Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81237
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor張育森(Yu-Seng Chang)
dc.contributor.authorNelson Yu-Tien Lien
dc.contributor.author李有田zh_TW
dc.date.accessioned2022-11-24T03:37:57Z-
dc.date.available2021-08-11
dc.date.available2022-11-24T03:37:57Z-
dc.date.copyright2021-08-11
dc.date.issued2021
dc.date.submitted2021-07-30
dc.identifier.citation1. 高毓斌、黃松根. 1993. 牛樟之扦插繁殖. 林業試驗所研究季刊 8:71-388. 2. Abd Allah, A.M., K.O. Burkey, and A.M. Mashaheet. 2018. Reduction of plant water consumption through anti-transpirants foliar application in tomato plants (Solanum lycopersicum L). Sci. Hort. 235:373-381. 3. Abeles, F.B., P.W. Morgan, and M.E. Saltveit. 1992. Ethylene in plant biology (2nd edn). Acad. Press, N.Y. 4. Abod, S.A. and A.D. Webster. 1990. Shoot and root pruning effects on the growth and water relations of young Malus, Tilia and Betula transplants. J. Hort. Sci. 65:451-459. 5. Abod, S.A. and A.D. Webster. 1991. Carbohydrates and their effects on growth and establishment of Tilia and Betula: I. Seasonal changes in soluble and insoluble carbohydrates. J. Hort. Sci. 66:235-246. 6. Abou-Khaled, A., R.M. Hagan, and D.C. Davenport. 1970. Effects of kaolinite as a reflective antitranspirant on leaf temperature, transpiration, photosynthesis, and water-use efficiency. Water Resource. Res. 6:280-289. 7. Abrams, M.D. and M.E. Kubiske. 1990. Photosynthesis and contrasting sites in central Pennsylvania. Functional ecology relations during drought in Acer rubrum L. genotypes from water. Functional. Ecol. 5:727-733. 8. Abusrewil, G.S. and E.F. Larsen. 1981. Tree fruit nursery stock defoliation: Carbohydrate levels pre- and post storage and shoot length of ‘Delicious’ apple hand-stripped or treated with ‘Dupont WK surfactant’ and Ethephon. Acta Hort. 120:83-88. 9. Acevedo, F.E., M. Jiménez, J.P. Pimentel, and P. Benavides. 2020. Spatial distribution of mealybugs (Hemiptera: Coccomorpha: Coccoidea) in the root system of pruned and non-pruned Coffea arabica trees. J. Econ. Entomol. 113:172-184. 10. Ahkami, A.H., S. Lischewski, K. Haensch, S. Porfirova, J. Hofmann, H. Rolletschek, M. Melzer, P. Franken, B. Hause, and U. Druege. 2009. Molecular physiology of adventitious root formation in Petunia hybrida cuttings: involvement of wound response and primary metabolism. New Phytol. 181:613-625. 11. Ahkami, A.H., M. Melzer, M.R. Ghaffari, S. Pollmann, M.G. Javid, M.F. Shahinnia, M.R. Hajirezaei, and U. Druege. 2013. Distribution of indole-3-acetic acid in Petunia hybrida shoot tip cuttings and relationship between auxin transport, carbohydrate metabolism and adventitious root formation. Planta 238:499-517. 12. Alder, N., J.S. Sperry, and W.T. Pockman. 1996. Root and stem xylem embolism, stomatal conductance, and leaf turgor in Acer grandidentatum populations along a soil moisture gradient. Oecologia. 105: 293-301. 13. Altamura, M.M. 1996. Root histogenesis in herbaceous and woody explants cultured in vitro.: A critical review. Agronomy. 16:589-602. 14. Amthor, J.S. 2000. The McCree–de Wit–Penning de Vries–Thornley respiration paradigms: 30 years later. Annu. Bot. 86:1-20 15. Andersen, L., H.N. Rasmussen, and P.E. Brander. 2000. Regrowth and dry matter allocation in Quercus robur (L.) seedlings root pruned prior to transplanting. New For. 19:205-214. 16. Ao, J., J. Fu, J. Tian, X. Yan, and H. Liao. 2010. Genetic variability for root morph-architecture traits 6 and root growth dynamics as related to phosphorus efficiency in soybean. Functional Plant Biol. 37:304-312. 17. Archambault, D.J., X. Li, K.R. Foster, and T.R. Jack. 2006. A screening test for the determination of ethylene sensitivity. Environ Monit Assess 115:509-530. 18. Arnold, M.A. and D.K. Struve. 1989. Green ash establishment following transplant. J. Amer. Soc. Hort. Sci. 114:591-595. 19. Asbjornsen, H., J.L. Campbell, K.A. Jennings, M.A. Vadeboncoeur, C. McIntire, P.H. Templer, et. al. 2018. Guidelines and considerations for designing field experiments simulating precipitation extremes in forest ecosystems. Methods Eco. Evol. 9:2310-2325. 20. Atkinson, C.J., R.M. Brennan, and H. G. Jones. 2013. Declining chilling and its impact on temperate perennial crops. Environ. Expt. Bot. 91:48–62. 21. Bakry, B.A., F.M. Ibrahim, M.M.S. Abdallah, and H.M.S. El-Bassiouny. 2016. Effect of banana peel extract or tryptophan on growth, yield and some biochemical aspects of quinoa plants under water deficit. Intl J. Pharm Tech Res. 9:276-287. 22. Baldocchi, D., E. Falge, and K. Wilson. 2001. A spectral analysis of biosphere–atmosphere trace gas flux densities and meteorological variables across hour to multi-year time scales. Agr. For. Meteorol. 107:1-27. 23. Ballester, A., C.S. Vidal, J.L. Fernández-Lorenzo, and A.M. Vieitez. 1999. Anatomical and biochemical events during in vitro rooting of microcuttings from juvenile and mature phases of chestnut. Annu. Bot. 83:619-629. 24. Batis, D.R., H.P. Singh, M. Kaur, K. Kohli, and S.S. Yadav. 2008. Caffeine affects adventitious rooting and causes biochemical changes in the hypocotyl cuttings of mung bean (Phaseolus aureus Roxb.). Acta Physiol. Plant 30:401-405. 25. Baurens, F., J. Nicolleau, T. Legavre, J.L. Verdeil, and O. Monteuis. 2004. Genomic DNA methylation of juvenile and mature Acacia mangium micropropagated in vitro with reference to leaf morphology as a phase change marker. Tree Physiol. 24:401-407. 26. Bellini, C., D. Pacurar, and I. Perrone. 2014, Adventitious roots and lateral roots, similarities and differences. Annu. Rev. Plant Biol. 65:17.1-17.28. 27. Bergonzi, S. and M. Albani. 2011. Reproductive competence from an annual and a perennial perspective. J. Expt. Bot. 62:4415-4422. 28. Bernier, P.Y., M.S. Lamhamedi, D.G. Simpson. 1995. Shoot: root ratio is of limited use in evaluating the quality of container conifer stock. Tree Planters’ Notes. 46:102-106. 29. Bingham, I.J. and L. Wu. 2011. Simulation of wheat growth using the 3D root architecture model SPACSYS: validation and sensitivity analysis. Euro. J. Agron 34:181-189. 30. Bisognin, D., K. Lencina, L. da Luz, F. Fleig and D. Gazzana. 2018. Adventitious rooting competence and rescue of adult mate plants by cuttings. Revista Árvore. 42:e420312. https://doi.org/10.1590/0034-737X202168020007. 31. Bittelli, M., M. Flury, G.S. Campbell, and E.J. Nichols. 2001. Reduction of transpiration through foliar application of chitosan. Agr. For. Meteorol. 107:167-175. 32. Bond, B.J. 2000. Age-related changes in photosynthesis of woody plants. Trends Plant Sci. 5:349–353. 33. Bond, B.J., N.M. Czarnomski, C. Cooper, M.E. Day and M. Greenwood. 2007. Developmental decline in height growth in Douglas-fir. Tree Physiol. 27:441-453. 34. Bonga, J.M., K.K. Klimaszewska and P. von Aderkas. 2010. Recalcitrance in clonal propagation, in particular of conifers. Plant Cell Tissue Organ Cult. 100:241-254. 35. Borghetti, M., S. Cocco, M. Lambardi, and S. Raddi, 1989. Response to water stress of Italian alder seedlings from diverse geographic origins. Can. J. For. Res. 19:1071-1076. 36. Brito, C., L.T. Dinis, J. Moutinho-Pereira, and C. Correia. 2019. Kaolin, an emerging tool to alleviate the effects of abiotic stresses on crop performance. Scientia Hort. 250:310-316. 37. Brown, P. and S. Saa. 2015. Biostimulants in agriculture. Front. Plant Sci. 6:671. 38. Buckstrup, M.J. and N.L. Bassuk. 2000. Transplanting success of ball-and-burlapped versus bare-root trees in the urban landscape. J. Arboricult. 26:298-308. 39. Burdett, A.N. 1990. Physiological processes in plantation establishment and the development of specifications for forest planting stock. Can. J. For. Res. 20:415-427. 40. Buttrose, M. S. and M.G. Mullins. 1968. Proportional reduction in shoot growth 65,322-326. 170 M. B. JACKSON of grape vines with root systems maintained at constant relative volumes by repeat pruning. Austral. J. Biol. Sci. 21:1095-1101. 41. Cakmak, I. 2005. The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J. Plant Nutr. Soil Sci. 168:521-530. 42. Cantore, V., B. Pace, and R. Albrizio. 2009. Kaolin-based particle film technology affects tomato physiology, yield and quality. Environ. Exp. Bot. 66:279-288. 43. Cavero, J., E.T. Medina, M. Puig, and A. Martínez‐Cob. 2009. Sprinkler irrigation changes maize canopy microclimate and crop water status, transpiration, and temperature. Agron. J. 101:854-864. 44. Cederholm, H.M. and P. N. Benfey. 2015. Distinct sensitivities to phosphate deprivation suggest that RGF peptides play disparate roles in Arabidopsis thaliana root development. New Phytol. 207:683-691. 45. Ceulemans, R., R. Gabriele, and I. Impens. 1983. Antitranspirants effects of transpiration, net CO2 exchange rate and water use efficiency of azalea. Scientia Hort. 19:125-131. 46. Chen, Y.L., V.M. Dunbabin, A.J. Diggle, K.H.M. Siddique, and Z. Rengel. 2011. Development of a novel semi-hydroponic phenotyping system for studying root architecture. Functional Plant Biol. 38:355-63. 47. Cimato, A., C. Cantini, and B. Sillari. 1990. A method of pruning for the recovery of olive productivity. Intl. symp. on olive growing. Acta Hort. Cordoba. P. 251-254. 48. Cochard, H., N. Bréda, A. Granier, G. Aussenac. 1992. Vulnerability to air embolism of three European oak species (Quercus petraea (Matt) Liebl, Q. pubescens Wild, Q. robur L). Annu. For. Sci. 49(3):225-233. 49. Creelman, R., M. Tierney, and J. Mullet. 1992. Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression Proc. Natl Acad. Sci. 89:4938-4941 50. Crisosto, C., D. Grantz, and F.C. Meinzer. 1992. Effects of water deficit on flower opening in coffee (Coffea arabica L.). Tree physiol. 10:127-139. 51. Da Costa, C.T., M.R. De Almeida, C. Ruedell, J. Schwambach, F. Maraschin, and A. Fett-Neto. 2013. When stress and development go hand in hand: main hormonal controls of adventitious rooting in cuttings. Front. Plant Sci. 4(133):1-19 52. Darlington. A., K. Vishnevetskaia and T.J. Blake. 1996. Growth enhancement and anti-transpirant activity following seed treatment with a derivative of 5-hydroxy benzimidazole (Ambiol) in four drought-stressed agricultural species. Physiol Plant 96:217-222. 53. D'Orangeville, L., J. Maxwell, D. Kneeshaw, N. Pederson, L. Duchesne, T. Logan, D. Houle, D. Arseneault, C.M. Beier, N. Coli, and D.A. Bishop. 2018. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought. Global Change Biol. 24:2339-2351. 54. Dai, A.G. 2013. Increasing drought under global warming in observations and models. Nature Climate Change 3:52-58. 55. Damm, A., E. Paul-Limoges, E. Haghighi, C. Simmer, F. Morsdorf, F.D. Schneider, C. van der Tol, M. Migliavacca, and U. Rascher. 2018. Remote sensing of plant-water relations: An overview and future perspectives J. plant physiol. 227:3-19. 56. Day, M.E., M.S. Greenwood, and A.S. White. 2001. Age related changes in foliar morphology and physiology in red spruce and their influence on declining photosynthetic rates and productivity with tree age. Tree Physiol. 21:1195-1204. 57. Day, M.E., M.S. Greenwood, and C. Diaz-Sala. 2002. Age-and-size-related trends in woody plant shoot development: regulatory pathways and evidence for genetic control. Tree Physiol. 22:507-513. 58. Day, M.E. and M. S. Greenwood. 2011. Regulation of ontogeny in temperate conifers. p. 91-119. In: Size-and-age-related changes in tree structure and function. Springer. 59. Day, S.D., P.E. Wiseman, S.B. Dickinson, and J.R. Harris. 2010. Contemporary concepts of root system architecture of urban trees. Arboricult. Urban For. 36:149-159. 60. del Amor FM, P. Cuadra-Crespo, D.J. Walker, J.M. Cámara, and R. Madrid. 2010. Effect of foliar application of antitranspirant on photosynthesis and water relations of pepper plants under different levels of CO2 and water stress. J. Plant Physiol. 167:1232-1238. 61. Denaxa, N.K., P.A. Ropussos, T. Damvakaris, and V. Stournaras. 2012. Comparative effects of exogenous glycine betaine, kaolin clay particles and Ambiol on photosynthesis, leaf sclerophylly indexes and heat load of olive cv. Chondrolia Chalkidikis under drought. Scientia Hort. 137:87-94. 62. DeYoe, D.R. 1986. Guidelines for handling seeds and seedlings to ensure vigorous stock. Forest Research Laboratory. Oregon St. Univ. Lab. Corvallis. Special Publ. 13:24. 63. Diaz-Sala, C.; K.W. Hutchison, B. Goldfarb, and M.S. Greenwood. 1996. Maturation-related loss in rooting competence by loblolly pine stem cuttings: The role of auxin transport, metabolism and tissue sensitivity. Physiol. Plant. 97:481-490. 64. Dick, J.M. and R. Leakey. 2006. Differentiation of the dynamic variables affecting rooting ability in juvenile and mature cuttings of cherry (Prunus avium). J. Hort. Sci. Biotechnol. 81:296-302. 65. Dong, C., G. Wang, M. Du, C. Niu, P. Zhang, X. Zhang, D. Ma, F. Ma, and Z. Bao. 2020. Biostimulants promote plant vigor of tomato and strawberry after transplanting. Scientia Hort. 267:109355. https://doi.org/10.1016/j.scienta.2020.109355. 66. Dorlodot, S. D., B. Forster, L. Pagès, A. Price, A., X. Draye, et al. 2007. Root system architecture: Opportunities and constraints for genetic improvement of crops. Trends Plant Sci. 12(10):474-481. 67. Dror, D., G. Weitzman, I. Rog, T. Kafri-Amit, and T. Klein. 2020. Physiological effects of mature tree transplanting characterize the roles of the soil-root interface in the field. Agr. For. Meteorol. 295:108192. https://doi.org/10.1016/j.agrformet.2020.108192. 68. Druege, U. and R. Kadner. 2008. Response of post-storage carbohydrate levels in pelargonium cuttings to reduced air temperature during rooting and the relationship with leaf senescence and adventitious root formation. Postharv. Biol. and Technol. 47:126-135. 69. Dubrovsky, J., M. Sauer, S. Napsucialy-Mendivil, M. Ivanchenko, J. Frimi, S. Shishkova, J. Celenza, and I. Benkova. 2008. Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc. Natl. Acad. Sci. 105:8790-8794. 70. du Jardin, P. 2015. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hort. 196:3-14. 71. Dunbabin, V., Z. Rengel, and A. Diggle. 2003. Root architecture and nutrient capture–the complex riddle of what constitutes optimality of root form and function. p. 2-16. In: Innovative soil-plant systems for sustainable agricultural practices. OECD. Paris. 72. Eldridge, K., J. Davidson, C. Harwood, and G. Wyk. 1994. Eucalypt domestication and breeding. P. 308. In: Eucalypt Domestication and Breeding. Clarendon Press. 73. Elfving, D.C. and D.B. Visser. 2005. Cyclanilide induces lateral branching in apple trees. HortScience. 40(1):119-122. 74. Elfving, D.C. and D.B. Visser. 2006. Timing cyclanilide and cytokinin applications in the nursery to obtain desired lateral branch height in apple and sweet cherry trees. HortScience. 41(5):1238-1242. 75. Fathi, A. and D.B. Tari. 2016. Effect of drought stress and its mechanism in plants. Intl J. Life Sci. 10:1-6. 76. Franks, P.J., I.R. Cowan, and G.D. Farquhar. 1997. The apparent feedforward response of stomata to air vapour pressure deficit: information revealed by different experimental procedures with two rainforest trees. Plant, Cell Environ. 20:142-145. 77. Fanourakis, D., S.M.P. Carvalho, D.P.F. Almeida, and E. Heuvelink. 2011. Avoiding high relative air humidity during critical stages of leaf ontogeny is decisive for stomatal functioning. Physiol. Plantarum, 142:274-286. 78. Fanourakis, D.,Hyldgaard, H. Giday, D. Bouranis, O. Körner, K.L. Nielsen, and C.O. Otto. 2017. Differential effects of elevated air humidity on stomatal closing ability of Kalanchoë blossfeldiana between the C3 and CAM states. Environ. Expt. Bot. 143:115-124. 79. Fanourakis, D., H. Giday, B. Hyldgaard, D. Bouranis, O. Körner, and C.O. Ottosen. 2019. Low air humidity during growth promotes stomatal closure ability in roses Euro. J. Hort. Sci. 84:245-252. 90. Fanourakis, D. and D.C. Ferree. 1989. Growth and carbohydrate distribution of young apple trees in response to root pruning and tree density. HortScience 24:62-65. 91. Fitter, A. I.I. and R.S.J. Fitter. 2000. Rapid changes in flowering time in British plants. Science. 296:1689-1691. 92. Flemer, D.L., 1982. Successful transplanting is easy. Amer. Nurseryman. 145:43-55. 93. Fidelibus, M.W., K.A. Cathline, and J.K. Burns. 2007. Potential abscission agents for raisin, table and wine grapes. HortScience. 42:1626-1630. 94. Fortanier E.J. and H. Jonkers. 1976. Juvenility and maturity of plants as influenced by their ontogenetical and physiological ageing. Acta Hort. 56:37-44. 95. Fracaro, A.A. and A.C. Boliani. 2001. Effect of increasing Ethephon in vine ‘Rubi’ (Vitis vinifera L.). Revista Brasil. Frut. 23:510-512. 96. Fuchigami, L.H. and C.C. Nee. 1987. Degree growth stage model and rest breaking mechanisms in temperate woody perennials. HortScience 22:836-845. 97. Gaballah, M.S. and M. Moursy. 2004. Reflectants application for increasing wheat plant tolerance against salt stress. Pak. J. Biol. Sci. 7:956-962. 98. Gad, M.M., A.K. Fatma and K. Attia, 2017. Does anatomical structure of stem cuttings affect root formation? Assiut J. Agr. Sci. 48(5):99-111. 99. Geiss, G., L. Gutierrez, and C. Bellini, 2009. Adventitious root formation: New insights and perspectives. Root Dev. 37:127-156. 100. Geisler, D. and D.C. Ferree. 1984a. The influence of root pruning on water relations, net photosynthesis, and growth of young ‘Golden Delicious’ apple trees. J. Amer. Soc. Hort. Sci.109:827-831. 101. Geisler, D. and D.C. Ferree. 1984b. Response of plants to root pruning. Hort. Rev. 6:155-188. 102. Gilman, E. 1990a. Tree root growth and development: Form, spread, depth and periodicity. J. Environ. Hort. 8:215-220. 103. Gilman, E.F. 1990b. Tree root growth and development. II. Response to culture, management and planting. J. Environ. Hort. 8:220-227. 104. Gilman, E.F. and M.E. Kane. 1990. Root growth of red maple following planting from containers. HortScience. 25:527-528. 105. Gilman, E.F., R.J. Black, and B. Dehgan. 1998. Irrigation volume and frequency and tree size affect establishment rate. J. Arboricult. 24:1-9. 106. Gilman, E.F., C. Harchick, and M. Paz. 2010. Effect of tree size, root pruning, and production method on establishment of Quercus virginiana. Arboricul. Urban For. 36:183-190. 107. Gilman, E. and C. Wiese. 2012. Root pruning at planting and planting depth in the nursery impact root system morphology and anchorage. Arbor. Urban For. 38:229-236 108. Glenn, D.M. and G.J. Puterka. 2005. Particle films: a new technology for agriculture. Hort. Rev. 31:1-44. 109. Glenn, D. M., N. Cooley, R. Walker, P. Clingeleffer, and K. Shellie. 2010. Impact of kaolin particle film and water deficit on wine grape water use efficiency and plant water relations. HortScience. 45:1178-1187. 110. Glenn, M.D. 2012. The mechanisms of plant stress mitigation by kaolin-based particle films and applications in horticultural and agricultural crops. HortScience. 47:710-711. 111. Greenwood, M.S., C.A. Hopper and K.W. Hutchison. 1989. Maturation in larch: Effect of age on shoot growth, foliar characteristics and DNA methylation. Plant Physiol. 90:406-412. 112. Greenwood, M.S. and K.W. Hutchinson. 1993. Maturation as a developmental process. p. 14–33. In: Ahuja M.R. and W. J. Libby. (eds). Clonal forestry I: Genet. and biotechnol. 1st edn. Springer, Heidelberg. 113. Greenwood, M.S. 1995. Juvenility and maturation in conifers: current concepts. Tree Physiol. 15:433-438. 114. Greenwood M.S., M.E. Day, and J. Schatz. 2010. Separating the effects of tree size and meristem maturation on shoot development of grafted scions of red spruce (Picea rubens). Tree Physiol. 30:459-468. 115. Gregoriou, C. 2009. Tree training and pruning methods. Olive gap manual: Good agricultural practices for the near east north Africa countries. Assoc. Agr. Res. Inst. Near East and North Africa. FAO. Rome, Italy 116. Grossnickle, S.C. 1988. Planting stress in newly planted jack pine and white spruce. 1. Factors influencing water uptake. Tree Physiol 4:71-83. 117. Grossnickle, S.C. 2000. Ecophysiology of northern spruce species: the performance of planted seedlings. NRC Research, Ottawa, Ont. Can. 118. Grossnickle, S.C. 2005. Importance of root growth in overcoming planting stress. New For. 30:273-294. 119. Gruber, B.D., R.F. Giehl, S. Friedel, and N. von Wirén. 2013. Plasticity of The Arabidopsis root system under nutrient deficiencies. Plant Physiol. 163:161-179. 120. Gu, S., L.H. Fuchigami, L. Cheng, S.H. Guak, and C. Shin. 1998. Effects of antitranspirant and leaching on medium solution osmotic potential, leaf stomatal status, transpiration, abscisic acid content and plant growth in ‘Early Girl’ tomato plants (Lycopersicon esculentum). J Hort. Soc Biotechnol. 73:473-477. 121. Haase, D.L. and R. Rose. 1993. Soil moisture stress induces transplant shock in stored and unstored 2+0 Douglas-fir seedlings of varying root volumes. For. Sci. 39:275-294. 122. Hackett, W.P. 1987. Juvenility and maturity. p. 216-231. In: Cell and Tissue Culture in Forestry. Springer. Dordrecht. Neth. 123. Hackett W. and J. R. Murray, 1993. Maturation and rejuvenation in woody species. p. 93-105. In: Micropropagation of woody plants. M.R. Ahuja. (eds)., Kluwer academics publishers. 124. Haines, R. and S. Walker. 1993. Maturation questions relating to clonal forestry. Clonal forestry workshop. Qsld. For. Res. Inst. Gympie. p.1-14. 125. Hammond, W.M., K. Yu, L.A. Wilson, R.E. Will, W.R. Anderegg, and H.D. Adams, 2019. Dead or dying? Quantifying the point of no return from hydraulic failure in drought‐induced tree mortality. New Phytol. 223. 126. Hand, P., R.T. Besford, C.M. Richardson, and S.D. Peppit. 1996. Antibodies to phase related proteins in juvenile and mature Prunus avium. Plant Growth Regulat. 20:25-29. 127. Harris, J.R. and E.F. Gilman. 1993. Production method affects growth and post-transplant establishment of ‘East Palatka’ holly. J. Amer. Soc. Hort. Sci. 118:194-200. 128. Harris, J.R. and N.L., Bassuk. 1994. Seasonal effects on transplantability of scarlet oak, green ash, Turkish hazelnut and tree lilac. J. Arboricult. 20:310-317. 129. Harris, J.R., N.L. Bassuk, R.W. Zobel and T.H. Whitlow. 1995. Root and shoot growth periodicity of green ash, scarlet oak, Turkish hazelnut, and tree lilac. J. Amer. Soc. Hort. Sci. 120:211-216. 130. Harris, J.R. and J. Fanelli. 1999. Root and shoot growth periodicity of pot-in-pot red and sugar maple. J. Environ. Hort. 17:80-83. 131. Harris, J.R., A. Niemiera, J. Fanelli, and R. Wright. 2001. Root pruning pin oak liners affects growth and root morphology. HortTech. 11(1):49-52. 132. Hartmann, H.T., D.E. Kester, F.T. Davies Jr, and R.L. Geneve. 2014. Principles of propagation by cuttings. p. 293-359. In: Hartmann Kester's plant propagation principles and practices. 8th edition. Pearson education limited. Harlow, Essex. UK 133. Heide, O. 2019. Juvenility, maturation and rejuvenation in plants: adventitious bud formation as a novel rejuvenation process. J. Hort. Sci. Biotechnol. 94:2-11. 134. Heiskanen, J. and R. Rikala. 2000. Effect of peat-based container media on establishment of scots pine, Norway spruce and silver birch seedlings after transplanting in contrasting water conditions. Scandi. J. For. Res. 15:4957. 135. Hirons, A.D. and G.C. Percival. 2012. Fundamentals of tree establishment: A review. Proc. urban trees res. conf., Birmingham, UK. 17:57-62. 136. Hölscher, D., J. Mackensen, and J.M. Roberts. 2005. Forest recovery in the humid tropics: Changes in vegetation structure, nutrient pools and the hydrological cycle. p. 598-621. In: Forest, water and people in the humid tropics, edited by: M. Bonell and L.A. Bruijnzeel, Cambridge Univ. Press, UK. 137. Hou, J.T., C.C. Shen, and Y.F. Zhang. 2019. Review on rooting mechanism of plant cuttings propagation. J. Anhui Agr. Sci. 47:1-3. 138. Huang, L.C., S. Liu, B.L. Huang, T. Murashige, F.M. Mahdiel, and R. Van Gundy. 1992. Rejuvenation of Sequoia sempervirens by repeated grafting of shoot tips onto juvenile rootstocks in vitro model for phase reversal of trees. Plant Physiol. 98:166-73. 139. Huang, L.C., J.H. Weng, C.H. Wang, C.I. Kuo and Y.J. Shieh. 2003. Photosynthetic potentials of in vitro–grown juvenile, adult, and rejuvenated Sequoia sempervirens (D. Don) endl. Shoots. Bot. Bull. Acad. Spore. 44:31-35. 140. Huang, H.J., Y. Chen, J.L. Kuo, T.T. Kuo, C.C. Tzeng, B.L. Huang, C.M. Chen, and L.C. Huang. 1996. Rejuvenation of Sequoia sempervirens in vitro: Changes in isoesterases and isoperoxidases. Plant Cell Physiol 37:77-80. 141. Huang, Y., K.S. Ji and J.R. Zhai. 2007. Relationship between rooting ability and endogenous phytohormone changes in successive continuous generation cuttings of Buxussinica var. parvifolia, an endangered woody species in China. For. Stud. China. 9:189-97. 142. Huang, L.C., L.J. Hsiao, S.Y. Pu, C.I. Kuo, B.L. Huang, T.C. Tseng, H.J. Huang, and Y.T. Chen. 2012. DNA methylation and genome rearrangement characteristics of phase change in cultured shoots of Sequoia sempervirens. Physiol Plant. 145:360-368. 143. Hung, C.D. and S. Trueman. 2011. Encapsulation technology for short-term preservation and germplasm distribution of the African mahogany Khaya senegalensis. Plant Cell Tissue Organ Cult. 107:397-405. 144. Husen, A. and M. Pal. 2003. Effect of serial bud grafting and etiolation on rejuvenation and rooting of mature trees of Tectona grandis Linn. F. Silvae Genet 52:84-88. 145. Husen, A. 2004. Clonal propagation of Dalbergia sissoo Roxb. by softwood nodal cuttings: Effects of genotypes, application of IBA and position of cuttings on shoots. Silvae Genet. 53:50-55. 146. Husen, A. and M. Pal. 2007. Metabolic changes during adventitious root primordium development in Tectona grandis Linn. f.(teak) cuttings as affected by age of donor plants and auxin (IBA and NAA) treatment. New For. 33:309-323. 147. Husen, A. 2011. Rejuvenation and adventitious rooting in coppice-shoot cuttings of Tectona grandis as affected by stock-plant etiolation. Amer. J. Plant Sci. 2:370-4. 148. Igić, D., M. Borišev, D. Vilotić, M. Šijačić-Nikolić, M. Ćuk, M. Ilić, and B. Kovačević. 2020. Variability and relationships among rooting characteristics for white poplar hardwood cuttings. Arch. Biol. Sci. 72:153-163. 149. Ikeuchi, M., M. Shibata, B. Rymen, A. Iwase, A.M. Bågman, L. Watt, D. Coleman, D. Favero, T. Takahashi, and S. Ahnert. 2018. A gene regulatory network for cellular reprogramming in plant regeneration. Plant and Cell Physiol. 59:770-782. 150. Iqbal, N., N.A. Khan, A. Ferrante, A. Trivellini, A. Francini and M. Khan. 2017. Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Front. Plant Sci. 8:475. 151. Japan greening center foundation. (JPGreen). 2008. The newest tree doctor Instructions. 3rd edition. P.525-668. 最新・樹木医の手引き改訂3 版. 財団法人日本緑化センター. 152. Japan park and green space. Association (POSA). 2005. Landscaping construction management technology (Japanese) book. p.249. 造園施工管理技術. 社団法人日本公園緑地協会造園施工管理委員会. 153. Jifon, J. and J.P. Syvertsen. 2003. Kaolin particle film applications can increase photosynthesis and water use efficiency of Ruby Red grapefruit leaves. J. Am. Soc. Hort. Sci. 128:107-112. 154. Jackson, M.B. ed. 1986. New root formation in plants and cuttings. Martinus Nijhoff Publishers. Dordrecht. 155. Jalakas, M, K. Kelt, and K. Karp. 2003. The yield and fruit quality of sea buckthorn (Hippophae rhamnoides L.) after rejuvenation cutting. Agron. Res. 1:31-36. 156. Jiménez-Ruiz, J., M.C. García-López, I. Vidoy, M. O. Leyva-Pérez, A. Fernández-Ocaña, J.B. Barroso, A. Barceló, C. Beuzón, and F. Luque. 2015. Transcriptional analysis of adult cutting and juvenile seedling olive roots. Tree Gene Geno.11:1-12. 157. Johnson, D.M. and W.K. Smith.2008. Cloud immersion alters microclimate, photosynthesis and water relations in Rhododendron catawbiense and Abies fraseri seedlings in the southern Appalachian Mountains, USA. Tree Physiol. 28:385-392. 158.Khan, W.,P. Rayirath, S. Subramanian, M.N. Jithesh, P. Rayorath, D.M. Hodges, A.T. Critchley, J.S. Craigie, J. Norrie, and B. Prithiviraj. 2009. Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regulat. 28:386-399. 159. Kim, J., A. Malladi, and M.W. van Iersel. 2012. Physiological and molecular responses to drought in petunia: the importance of stress severity. J. Expt. Bot. 63:6335-6345. 160. Kovačević, B., D. Igić, Z. Novčić, S. Orlović. 2020. Survival and growth of white poplar rooted cuttings regarding term of planting. Topola/Poplar. 205:33-46. 161. Kupper, P., J. Sober, A. Sellin, K. Lohmus, A. Tullus, O. Raim, et al. 2011. An experimental facility for free air humidity manipulation (FAHM) can alter water flux through deciduous tree canopy. Environ. Expt. Bot. 72:432-438. 162. Kurokura, T., N. Mimida, N. Battey and T. Hytönen. 2013. The regulation of seasonal flowering in the Rosaceae. J. Expt. Bot. 64:4131-4141. 163. Larsen, F. 1977. Chemical defoliation of apple nursery stock. EM4297. Coop. Ext. Service, Wash. St. U. Wash. USA. 164. Larson, M.M. 1984. Seasonal planting, root regeneration and water deficits of Austrian pine and arborvitae. J. Environ. Hort. 2:33-38. 165. Lauderdale, D.M., C.H. Gillam, D.J. Eakes, G.J. Keever, and A.H. Chappelka. 1995. Tree transplant size influences post-transplant red maple. J. Environ. Hort. 13:178-181. 166. Leakey, R. 2004. Physiology of vegetative reproduction. In: Encyclopedia of forest sciences. ISBN: 0121451607. Acad. Press. 167. Ledig, F.T. 1983. The influence of genotype and environment on dry matter distribution in plants. p427-454. In: P.H. Huxley (Ed.), Plant research in agroforestry. Intl Council Res. Agron. For. Nairobi, Kenya. JPN. 168. Li, N., P.C. Tu, K.C. Lo, Y.S. Chang. 2020. The induction of adventitious roots regeneration before transplanting rootless Ficus elastica heritage tree. Forests. 11:1057. 169. Lily, S., 2010. Arborists' certification study guide. Intl. Soc. Arboricult. 15 14 13 ISBN 978-1-881956-69-3 12-14/RF/3000. Intl Soc. Arboricult. USA. 170. Liu H, Y. Gao, X. Song, Q. Ma, J. Zhang, and D. Pei. 2018. A novel rejuvenation approach to induce endohormones and improve rhizogenesis in mature Juglans tree. Plant Methods 14:13. 171. Lombardini, L., M.K. Harris, and D.M. Glenn. 2005. Effects of particle film application on leaf gas exchange, water relations, nut yield, and insect populations in mature pecan trees. HortScience. 40:1376-1380. 172. Lynch, J.P., K.M. Brown. 2008. Root strategies for phosphorus acquisition. P. 83–116. In: White PJ, Hammond JP, The ecophysiology of plant-phosphorus interactions. Springer, Dordrecht. Neth. 173. Lynch, J.P. and K.M. Brown. 2012. New roots for agriculture: Exploiting the root phenome. Phylosophical Trans. R. Soc. Biol. Sci. 367:1598-1604. 174. Margolis, H.A. and D.G. Brand. 1990. An ecophysiological basis for understanding plantation establishment. Can. J. For. Res. 20:375-390. 175. Martinez, P. F., S. A. Tartoura, and D. Roca. 2001. Air humidity, transpiration and blossom-end rot in soilless sweet pepper culture. Acta Hort. 559:425-429. 176. Maynard, B.K. and N. Bassuk. 1996. Effects of stock plant etiolation, shading, banding, and shoot development on histology and cutting propagation of Carpinus betulus L. fastigiata. J. Amer. Soc. Hort. Sci. 121:853-860. 177. McDowell, N.G. 2011. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant physiol. 155:1051-1059. 178. Mediene, S., M.O. Jordan, L. Pagès, J. Lebot, and S. Adamowicz. 2002. The influence of severe shoot pruning on growth, carbon and nitrogen status in young peach trees (Prunus persica). Tree physiol. 22:1289-1296. 179. Mitchell, R.G., J. Zwolinski and N.B. Jones. 2004. A review on the effects of donor maturation on rooting and field performance of conifer cuttings. S. Afr. For. J. 201:53-63. 180. Mitchell, R.G. and N.B. Jones. 2006. The effects of ontogenetic maturation in Pinus patula—part II: Hedge cycling and field performance. S. Afr. For. J. 207:3-6. 181. Millar, A.H., J. Whelan, K.L. Soole, and D.A. Day. 2011. Organization and regulation of mitochondrial respiration in plants. Annu Rev. Plant Biol. 62:79-104. 182. Mofta………
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81237-
dc.description.abstract"大樹移植的挑戰性很高,因為移植費用高、樹木價值不斐、而且很難補植。本研究認為移植大樹的存活與否,取決於光合、呼吸及蒸散三大主要生理作用在水分保持平衡下的共同運作!移植造成樹木體內水分失去平衡,產生水分逆境,並阻礙上述三大生理作用之運作循環,是移植樹木無法存活的主要原因。 水分逆境可能因為木質部導管阻塞或斷裂、棲地環境劇烈改變、與大量吸收根損失造成枝根比失衡而產生。水分逆境可以透過節流和開源兩種策略來緩解。 1)節流,降低蒸散量 - 選擇適當的季節移植、維持樹冠高濕度環境、透過修剪或落葉劑減少葉片量及利用抗蒸散劑與生物刺激劑控制氣孔導度等; 2)開源,增加水分供應 – 加大根球尺寸、確保木質部導管通暢、利用斷根、創傷氣生根和柱狀根、以及創傷樹幹來誘導出不定根、改善根與土壤的接觸介面、與促進根系分布結構再生。 在樹木的吸水功能完全恢復之前,水分逆境必須先透過降低蒸散量來緩解。在春秋的適當季節移植可以避免極端氣候的逆境,安裝噴霧可以降低樹葉的蒸散量,利用遮蔭網可以防樹葉和樹幹受高溫及日曬傷害; 移植前做樹冠清理,可以減少不必要的枝條消耗水分; 落葉劑不須修除枝條,即可去除大部分葉片,讓新芽快速長出; 抗蒸散劑調控氣孔導度,可以在移植時降低蒸散量; 生物刺激劑可以調控氣孔導度,並且增加樹木活力度與抗逆境的能力; 這些都是在移植時降低蒸散的策略和具體可行的做法,可以降低樹木的水分需求,緩解水分逆境。 加大根球尺寸,增加吸收根數量,使其在移植後伸長,是最快增加吸水能力的方法。吊運時不要吊樹幹,才不致破壞樹皮,拉斷導管,以保持水分輸送的效率; 斷根可以增加根球內吸收根密度,可能比現挖樹幹地面直徑八到十二倍的大根球適合用在大樹移植;從氣生根及柱狀根上導根,具有和斷根一樣的增加吸收根的效果; 楊、柳、榕屬樹種的樹幹上有既成根原,比其他樹種容易從樹幹上導出不定根。在具有既成根原樹種的樹幹上誘導出不定根,可以補強根球中吸收根的吸水能力。不定根的發根能力與樹木細胞組織的幼年性相關: 樹基部位的組織通常保有幼年性,有利於創傷導根。回填與根球質地相似的土壤入排水通氣良好的樹穴中,有助於迅速改善根系與土壤接觸介面; 而棲地土壤的良好通氣性與養分含量,則有利於加速根系分布結構的發展。 本研究共進行了三個不同的試驗,以探討緩解水分逆境的方法: A) 利用不同濃度的益收及乙酸鈣溶液來調控樟樹和阿勃勒樹葉片量,目標是尋求在三十天內可以快速催落一半以上葉片,而且在之後的四十天內長回75%葉片量的組合與濃度。試驗在2020年夏季進行,分兩次葉施水和不同組合與濃度的益收及乙酸鈣溶液。除了對照組兩次都是用水以外,八種益收相關處理的第一次葉施統一用1000 mg.L-1益收溶液; 第二次則是在第三天葉施四種益收濃度,分別為500, 1000, 2000, 3000 mg.L-1; 另外加上這四種濃度益收混入8000 mg.L-1乙酸鈣,並記錄樹上的葉片率。結果顯示第二次噴1000 mg.L-1 或是2000 mg.L-1的益收溶液中混合乙酸鈣,都可以使樟樹葉量達到調控目標。阿勃勒不加乙酸鈣時,第二次要噴益收濃度3000 mg.L-1; 加乙酸鈣時,第二次噴 2000 mg.L-1 或是 3000 mg.L-1都可達標; 可見益收的達標濃度因樹種而有所不同。落葉率與益收濃度正相關: 濃度愈高,落葉率愈高,樹枝受傷度也愈高,有枝枯現象; 分兩次噴施有利於減少枝枯。但葉片恢復率則因樹種不同而有不同表現,可能與樹種對乙烯的敏感性、樹枝受傷程度、樹木活力及氣候因子相關。乙酸鈣可以保護植物受到過度傷害,降低落葉率,減少枝枯。推測對益收較敏感的樹種(如樟樹),可能較需要加入乙酸鈣來保護。 B)在移植前先創傷受保護印度橡膠樹的氣生根及柱狀根以誘導傷口長出不定根,目標是找出誘導不定根的有效方法,以便長出適量的不定根,來取代移植時必須被切掉的感染褐根病根系的吸水功能。採用部分複因子完全隨機試驗設計,考量三個因子: 根徑、創傷方法及生長素濃度處理。根徑有四組,分別為< 2.0 cm, 2.0 - 4.3 cm, 4.4 -22 cm, 及 >22 cm。每組有82個傷口樣本。創傷方法有三種:切斷氣生根、環剝及長形開窗。生長素處理有三種:4000 mg·L−1 IBA (indole-3-butyric acid) , 2000 mg·L−1 IBA + 2000 mg·L−1 NAA(1-naphthaleneacetic acid), 與 2000 mg·L−1 IBA. 包括噴水處理的對照組,共有24種處理,328個傷口樣本。紀錄各處理中有發根的傷口數、傷口中的根數、以及傷口中最長三條根的平均長度作為發根能力的指標。結果顯示,發根能力與氣生根根徑及創傷方法顯著相關:根徑愈小,發根能力愈好,且隨根徑增加而降低其發根能力; 傷口愈大,發根能力愈高。切斷氣生根有最高的發根能力,其次是環剝,然後才是長形開窗。不同生長素濃度對發根能力與對照組沒有顯著差別,可能是由於氣生根與柱狀根上本來就有根原體,可以在創傷後直接長出不定根,不需要生長素去誘導與創始根原。也可能是因為試驗採用的生長素濃度對根細胞組織太高,生長素效用未能發揮。從印度橡膠樹的氣生根和柱狀根上誘導出不定根的最有效方法是切斷細根徑的氣生根,其次是環剝。長形開窗的發根能力雖然不如切斷和環剝,但可用於粗根徑氣生根或是柱狀根之導根。 C) 試驗創傷垂榕樹幹以誘導不定根的有效方法,目標是找出結合創傷法和生長素濃度的有效導出不定根處理方法,利用增加樹幹上導出的不定根,以補強根球的吸水能力,因此得以縮小根球做移植。在2019及 2020年夏季對三年生、胸徑2公分的垂榕小樹進行雙因子(不同創傷法與生長素處理濃度)試驗,採完全隨機試驗設計。創傷方法包括在樹幹上切三條線及長形開窗周長1/3與2/3長度共三種; 生長素濃度有三種: 4000 mg·L−1 IBA (indole-3-butyric acid), 2000 mg·L−1 IBA + 2000 mg·L−1 N AA(1-naphthaleneacetic acid), 和 2000 mg·L−1 IBA, 另有噴水的對照組。2020年共有十二種處理,每處理十二重複。發根能力指標採用發根的傷口數、傷口中根數、傷口中三根最長根的平均長度、以及傷口中的不定根乾重來衡量。結果顯示,創傷是誘導出不定根的必要條件; 但三種創傷法間並無顯著性差異。生長素的處理組都比對照組表現好,生長素濃度處理間也呈現顯著差異。其中4000 mg·L-1 IBA生長素處理的發根指標表現最好,而且傷口中不定根遍佈四緣,比其他處理更均勻。 本研究所建議的方法,會因樹種、移植季節、氣候條件、新棲地的環境特性、以及移植的方法而有不同的結果; 在選擇前,應該要先審慎檢視及評估各種因子。 本研究探討樹木移植時水分逆境產生的原因及緩解的策略,提供學理及實務上的解決方案,有助於移植大樹時評估各種因子,選擇最佳做法來提高存活率;希望本試驗成果能對大樹移植的技術,有具體的貢獻。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:37:57Z (GMT). No. of bitstreams: 1
U0001-2807202117173400.pdf: 2406691 bytes, checksum: 93ebf7ee22483ccda8aceca7f6b11f59 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontentsContents Abstract in Chinese (中文摘要) ……………………………………………………………………………………………………I Abstract…………IV List of Figures……………………………………………………………………………………………………………………XIV List of Tables………………………………………………………………………………………………………………………XV Abbreviations……………………………………………………………………………………………………………………XVII Chapter I. Introduction………………………………………………………………………………………………………………1 Literature cited………………………………………………………………………………………………………………………5 Figures………………………………………………………………………………………………………………………………11 Chapter II. Literature Review………………………………………………………………………………………………………13 2.1 Water balance…………………………………………………………………………………………………………………15 2.1.1 Plant water relation……………………………………………………………………………………………………………15 2.1.2 Shoot-to root-ratio…...………………………………………………………………………………………………………16 2.2 Reduction of transpiration………………………………………………………………………………………………………17 2.2.1 Transplant season……………………………………………………………………………………………………………17 2.2.2 Relative humidity….…………………………………………………………………………………………………………19 2.2.3 Defoliage……………………………………………………………………………………………………………………20 2.2.3.1 Shoot pruning…………………………………………………………………………………………………………….20 2.2.3.2 Defoliants………………………………………………………………………………………………………………….21 2.2.4 Stomata control………………………………………………………………………………………………………………22 2.2.4.1 Anti-transpirants ……………………………………………………………………………………………………………22 2.2.4.2 Bio-stimulants………………………………………………………………………………………………………………24 2.3 Increase of water supply………………………………………………………………………………………………………25 2.3.1 Enlarge rootball size………………………………………………………………………………………………………….26 2.3.2 Protect xylem conductivity……………………………………………………………………………………………………26 2.3.3. Induction of adventitious roots (ARs) ………………………………………………………………………………………27 2.3.3.1 Introduction…………………………………………………………………………………………………………………27 2.3.3.2 Type of ARs…………………………………………………………………………………………………………………28 2.3.3.3 Location of ARs generation…………………………………………………………………………………………………30 2.3.3.4 Plant hormones involved in the formation of ARs…………………………………………………………………………30 2.3.3.5 Application in large-tree-transplant…………………………………………………………………………………………31 2.3.3.6 Induction by root pruning………………………………………………………………………………………………….32 2.3.3.7 Induction by aerial roots wounding…………………………………………………………………………………………34 2.3.3.8 Induction by stems wounding………………………………………………………………………………………………34 2.3.4 Root soil interface improvement……………………………………………………………………………………………34 2.3.5 Root system architecture development………………………………………………………………………………………35 2.4 Rejuvenation……………………………………………………………………………………………………………………37 2.4.1 Introduction……………………………………………………………………………………………………………………37 2.4.2 Juvenility………………………………………………………………………………………………………………………37 2.4.2.1 Characteristics of juvenility…………………………………………………………………………………………………38 2.4.2.2 Terminology…………………………………………………………………………………………………………………38 2.4.3 Maturity………………………………………………………………………………………………………………………39 2.4.3.1 Characteristics of maturity……………………………………………………………………………………………………40 2.4.3.2 Cone of juvenility……………………………………………………………………………………………………………41 2.4.4 Rejuvenation and reinvigoration………………………………………………………………………………………………42 2.4.5 Application in large-tree-transplant……………………………………………………………………………………………44 2.5 Literature cited……………………………………………………………………………………………………………………46 2.6 Figures……………………………………………………………………………………………………………………………76 Chapter III. Use Ethephon and Calcium Acetate to Manipulate the Foliage Rates of Camphor and Golden Shower Trees……………78 Abstract………………………………………………………………………………………………………………………………78 摘要…………………………………………………………………………………………………………………………………79 Introduction……………………………………………………………………………………………………………………………80 Materials and methods…………………………………………………………………………………………………………………83 Results…………………………………………………………………………………………………………………………………84 Discussion……………………………………………………………………………………………………………………………88 Conclusion……………………………………………………………………………………………………………………………91 Literature cited…………………………………………………………………………………………………………………………92 Tables…………………………………………………………………………………………………………………………………98 Figures…………………………………………………………………………………………………………………………………101 Chapter IV. The Induction of Adventitious Roots Regeneration before Transplanting the Rootless Heritage Indian Rubber Tree ……104 Abstract………………………………………………………………………………………………………………………………104 摘要…………………………………………………………………………………………………………………………………105 Introduction……………………………………………………………………………………………………………………………107 Materials and methods…………………………………………………………………………………………………………………110 Results…………………………………………………………………………………………………………………………………112 Discussion……………………………………………………………………………………………………………………………114 Conclusion……………………………………………………………………………………………………………………………116 Literature cited…………………………………………………………………………………………………………………………117 Tables…………………………………………………………………………………………………………………………………122 Figures…………………………………………………………………………………………………………………………………126 Chapter V. Effective Methods for Adventitious Root Induction on the Stems of Weeping Fig before Transplant………………………………………………………………………………………………………132 Abstract…………………………………………………………………………………………………………………………………132 摘要……………………………………………………………………………………………………………………………………133 Introduction……………………………………………………………………………………………………………………………135 Materials and methods…………………………………………………………………………………………………………………137 Results…………………………………………………………………………………………………………………………………139 Discussion……………………………………………………………………………………………………………………………….142 Conclusion………………………………………………………………………………………………………………………………145 Literature cited…………………………………………………………………………………………………………………………146 Tables………………………………………………………………………………………………………………………………….152 Figures…………………………………………………………………………………………………………………………………158 Chapter VI. Conclusion ………………………………………………………………………………………………………………164  
dc.language.isoen
dc.subject生長素zh_TW
dc.subject落葉zh_TW
dc.subject創傷zh_TW
dc.subject不定根zh_TW
dc.subject幼年性zh_TW
dc.subject既成根原zh_TW
dc.subjectdefoliationen
dc.subjectauxinen
dc.subjectpreformed root initialsen
dc.subjectjuvenilityen
dc.subjectadventitious rootsen
dc.subjectwoundingen
dc.title緩解水分逆境以提高大樹移植存活率的策略與方法zh_TW
dc.titleStrategies and Methods to Mitigate Water Stress to Enhance Survival Rate of Large-Tree-Transplanten
dc.date.schoolyear109-2
dc.description.degree博士
dc.contributor.author-orcid0000-0002-7426-8232
dc.contributor.oralexamcommittee陳右人(Hsin-Tsai Liu),吳孟玲(Chih-Yang Tseng),王義仲,詹明勳
dc.subject.keyword落葉,創傷,不定根,幼年性,既成根原,生長素,zh_TW
dc.subject.keyworddefoliation,wounding,adventitious roots,juvenility,preformed root initials,auxin,en
dc.relation.page168
dc.identifier.doi10.6342/NTU202101859
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-08-02
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝暨景觀學系zh_TW
Appears in Collections:園藝暨景觀學系

Files in This Item:
File SizeFormat 
U0001-2807202117173400.pdf
Access limited in NTU ip range
2.35 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved