請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81231完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林俊彬(Chun-pin Lin) | |
| dc.contributor.author | Shu-chun Lin | en |
| dc.contributor.author | 林紓君 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:37:35Z | - |
| dc.date.available | 2021-08-31 | |
| dc.date.available | 2022-11-24T03:37:35Z | - |
| dc.date.copyright | 2021-08-31 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-07-29 | |
| dc.identifier.citation | 1. Backlund, E., Facial growth, and the significance of oral habits, mouthbreathing and soft tissues for malocclusion. A study on children around the age of 10. Acta Odontol Scand, 1963. 21: p. Suppl 36:9-139. 2. McNamara, J.A., Influence of respiratory pattern on craniofacial growth. Angle Orthod, 1981. 51(4): p. 269-300. 3. Gao, L., et al., Oral microbiomes: more and more importance in oral cavity and whole body. Protein Cell, 2018. 9(5): p. 488-500. 4. Deo, P.N. and R. Deshmukh, Oral microbiome: Unveiling the fundamentals. J Oral Maxillofac Pathol, 2019. 23(1): p. 122-128. 5. Goldfield, E.C., et al., Coordination of sucking, swallowing, and breathing and oxygen saturation during early infant breast-feeding and bottle-feeding. Pediatr Res, 2006. 60(4): p. 450-5. 6. Kuboyama, N. and Y. Moriya, Influence of diet composition and malocclusion on masticatory organs in rats. J Nihon Univ Sch Dent, 1995. 37(2): p. 91-6. 7. St-Onge, M.P., A. Mikic, and C.E. Pietrolungo, Effects of Diet on Sleep Quality. Adv Nutr, 2016. 7(5): p. 938-49. 8. Grippaudo, C., et al., Association between oral habits, mouth breathing and malocclusion. Acta Otorhinolaryngol Ital, 2016. 36(5): p. 386-394. 9. William R. Proffit, H.W.F., Jr., Brent Larson and David M. Sarver, Contemporary Orthodontics. 6 ed. 2018, St. Louis, MO: Mosby. 10. Agacayak, K.S., et al., Alterations in maxillary sinus volume among oral and nasal breathers. Med Sci Monit, 2015. 21: p. 18-26. 11. Moss, M.L., The functional matrix hypothesis revisited. 2. The role of an osseous connected cellular network. Am J Orthod Dentofacial Orthop, 1997. 112(2): p. 221-6. 12. Proffit, W.R., Equilibrium theory revisited: factors influencing position of the teeth. Angle Orthod, 1978. 48(3): p. 175-86. 13. Warren, J.J., et al., Effects of oral habits' duration on dental characteristics in the primary dentition. J Am Dent Assoc, 2001. 132(12): p. 1685-93; quiz 1726. 14. Jalaly, T., F. Ahrari, and F. Amini, Effect of tongue thrust swallowing on position of anterior teeth. J Dent Res Dent Clin Dent Prospects, 2009. 3(3): p. 73-7. 15. Yamaguchi, H. and K. Sueishi, Malocclusion associated with abnormal posture. Bull Tokyo Dent Coll, 2003. 44(2): p. 43-54. 16. Dogramaci, E.J. and G. Rossi-Fedele, Establishing the association between nonnutritive sucking behavior and malocclusions: A systematic review and meta-analysis. J Am Dent Assoc, 2016. 147(12): p. 926-934 e6. 17. Pirila-Parkkinen, K., et al., Dental arch morphology in children with sleep-disordered breathing. Eur J Orthod, 2009. 31(2): p. 160-7. 18. Major, M.P., et al., Adenoid Hypertrophy in Pediatric Sleep Disordered Breathing and Craniofacial Growth: The Emerging Role of Dentistry. Journal of Dental Sleep Medicine, 2014. 19. Knosel, M., et al., Tongue position after deglutition in subjects with habitual open-mouth posture under different functional conditions. Orthod Craniofac Res, 2011. 14(3): p. 181-8. 20. Harvold, E.P., et al., Primate experiments on oral respiration. Am J Orthod, 1981. 79(4): p. 359-72. 21. Vargervik, K., et al., Morphologic response to changes in neuromuscular patterns experimentally induced by altered modes of respiration. Am J Orthod, 1984. 85(2): p. 115-24. 22. D, G., Sleep-Disordered Breathing and School Performance in Children. PEDIATRICS, 1998. Vol. 102 (No. 3): p. 5. 23. Chervin, R.D., et al., Inattention, hyperactivity, and symptoms of sleep-disordered breathing. Pediatrics, 2002. 109(3): p. 449-56. 24. Chervin, R.D., et al., Pediatric sleep questionnaire (PSQ): validity and reliability of scales for sleep-disordered breathing, snoring, sleepiness, and behavioral problems. Sleep Med, 2000. 1(1): p. 21-32. 25. Lee, S.Y., et al., Mouth breathing, 'nasal disuse,' and pediatric sleep-disordered breathing. Sleep Breath, 2015. 19(4): p. 1257-64. 26. Wang CH, Y.C., Huang YS The Validation and Reliability of Chinese Version of the Pediatric Sleep Questionnaire for Patients with Sleep Breathing Problem. Taiwanese Journal of Psychiatry 2012. 26(3): p. 10. 27. Relman, D.A., The human microbiome: ecosystem resilience and health. Nutr Rev, 2012. 70 Suppl 1: p. S2-9. 28. Shaw, L., et al., The Human Salivary Microbiome Is Shaped by Shared Environment Rather than Genetics: Evidence from a Large Family of Closely Related Individuals. mBio, 2017. 8(5). 29. Belstrom, D., The salivary microbiota in health and disease. J Oral Microbiol, 2020. 12(1): p. 1723975. 30. Willis, J.R. and T. Gabaldon, The Human Oral Microbiome in Health and Disease: From Sequences to Ecosystems. Microorganisms, 2020. 8(2). 31. de Andrade, P.A.M., et al., Shifts in the bacterial community of saliva give insights on the relationship between obesity and oral microbiota in adolescents. Arch Microbiol, 2020. 202(5): p. 1085-1095. 32. Mason, M.R., et al., Characterizing oral microbial communities across dentition states and colonization niches. Microbiome, 2018. 6(1): p. 67. 33. Burcham, Z.M., et al., Patterns of Oral Microbiota Diversity in Adults and Children: A Crowdsourced Population Study. Sci Rep, 2020. 10(1): p. 2133. 34. Nasidze, I., et al., Global diversity in the human salivary microbiome. Genome Res, 2009. 19(4): p. 636-43. 35. Cabral, D.J., et al., The salivary microbiome is consistent between subjects and resistant to impacts of short-term hospitalization. Sci Rep, 2017. 7(1): p. 11040. 36. Jiang, S., et al., Salivary Microbiome Diversity in Caries-Free and Caries-Affected Children. Int J Mol Sci, 2016. 17(12). 37. Jia, P., et al., Analysis of the Salivary Microbiome in Obstructive Sleep Apnea Syndrome Patients. Can J Infect Dis Med Microbiol, 2020. 2020: p. 6682020. 38. Pietiainen, M., et al., Mediators between oral dysbiosis and cardiovascular diseases. Eur J Oral Sci, 2018. 126 Suppl 1: p. 26-36. 39. Kilian, M., et al., The oral microbiome - an update for oral healthcare professionals. Br Dent J, 2016. 221(10): p. 657-666. 40. David, L.A., et al., Host lifestyle affects human microbiota on daily timescales. Genome Biol, 2014. 15(7): p. R89. 41. Gonzalez-Cabezas, C., The chemistry of caries: remineralization and demineralization events with direct clinical relevance. Dent Clin North Am, 2010. 54(3): p. 469-78. 42. Bo, S., et al., Impact of snacking pattern on overweight and obesity risk in a cohort of 11- to 13-year-old adolescents. J Pediatr Gastroenterol Nutr, 2014. 59(4): p. 465-71. 43. Thurnheer, T. and G.N. Belibasakis, Effect of sodium fluoride on oral biofilm microbiota and enamel demineralization. Arch Oral Biol, 2018. 89: p. 77-83. 44. Johansson, I., et al., Snacking habits and caries in young children. Caries Res, 2010. 44(5): p. 421-30. 45. Behjati, S. and P.S. Tarpey, What is next generation sequencing? Arch Dis Child Educ Pract Ed, 2013. 98(6): p. 236-8. 46. Malla, M.A., et al., Exploring the Human Microbiome: The Potential Future Role of Next-Generation Sequencing in Disease Diagnosis and Treatment. Front Immunol, 2018. 9: p. 2868. 47. Chen, T., et al., The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information. Database (Oxford), 2010. 2010: p. baq013. 48. Gevers, D., et al., The Human Microbiome Project: a community resource for the healthy human microbiome. PLoS Biol, 2012. 10(8): p. e1001377. 49. Haegeman, B., et al., Robust estimation of microbial diversity in theory and in practice. ISME J, 2013. 7(6): p. 1092-101. 50. A, C., Nonparametric Estimation of the Number of Classes in a Population. Scandinavian Journal of Statistics, 1984. 11(4): p. 6. 51. Hughes, J.B., et al., Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol, 2001. 67(10): p. 4399-406. 52. Spellerberg, I.F., and Peter J. Fedor., A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon–Wiener’Index. Global Ecology and Biogeography, 2003. 12(3): p. 3. 53. Simpson, E.H., Measurement of diversity. Nature, 1949. 163: p. 1. 54. Lozupone, C., et al., UniFrac: an effective distance metric for microbial community comparison. ISME J, 2011. 5(2): p. 169-72. 55. Gower, J.C., Principal Coordinates Analysis, in Encyclopedia of Biostatistics. 2005. 56. CLARKE, K.R., Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 1993. 18: p. 27. 57. Segata, N., Izard. J, Waldron. L, Gevers. D, Miropolsky. L, Garrett. W.S, and Huttenhower. C, Metagenomic biomarker discovery and explanation. Genome Biology, 2011. 12: p. 18. 58. Eslami Amirabadi, G., et al., Palatal dimensions at different stages of dentition in 5 to 18-year-old Iranian children and adolescent with normal occlusion. BMC Oral Health, 2018. 18(1): p. 87. 59. Hassanali, J. and J.W. Odhiambo, Analysis of dental casts of 6-8- and 12-year-old Kenyan children. Eur J Orthod, 2000. 22(2): p. 135-42. 60. Bishara, S.E., et al., Arch width changes from 6 weeks to 45 years of age. Am J Orthod Dentofacial Orthop, 1997. 111(4): p. 401-9. 61. Paolantonio, E.G., et al., Association between oral habits, mouth breathing and malocclusion in Italian preschoolers. Eur J Paediatr Dent, 2019. 20(3): p. 204-208. 62. Lione, R., et al., Palatal surface and volume in mouth-breathing subjects evaluated with three-dimensional analysis of digital dental casts-a controlled study. Eur J Orthod, 2015. 37(1): p. 101-4. 63. Alvarez-Solarte, H., et al., Palate shape and size and palatal rugae morphology of children with anterior open bite and normal vertical overbite. J Forensic Odontostomatol, 2018. 36(1): p. 34-43. 64. Yilmaz, R.S., A.I. Darling, and B.G. Levers, Mesial drift of human teeth assessed from ankylosed deciduous molars. Arch Oral Biol, 1980. 25(2): p. 127-31. 65. Kjaer, I., Mechanism of human tooth eruption: review article including a new theory for future studies on the eruption process. Scientifica (Cairo), 2014. 2014: p. 341905. 66. Berwig, L.C., et al., Hard palate dimensions in nasal and mouth breathers from different etiologies. J Soc Bras Fonoaudiol, 2011. 23(4): p. 308-14. 67. De Luca Canto, G., et al., Diagnostic capability of questionnaires and clinical examinations to assess sleep-disordered breathing in children: a systematic review and meta-analysis. J Am Dent Assoc, 2014. 145(2): p. 165-78. 68. Zaura, E., et al., Defining the healthy 'core microbiome' of oral microbial communities. BMC Microbiol, 2009. 9: p. 259. 69. Risely, A., Applying the core microbiome to understand host-microbe systems. J Anim Ecol, 2020. 89(7): p. 1549-1558. 70. Raju, S.C., et al., Gender-Specific Associations Between Saliva Microbiota and Body Size. Front Microbiol, 2019. 10: p. 767. 71. Ling, Z., et al., Pyrosequencing analysis of the salivary microbiota of healthy Chinese children and adults. Microb Ecol, 2013. 65(2): p. 487-95. 72. Kumar, P.S., Sex and the subgingival microbiome: do female sex steroids affect periodontal bacteria? Periodontol 2000, 2013. 61(1): p. 103-24. 73. Kornman, K.S. and W.J. Loesche, Effects of estradiol and progesterone on Bacteroides melaninogenicus and Bacteroides gingivalis. Infect Immun, 1982. 35(1): p. 256-63. 74. Horev, Y., et al., Niche rather than origin dysregulates mucosal Langerhans cells development in aged mice. Mucosal Immunol, 2020. 13(5): p. 767-776. 75. Takeshita, T., et al., Bacterial diversity in saliva and oral health-related conditions: the Hisayama Study. Sci Rep, 2016. 6: p. 22164. 76. Hurley, E., et al., Comparison of the salivary and dentinal microbiome of children with severe-early childhood caries to the salivary microbiome of caries-free children. BMC Oral Health, 2019. 19(1): p. 13. 77. Belstrom, D., et al., Salivary microbiota in individuals with different levels of caries experience. J Oral Microbiol, 2017. 9(1): p. 1270614. 78. Mantzourani, M., et al., The isolation of bifidobacteria from occlusal carious lesions in children and adults. Caries Res, 2009. 43(4): p. 308-13. 79. Kressirer, C.A., et al., Scardovia wiggsiae and its potential role as a caries pathogen. J Oral Biosci, 2017. 59(3): p. 135-141. 80. Gao, X., et al., Salivary biomarkers for dental caries. Periodontol 2000, 2016. 70(1): p. 128-41. 81. Mashima, I., et al., Exploring the salivary microbiome of children stratified by the oral hygiene index. PLoS One, 2017. 12(9): p. e0185274. 82. Viljakainen, J., et al., Meal Regularity Plays a Role in Shaping the Saliva Microbiota. Front Microbiol, 2020. 11: p. 757. 83. Hansen, T.H., et al., Impact of a vegan diet on the human salivary microbiota. Sci Rep, 2018. 8(1): p. 5847. 84. Gannam, C.V., K.L. Chin, and R.P. Gandhi, Caries risk assessment. Gen Dent, 2018. 66(6): p. 12-17. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81231 | - |
| dc.description.abstract | 本臨床研究的目的在於檢視目前兒童及青少年的口腔習癖對上顎型態所造成的影響,並且也對當代台灣的兒童及青少年的唾液微生物相做初步的探究。兒童及青少年成長的過程中,除了基因的影響以外,環境因素也至關重要。人體各部位的微生物相相關研究,亦已確認人體中的共生微生物相對於個體生長、生理機能以及疾病發生的過程,都有重要的影響。目前針對台灣孩童的口腔習癖對於顏面部發育的影響尚無相關的臨床研究,並且對台灣孩童及青少年的唾液微生物相的研究亦付之闕如。本研究採取橫斷面研究,從兒童牙科矯正門診募集60名孩童或青少年,運用問卷收集生活習慣以及口腔習癖等資訊,臨床檢查口腔疾病,並且將齒列石膏模型進行掃描以及數位型態量測跟咬合分析。另一方面蒐集孩童的唾液,進行16S rRNA 基因定序,對唾液中的細菌微生物相做判定。模型的量測數據經過各項口腔習癖分組並加以統計分析比較;而唾液微生物相則是參考臨床疾病、口腔習癖、生活習慣進行分組,並比較微生物相的結構差異,並且進一步找尋唾液中可能與疾病或習癖相關的生物指標。本研究的結果呈現出口腔習癖與上顎型態有相關性,並且唾液微生物相與口腔疾病及生活型態亦極可能有關聯,在本實驗中亦已針對台灣孩童及青少年族群的口腔疾病找出可能的關鍵生物指標菌種。將來可以針對生物指標菌種可能的病理機轉作更進一步的探討。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:37:35Z (GMT). No. of bitstreams: 1 U0001-2807202121132300.pdf: 23439917 bytes, checksum: 481f738b7d6da46efef6d532c4036252 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "國立臺灣大學碩士論文口試委員會審定書 a 謝辭 b 中文摘要 i Abstract ii Table of Contents iv List of Tables vii List of Figures x Chapter 1 Introduction 1 Chapter 2 Literature Review 4 1. The growth of the nasomaxillary complex and the growth theory 4 2. The influence of the oral habits on maxillary growth 5 2.1. Sucking habits 6 2.2. Respiratory patterns 7 2.3. Habitual open-mouth posture 8 3. Pediatric sleep questionnaire 9 4. Salivary microbiota 10 5. The factors influencing oral health: the diet habit, oral hygiene, the oral habits, and the composition of the microbiota 13 6. The Next Generation Sequencing technology (abbreviated for NGS technology) in microbiology 14 Chapter 3 Materials and methods 17 1. Research design 17 2. Subjects 17 3. Materials and data collection process 18 3.1. Filling out Questionnaire and clinical examination 18 3.2. Dental cast scanning 20 3.3. Anatomic measurement and occlusion quantitative analysis 20 3.4. Saliva sampling 25 4. Bacterial V3-V4 16S rRNA target sequencing 26 5. Data analysis 28 Chapter 4 Results 31 1. General description of the participants and prevalence of oral habits 31 2. The statistics for the maxillary perimeters showed substantial but less variation in surface area, occluded ratio, and the ratio of palatal depth to intermolar width. 35 3. Age and different development occlusion stage affect palatal dimensions 37 4. Palatal dimension is different by genders 41 5. The effects of oral habits on anatomical measurements vary. 42 5.1. Mouth Breathing 43 5.2. Sleep-disordered breathing 44 5.3. PSQ Score 45 5.4. Habitual open-mouth posture 46 5.5. Digit Sucking 47 5.6. Pacifier eating after the age of 2 48 5.7. Nail-biting 49 6. General characteristics of children’s salivary microbiota 51 7. Comparison of the alpha-diversity by clinical variables 59 7.1. Comparisons between the epidemiological variables: gender and occlusion development stage 61 7.2. Comparisons between the variables of the oral habits 62 7.3. Comparisons between the variables of oral diseases: dental caries and gingivitis 65 7.4. Comparisons between variables in daily habits: snack habits and oral hygiene practice 67 8. Comparison of the beta-diversity by clinical variables 70 8.1. The PCoA results 70 8.2. Analysis of similarity by Unifrac distance 76 9. The specifically enriched taxa in groups categorized by clinical variables 78 Chapter 5 Discussion 86 Chapter 6 Conclusions 98 References 100 Supplementary Tables 106 Appendix 110" | |
| dc.language.iso | en | |
| dc.subject | 唾液微生物相 | zh_TW |
| dc.subject | 口腔習癖 | zh_TW |
| dc.subject | 口腔疾病 | zh_TW |
| dc.subject | 顱顏部發育 | zh_TW |
| dc.subject | maxillary dimensions | en |
| dc.subject | oral diseases | en |
| dc.subject | salivary microbiota | en |
| dc.subject | oral habits | en |
| dc.title | 口腔習癖對孩童及青少年的上顎型態以及唾液微生物相之相關性研究 | zh_TW |
| dc.title | The Associations between Oral Habits and the Maxillary Morphology and Salivary Microbiota among Children and Young Adolescents | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 王姻麟(Yin-lin Wang) | |
| dc.contributor.oralexamcommittee | 張晉豪(Hsin-Tsai Liu),(Chih-Yang Tseng) | |
| dc.subject.keyword | 唾液微生物相,口腔習癖,口腔疾病,顱顏部發育, | zh_TW |
| dc.subject.keyword | salivary microbiota,oral habits,oral diseases,maxillary dimensions, | en |
| dc.relation.page | 115 | |
| dc.identifier.doi | 10.6342/NTU202101867 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-07-29 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2807202121132300.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 22.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
