聚合、CAD/CAM切削與3D列印金屬強化加工後的比較,同時採Dunn’s test進行事後檢定( post-hoc test )。最後以Wilcoxon signed rank sum test來評估3D列印咬合堤金屬強化加工前後應變值是否有差異,有意義水準設於p小於0.05。 實驗結果:無論是義齒基底或咬合堤受力應變測量時,同種製程之兩種材料大多呈現同為拉伸應變( Tensile strain, 簡稱拉應變 )或是壓縮應變( compressive strain, 簡稱壓應變 )等相類似的應變分佈,但相近程度會受到不同製程影響,樹脂熱聚合製程及CAD/CAM切削製程內的兩種不同材料應變分佈相當接近,在3D列印製程內的兩種不同材料有最大的差異,此現象在義齒基底更為明顯。無論是義齒基底或咬合堤受力應變測量時,在三種製程中,樹脂熱聚合製程與CAD/CAM切削製程的受力後應變分佈較接近,而3D列印製程與另外兩種製程間差異較大且應變較大,此現象在義齒基底更為明顯。樹脂熱聚合製程及CAD/CAM切削製程義齒基底在九個位置中的最大應變皆出現在義齒中線,分別依序出現在舌繫帶切跡( CH2 )及唇繫帶切跡( CH1 ),3D列印製程義齒基底的3DP-B group和3DP-N group在九個位置中最大應變則分別出現在左側下頷舌骨脊( CH7 )和左側齒槽脊前緣( CH4 )。同一種材料的義齒基底和咬合堤相比較時,在同一個位置上,義齒基底的應變大多大於咬合堤的應變,且義齒基底資料離散性也較大,義齒基底和咬合堤在九個位置中最大應變位置有關聯性,除3DP-N group外,其餘五種材料的咬合堤在九個位置中前兩大應變位置都有左側頰繫帶切跡( CH3 )以及該種材料義齒基底在九個位置中最大應變位置。而最後的金屬強化測試,結果顯示3D列印製程咬合堤在金屬加工後會出現受力後應變下降的趨勢。 結論:樹脂熱聚合製程、CAD/CAM切削製程及3D列印製程的義齒基底及咬合堤相比,樹脂熱聚合及CAD/CAM切削的受力後應變分佈較接近,且製程內的兩種不同材料應變分佈也較接近。隨著材料體積的增加,無論何種製程,咬合堤的應變數值皆小於義齒基底。3D列印咬合堤經金屬強化後,會出現受力後應變下降的趨勢。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:38:24Z (GMT). No. of bitstreams: 1
U0001-2807202110455500.pdf: 17984895 bytes, checksum: 7a74f99720dff8d806b423c43ea872f5 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"目 錄 中 文 摘 要 I Abstract V 目 錄 VIII 第一章 文獻回顧 1 1.1 傳統樹脂熱聚合製程製作全口活動義齒之方法及缺點 2 1.2 應力造成之義齒破裂及應變測量 4 1.3 數位製程在全口活動義齒的應用 5 1.3.1 以減法工程製作義齒之流程及優缺點 6 1.3.2 以加法工程製作義齒之流程及優缺點 8 1.3.3 數位製程之機械性質 9 1.4 全口活動義齒之金屬強化測試 10 第二章 研究動機與目的 12 第三章 材料與方法 13 3.1 實驗用模型製作 14 3.2 義齒基底( Denture base ) 15 3.2.1 實驗用義齒基底製作 15 3.2.2 應變規黏著於義齒基底拋光面 17 3.2.3 施力設備之設置及應變測試 19 3.3 咬合堤( Occlusal rim ) 20 3.3.1 實驗用咬合堤製作 20 3.3.2 應變規黏著於咬合堤拋光面 23 3.3.3 施力設備之設置及應變測試 23 3.4 3D列印咬合堤強化後應變測試 23 3.5 實驗數據分析及統計方法 25 第四章 實驗結果 27 4.1 義齒基底應變測試 27 4.1.1 義齒基底應變測試的組內比較 27 4.1.2 義齒基底應變測試的組間比較 34 4.2 咬合堤應變測試 38 4.2.1 咬合堤應變測試的組內比較 39 4.2.2 咬合堤應變測試的組間比較 45 4.2.3 同材料的義齒基底及咬合堤應變測試比較 48 4.3 3D列印咬合堤金屬強化應變測試: 63 第五章 討論 67 5.1 實驗模型的製作 69 5.2 義齒基底及咬合堤之設計及應變規測量位置的選擇 70 5.3 樹脂熱聚合製程之義齒基底及咬合堤的應變分布 72 5.4 CAD/CAM切削製程之義齒基底及咬合堤的應變分布 74 5.5 3D列印製程之義齒基底及咬合堤的應變分布 75 5.6 不同製程之義齒基底及咬合堤應變差異的探討 76 5.7 同材料之義齒基底及咬合堤應變差異的探討 78 5.8 金屬強化加工對於3D列印咬合堤應變差異的探討 80 5.9 實驗的誤差與限制 82 第六章 結論 84 第七章 未來展望 85 參考文獻 151 圖目錄 圖 一、鈷鉻合金金屬下顎無牙參考模型 86 圖 二、金屬模型之3D數位檔 86 圖 三、3D數位設計程式中之軟組織墊片 ( soft tissue spacer ) 87 圖 四、3D列印出之軟組織墊片 ( soft tissue spacer ) 87 圖 五、包埋後之金屬石膏模及石膏陰模 88 圖 六、金屬模移除後之石膏模及軟組織墊片放置後之石膏陰模 89 圖 七、加壓成型及煮聚完成後之測試模型 90 圖 八、將軟組織墊片移除之測試模型 91 圖 九、將石膏複製之金屬模型陰模覆蓋於測試模型上 92 圖 十、修整完成之測試模型 93 圖 十一、將下顎金屬模型3D檔案匯入至3shape電腦設計軟體分析 94 圖 十二、3shape電腦軟體設計厚度2mm之義齒基底 94 圖 十三、PMMA resin (Luciton 199, Dentsply Trubyte, York, PA) 95 圖 十四、PMMA resin (IvoBase High Impact , Ivoclar Vivadent AG, Schaan, Liechtenstein) 95 圖 十五、CAD/CAM PMMA disc (Polywax, BiLKiM Co.LTD, Turkey) 直徑98x厚度25mm 96 圖 十六、CAD/CAM PMMA disc (YAMAHACHI , YAMAHACHI DENTAL MFG., CO, Japan) 直徑98.5x厚度25mm 96 圖 十七、3D printable resin (MiiCraft BV-005 resin, Young Optics Inc., Hsinchu, Taiwan) 97 圖 十八、3D printable resin (NextDent base resin, NextDent Co., Seosterberg, Netherland) 97 圖 十九、CAD/CAM五軸車削機 (CORITEC 250i, imes-icore GmbH, Eiterfeld, Germany) 98 圖 二十、3D列印機 (MiiCraft 125, Young Optics Inc., Hsinchu, Taiwan) 98 圖 二十一、以putty index將CAD/CAM (POLYWAX)義齒基底及模型一起包覆以複製義齒基底外型 99 圖 二十二、灌入溶蠟後製作義齒基底及咬合堤蠟型 99 圖 二十三、 加壓式樹脂熱聚合機 (Prothyl prolimer, Zhermack, Rovigo, ltaly) 100 圖 二十四、注射式樹脂熱聚合機 (SR Ivocap , Ivoclar Vivadent AG, Schaan, Liechtenstein) 100 圖 二十五、待測試義齒基底及咬合堤分組說明圖 101 圖 二十六、Compression molding (CM, Lucition 199)義齒基底 102 圖 二十七、Injection molding (IM, Ivobase)義齒基底 102 圖 二十八、CAD/CAM milled (POLYWAX)義齒基底 103 圖 二十九、CAD/CAM milled (YAMAHACHI)義齒基底 103 圖 三十、3D printing (BV005)義齒基底 104 圖 三十一、3D printing (NextDent)義齒基底 104 圖 三十二、義齒基底的應變規黏貼位置 105 圖 三十三、應變規專用黏膠( Stain gauge cement, CC-33A, Kyowa Co. Japan ) 105 圖 三十四、單軸及雙軸電子應變規( electronic strain gauge, Kyowa Co. Japan ) 106 圖 三十五、以熱塑成型片記錄應變規黏貼位置 106 圖 三十六、應變規黏著完成之六種材質之義齒基底 107 圖 三十七、將應變規接上訊號放大器 107 圖 三十八、測試模型固定於Universal testing machine之底座 108 圖 三十九、以Universal testing machine施以垂直五公斤定力 108 圖 四十、確認加壓裝置和義齒基底三個凸點同時且均勻接觸 109 圖 四十一、測試模型桌掃檔 109 圖 四十二、金屬模型封閉( solid )設計檔 110 圖 四十三、3shape電腦軟體設計咬合堤 110 圖 四十四、咬合堤設計檔 111 圖 四十五、3D printable resin (BB Base, Enlighten Materials Co., Ltd., Taipei, Taiwan) 111 圖 四十六、3D printable resin (NextDent Denture 3D+, NextDent Co., Seosterberg, Netherland) 112 圖 四十七、以putty index將CAD/CAM (POLYWAX)咬合堤及模型一起包覆以複製咬合堤外型 112 圖 四十八、灌入溶蠟後製作義齒基底及咬合堤蠟型 113 圖 四十九、Compression molding (CM, Lucition 199)咬合堤 113 圖 五十、Injection molding (IM, Ivobase)咬合堤 114 圖 五十一、CAD/CAM milled (POLYWAX)咬合堤 114 圖 五十二、CAD/CAM milled (YAMAHACHI)咬合堤 115 圖 五十三、3D printing (BB base)咬合堤 115 圖 五十四、3D printing ( NextDent )咬合堤 116 圖 五十五、咬合堤的應變規黏貼位置 117 圖 五十六、應變規黏著完成之六種材質之咬合堤 118 圖 五十七、確認加壓裝置和咬合堤咬合平面同時且均勻接觸 118 圖 五十八、用油性筆畫記之咬合堤 119 圖 五十九、直機七號鎢鋼圓形車針( No.7 round carbide bur, Dadong co., Kaohsiung, Taiwan ) 119 圖 六十、長方形凹槽修整後之咬合堤 120 圖 六十一、模型用樹脂支架 121 圖 六十二、含76%鎳及14%鉻的鎳鉻金屬( Argeloy NP, Argen , San Diego, USA ) 121 圖 六十三、金屬支架 122 圖 六十四、通用黏著劑( monobond N, Ivoclar Vivadent AG, Schaan, Liechtenstein ) 122 圖 六十五、甲基丙烯酸甲酯樹脂( UNIFAST Trad, GC Corporation, Tokyo , Japan ) 123 圖 六十六、強化後之咬合堤 123 圖 六十七、樹脂熱聚合製程義齒基底受力後呈現之應變 124 圖 六十八、CAD/CAM切削製程義齒基底受力後呈現之應變 124 圖 六十九、3D printing製程義齒基底受力後呈現之應變 125 圖 七十、三種製程共六種不同材質義齒基底受力後呈現之應變 126 圖 七十一、樹脂熱聚合製程咬合堤受力後呈現之應變 127 圖 七十二、CAD/CAM切削製程咬合堤受力後呈現之應變 127 圖 七十三、3D printing咬合堤受力後呈現之應變 128 圖 七十四、三種製程共六種不同材質咬合堤受力後呈現之應變 129 圖 七十五、CM group義齒基底及咬合堤受力後呈現之應變 130 圖 七十六、IM group義齒基底及咬合堤受力後呈現之應變 130 圖 七十七、CCM-P group義齒基底及咬合堤受力後呈現之應變 131 圖 七十八、CCM-Y group義齒基底及咬合堤受力後呈現之應變 131 圖 七十九、3DP-B group義齒基底及咬合堤受力後呈現之應變 132 圖 八十、3DP-N group義齒基底及咬合堤受力後呈現之應變 132 圖 八十一、3DP-B group咬合堤及金屬強化後受力後呈現之應變 133 圖 八十二、3DP-N group咬合堤及金屬強化後受力後呈現之應變 133 表目錄 表 一、Luciton 199的成分組成與機械性質 134 表 二、Ivobase的成分組成與機械性質 135 表 三、應變規黏貼位置 136 表 四、樹脂熱聚合製程( CM group )義齒基底受力後之應變,單位( µε ) 136 表 五、樹脂熱聚合製程( IM group )義齒基底受力後之應變,單位( µε ) 137 表 六、CAD/CAM milled製程( CCM-P group )義齒基底受力後之應變,單位( µε ) 137 表 七、CAD/CAM milled製程( CCM-Y group )義齒基底受力後之應變,單位( µε ) 137 表 八、3D printing製程( 3DP-B group )義齒基底受力後之應變,單位( µε ) 138 表 九、3D printing製程( 3DP-N group )義齒基底受力後之應變,單位( µε ) 138 表 十、樹脂熱聚合製程義齒基底兩種材料間的比較,單位( µε )。Mann-Whitney U test 139 表 十一、CAD/CAM milled製程義齒基底兩種材料間的比較,單位( µε )。Mann-Whitney U test 139 表 十二、3D printing製程義齒基底兩種材料間的比較,單位( µε )。Mann-Whitney U test 139 表 十三、三種製程義齒基底間的比較,單位( µε )。Kruskal -Walist test (Dunn’s test for post hoc test) 140 表 十四、樹脂熱聚合製程( CM group )咬合堤受力後之應變,單位( µε ) 141 表 十五、樹脂熱聚合製程( IM group )咬合堤受力後之應變,單位( µε ) 141 表 十六、CAD/CAM milled製程( CCM-P group )咬合堤受力後之應變,單位( µε ) 141 表 十七、CAD/CAM milled製程( CCM-Y group )咬合堤受力後之應變,單位( µε ) 142 表 十八、3D printing製程( 3DP-B group )咬合堤受力後之應變,單位( µε ) 142 表 十九、3D printing製程( 3DP-N group )咬合堤受力後之應變,單位( µε ) 142 表 二十、樹脂熱聚合製程咬合堤兩種材料間的比較,單位( µε )。Mann-Whitney U test 143 表 二十一、CAD/CAM milled製程咬合堤兩種材料間的比較,單位( µε )。Mann-Whitney U test 143 表 二十二、3D printing製程咬合堤兩種材料間的比較,單位( µε )。Mann-Whitney U test 144 表 二十三、三種製程咬合堤間的比較,單位( µε )。Kruskal -Walist test (Dunn’s test for post hoc test) 145 表 二十四、CM group義齒基底及咬合堤間的比較,單位( µε )。Mann-Whitney U test 146 表 二十五、IM group義齒基底及咬合堤間的比較,單位( µε )。Mann-Whitney U test 146 表 二十六、CCM-P group義齒基底及咬合堤間的比較,單位( µε )。Mann-Whitney U test 147 表 二十七、CCM-Y group義齒基底及咬合堤間的比較,單位( µε )。Mann-Whitney U test 147 表 二十八、3DP-B group義齒基底及咬合堤間的比較,單位( µε )。Mann-Whitney U test 148 表 二十九、3DP-N group義齒基底及咬合堤間的比較,單位( µε )。Mann-Whitney U test 148 表 三十、金屬強化後的3DP-B group咬合堤受力後之應變,單位( µε ) 148 表 三十一、金屬強化後的3DP-N group咬合堤受力後之應變,單位( µε ) 149 表 三十二、金屬強化前及強化後的3D printing咬合堤間的比較,單位( µε )。Wilcoxon Signed-Rank test 149 表 三十三、金屬強化後之3D列印與另外兩製程咬合堤間的比較,單位( µε )。Kruskal -Walist test (Dunn’s test for post hoc test) 150"
dc.language.isozh-TW
dc.subject強化加工測試zh_TW
dc.subjectCAD/CAM切削zh_TW
dc.subject3D列印zh_TW
dc.subject熱聚合樹脂zh_TW
dc.subject下顎全口活動義齒zh_TW
dc.subject應變zh_TW
dc.subject3D printingen
dc.subjectMetal reinforcementen
dc.subjectStrain distributionen
dc.subjectMandibular dentureen
dc.subjectHeat-polymerized resinen
dc.subjectCAD/CAM milleden
dc.title加壓及注射式熱聚合樹脂與數位切削列印技術製成下顎義齒之應變分布評估 - 體外實驗zh_TW
dc.title"Evaluation of the strain distribution of mandibular denture fabricated by compression molded, injection molded, CAD/CAM milled and 3D printed techniques. - An In Vitro Study"en
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.coadvisor林立德(Li-Deh Lin)
dc.contributor.oralexamcommittee洪志遠(Hsin-Tsai Liu),(Chih-Yang Tseng)
dc.subject.keywordCAD/CAM切削,3D列印,熱聚合樹脂,下顎全口活動義齒,應變,強化加工測試,zh_TW
dc.subject.keywordCAD/CAM milled,3D printing,Heat-polymerized resin,Mandibular denture,Strain distribution,Metal reinforcement,en
dc.relation.page158
dc.identifier.doi10.6342/NTU202101836
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-07-30
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-2807202110455500.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
17.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved