Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81211
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭景暉(Jiiang-Huei Jeng),張曉華(Hsiao-Hua Chang)
dc.contributor.authorTzu-Jung Chenen
dc.contributor.author陳姿蓉zh_TW
dc.date.accessioned2022-11-24T03:36:27Z-
dc.date.available2021-08-18
dc.date.available2022-11-24T03:36:27Z-
dc.date.copyright2021-08-18
dc.date.issued2021
dc.date.submitted2021-08-03
dc.identifier.citationAbout, I., Laurent-Maquin, D., Lendahl, U., Mitsiadis, T. A. (2000). Nestin expression in embryonic and adult human teeth under normal and pathological conditions. Am J Pathol, 157(1), 287-295. doi:10.1016/s0002-9440(10)64539-7 Ahmad, P., Della Bella, E., Stoddart, M. J. (2020). Applications of Bone Morphogenetic Proteins in Dentistry: A Bibliometric Analysis. Biomed Res Int, 2020, 5971268. doi:10.1155/2020/5971268 Assaraf-Weill, N., Gasse, B., Silvent, J., Bardet, C., Sire, J. Y., Davit-Béal, T. (2014). Ameloblasts express type I collagen during amelogenesis. J Dent Res, 93(5), 502-507. doi:10.1177/0022034514526236 Bronckers, A. L., Farach-Carson, M. C., Van Waveren, E., Butler, W. T. (1994). Immunolocalization of osteopontin, osteocalcin, and dentin sialoprotein during dental root formation and early cementogenesis in the rat. J Bone Miner Res, 9(6), 833-841. doi:10.1002/jbmr.5650090609 Brown, M. A., Zhao, Q., Baker, K. A., Naik, C., Chen, C., Pukac, L., Choe, S. (2005). Crystal structure of BMP-9 and functional interactions with pro-region and receptors. J Biol Chem, 280(26), 25111-25118. doi:10.1074/jbc.M503328200 Cao, Z., Zhang, H., Zhou, X., Han, X., Ren, Y., Gao, T., Feng, J. Q. (2012). Genetic evidence for the vital function of Osterix in cementogenesis. J Bone Miner Res, 27(5), 1080-1092. doi:10.1002/jbmr.1552 Celil, A. B., Campbell, P. G. (2005). BMP-2 and insulin-like growth factor-I mediate Osterix (Osx) expression in human mesenchymal stem cells via the MAPK and protein kinase D signaling pathways. J Biol Chem, 280(36), 31353-31359. doi:10.1074/jbc.M503845200 Chang, H. H., Chen, I. L., Wang, Y. L., Chang, M. C., Tsai, Y. L., Lan, W. C., Jeng, J. H. (2020). Regulation of the regenerative activity of dental pulp stem cells from exfoliated deciduous teeth (SHED) of children by TGF-β1 is associated with ALK5/Smad2, TAK1, p38 and MEK/ERK signaling. Aging (Albany NY), 12(21), 21253-21272. doi:10.18632/aging.103848 Chen, S., Gluhak-Heinrich, J., Wang, Y. H., Wu, Y. M., Chuang, H. H., Chen, L., MacDougall, M. (2009). Runx2, osx, and dspp in tooth development. J Dent Res, 88(10), 904-909. doi:10.1177/0022034509342873 Choi, H., Ahn, Y. H., Kim, T. H., Bae, C. H., Lee, J. C., You, H. K., Cho, E. S. (2016). TGF-beta Signaling Regulates Cementum Formation through Osterix Expression. Sci Rep, 6, 26046. doi:10.1038/srep26046 Chu, Q., Gao, Y., Gao, X., Dong, Z., Song, W., Xu, Z., Gao, Y. (2018). Ablation of Runx2 in Ameloblasts Suppresses Enamel Maturation in Tooth Development. Sci Rep, 8(1), 9594. doi:10.1038/s41598-018-27873-5 Diamond, M. E., Sun, L., Ottaviano, A. J., Joseph, M. J., Munshi, H. G. (2008). Differential growth factor regulation of N-cadherin expression and motility in normal and malignant oral epithelium. J Cell Sci, 121(Pt 13), 2197-2207. doi:10.1242/jcs.021782 Fischer, L., Haas, A. R., Groffen, J., Tuan, R. S. (2001). N-Cadherin and β-Catenin involvement in BMP-2 induction of mesenchymal chondrogenesis. Signal Transduction, 1(1‐2), 66-78. doi:https://doi.org/10.1002/1615-4061(200111)1:1/2<66::AID-SITA66>3.0.CO;2-K Guntur, A. R., Rosen, C. J., Naski, M. C. (2012). N-cadherin adherens junctions mediate osteogenesis through PI3K signaling. Bone, 50(1), 54-62. doi:https://doi.org/10.1016/j.bone.2011.09.036 Hayakawa, T., Yamashita, K., Ohuchi, E., Shinagawa, A. (1994). Cell growth-promoting activity of tissue inhibitor of metalloproteinases-2 (TIMP-2). J Cell Sci, 107 ( Pt 9), 2373-2379. Herrera, B., García-Álvaro, M., Cruz, S., Walsh, P., Fernández, M., Roncero, C., Inman, G. J. (2013). BMP9 is a proliferative and survival factor for human hepatocellular carcinoma cells. PLoS One, 8(7), e69535. doi:10.1371/journal.pone.0069535 Heymann, R., About, I., Lendahl, U., Franquin, J. C., Obrink, B., Mitsiadis, T. A. (2002). E- and N-cadherin distribution in developing and functional human teeth under normal and pathological conditions. Am J Pathol, 160(6), 2123-2133. doi:10.1016/s0002-9440(10)61161-3 Holtzhausen, A., Golzio, C., How, T., Lee, Y.-H., Schiemann, W. P., Katsanis, N., Blobe, G. C. (2014). Novel bone morphogenetic protein signaling through Smad2 and Smad3 to regulate cancer progression and development. The FASEB Journal, 28(3), 1248-1267. doi:https://doi.org/10.1096/fj.13-239178 Huang, X., Wang, F., Zhao, C., Yang, S., Cheng, Q., Tang, Y., Zhang, H. (2019). Dentinogenesis and Tooth-Alveolar Bone Complex Defects in BMP9/GDF2 Knockout Mice. Stem Cells Dev, 28(10), 683-694. doi:10.1089/scd.2018.0230 Jin, B., Choung, P. H. (2016). Recombinant Human Plasminogen Activator Inhibitor-1 Accelerates Odontoblastic Differentiation of Human Stem Cells from Apical Papilla. Tissue Eng Part A, 22(9-10), 721-732. doi:10.1089/ten.tea.2015.0273 Jin, H., Choung, H. W., Lim, K. T., Jin, B., Jin, C., Chung, J. H., Choung, P. H. (2015). Recombinant Human Plasminogen Activator Inhibitor-1 Promotes Cementogenic Differentiation of Human Periodontal Ligament Stem Cells. Tissue Eng Part A, 21(23-24), 2817-2828. doi:10.1089/ten.TEA.2014.0399 Kandaswamy, E., Ismail, R., Rosaline, H., Venkateshbabu, N., Kandaswamy, D. (2014). Identification TIMP-1 and TIMP-2 in Human Radicular Dentine - In Vitro Study. Journal of Academy of Dental Education, 1, 12. doi:10.18311/jade/2014/2390 Kim, S. G., Zhou, J., Solomon, C., Zheng, Y., Suzuki, T., Chen, M., Mao, J. J. (2012). Effects of growth factors on dental stem/progenitor cells. Dent Clin North Am, 56(3), 563-575. doi:10.1016/j.cden.2012.05.001 Kim, T. H., Bae, C. H., Lee, J. C., Kim, J. E., Yang, X., de Crombrugghe, B., Cho, E. S. (2015). Osterix regulates tooth root formation in a site-specific manner. J Dent Res, 94(3), 430-438. doi:10.1177/0022034514565647 Kunimatsu, R., Nakajima, K., Awada, T., Tsuka, Y., Abe, T., Ando, K., Tanimoto, K. (2018). Comparative characterization of stem cells from human exfoliated deciduous teeth, dental pulp, and bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun, 501(1), 193-198. doi:10.1016/j.bbrc.2018.04.213 Laflamme, C., Rouabhia, M. (2008). Effect of BMP-2 and BMP-7 homodimers and a mixture of BMP-2/BMP-7 homodimers on osteoblast adhesion and growth following culture on a collagen scaffold. Biomed Mater, 3(1), 015008. doi:10.1088/1748-6041/3/1/015008 Lendahl, U., Zimmerman, L. B., McKay, R. D. (1990). CNS stem cells express a new class of intermediate filament protein. Cell, 60(4), 585-595. doi:10.1016/0092-8674(90)90662-x Levinger, I., Zajac, J. D., Seeman, E. (2013). Chapter 15 - Osteocalcin, Undercarboxylated Osteocalcin, and Glycemic Control in Human Subjects. In G. Karsenty (Ed.), Translational Endocrinology of Bone (pp. 181-188). San Diego: Academic Press. Lu, P., Wang, S., Cai, W., Sheng, J. (2012). Role of TGF-β1/Smad3 Signaling Pathway in Secretion of Type I and III Collagen by Vascular Smooth Muscle Cells of Rats Undergoing Balloon Injury. Journal of Biomedicine and Biotechnology, 2012, 965953. doi:10.1155/2012/965953 Luo, J., Tang, M., Huang, J., He, B. C., Gao, J. L., Chen, L., He, T. C. (2010). TGFbeta/BMP type I receptors ALK1 and ALK2 are essential for BMP9-induced osteogenic signaling in mesenchymal stem cells. J Biol Chem, 285(38), 29588-29598. doi:10.1074/jbc.M110.130518 Méndez-Ferrer, S., Michurina, T. V., Ferraro, F., Mazloom, A. R., MacArthur, B. D., Lira, S. A., Frenette, P. S. (2010). Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature, 466(7308), 829-834. doi:10.1038/nature09262 Marie, P. (2002). Role of N-Cadherin in bone formation. Journal of cellular physiology, 190, 297-305. doi:10.1002/jcp.10073 Misch, C., Wang, H. L. (2011). Clinical Applications of Recombinant Human Bone Morphogenetic Protein-2 for Bone Augmentation Before Dental Implant Placement. Clin Adv Periodontics, 1(2), 118-131. doi:10.1902/cap.2011.110037 Mitsiadis, T. A., Orsini, G., Jimenez-Rojo, L. (2015). Stem cell-based approaches in dentistry. Eur Cell Mater, 30, 248-257. doi:10.22203/ecm.v030a17 Miura, M., Gronthos, S., Zhao, M., Lu, B., Fisher, L. W., Robey, P. G., Shi, S. (2003). SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A, 100(10), 5807-5812. doi:10.1073/pnas.0937635100 Mizuno, M., Miyamoto, T., Wada, K., Watatani, S., Zhang, G. X. (2003). Type I collagen regulated dentin matrix protein-1 (Dmp-1) and osteocalcin (OCN) gene expression of rat dental pulp cells. J Cell Biochem, 88(6), 1112-1119. doi:10.1002/jcb.10466 Mostafa, S., Pakvasa, M., Coalson, E., Zhu, A., Alverdy, A., Castillo, H., Reid, R. R. (2019). The wonders of BMP9: From mesenchymal stem cell differentiation, angiogenesis, neurogenesis, tumorigenesis, and metabolism to regenerative medicine. Genes Dis, 6(3), 201-223. doi:10.1016/j.gendis.2019.07.003 Nakajima, K., Kunimatsu, R., Ando, K., Ando, T., Hayashi, Y., Kihara, T., Tanimoto, K. (2018). Comparison of the bone regeneration ability between stem cells from human exfoliated deciduous teeth, human dental pulp stem cells and human bone marrow mesenchymal stem cells. Biochem Biophys Res Commun, 497(3), 876-882. doi:10.1016/j.bbrc.2018.02.156 Nakamura, T., Shirakata, Y., Shinohara, Y., Miron, R. J., Hasegawa-Nakamura, K., Fujioka-Kobayashi, M., Noguchi, K. (2017). Comparison of the effects of recombinant human bone morphogenetic protein-2 and -9 on bone formation in rat calvarial critical-size defects. Clin Oral Investig, 21(9), 2671-2679. doi:10.1007/s00784-017-2069-3 Nakashima, K., Zhou, X., Kunkel, G., Zhang, Z., Deng, J. M., Behringer, R. R., de Crombrugghe, B. (2002). The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell, 108(1), 17-29. doi:10.1016/s0092-8674(01)00622-5 Nakashima, M., Nagasawa, H., Yamada, Y., Reddi, A. H. (1994). Regulatory role of transforming growth factor-beta, bone morphogenetic protein-2, and protein-4 on gene expression of extracellular matrix proteins and differentiation of dental pulp cells. Dev Biol, 162(1), 18-28. doi:10.1006/dbio.1994.1063 Niu, L. N., Zhang, L., Jiao, K., Li, F., Ding, Y. X., Wang, D. Y., Chen, J. H. (2011). Localization of MMP-2, MMP-9, TIMP-1, and TIMP-2 in human coronal dentine. J Dent, 39(8), 536-542. doi:10.1016/j.jdent.2011.05.004 Nordstrom, S. M., Carleton, S. M., Carson, W. L., Eren, M., Phillips, C. L., Vaughan, D. E. (2007). Transgenic over-expression of plasminogen activator inhibitor-1 results in age-dependent and gender-specific increases in bone strength and mineralization. Bone, 41(6), 995-1004. doi:10.1016/j.bone.2007.08.020 Papagerakis, P., Berdal, A., Mesbah, M., Peuchmaur, M., Malaval, L., Nydegger, J., Macdougall, M. (2002). Investigation of osteocalcin, osteonectin, and dentin sialophosphoprotein in developing human teeth. Bone, 30(2), 377-385. doi:https://doi.org/10.1016/S8756-3282(01)00683-4 Rosa, V., Zhang, Z., Grande, R. H., Nor, J. E. (2013). Dental pulp tissue engineering in full-length human root canals. J Dent Res, 92(11), 970-975. doi:10.1177/0022034513505772 Shi, S., Bartold, P. M., Miura, M., Seo, B. M., Robey, P. G., Gronthos, S. (2005). The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res, 8(3), 191-199. doi:10.1111/j.1601-6343.2005.00331.x Song, J. J., Celeste, A. J., Kong, F. M., Jirtle, R. L., Rosen, V., Thies, R. S. (1995). Bone morphogenetic protein-9 binds to liver cells and stimulates proliferation. Endocrinology, 136(10), 4293-4297. doi:10.1210/endo.136.10.7664647 Su, H. T., Weng, C. C., Hsiao, P. J., Chen, L. H., Kuo, T. L., Chen, Y. W., Cheng, K. H. (2013). Stem cell marker nestin is critical for TGF-beta1-mediated tumor progression in pancreatic cancer. Mol Cancer Res, 11(7), 768-779. doi:10.1158/1541-7786.MCR-12-0511 Suzuki, Y., Ohga, N., Morishita, Y., Hida, K., Miyazono, K., Watabe, T. (2010). BMP-9 induces proliferation of multiple types of endothelial cells in vitro and in vivo. J Cell Sci, 123(Pt 10), 1684-1692. doi:10.1242/jcs.061556 Takafuji, Y., Tatsumi, K., Ishida, M., Kawao, N., Okada, K., Matsuo, O., Kaji, H. (2019). Plasminogen activator inhibitor-1 deficiency suppresses osteoblastic differentiation of mesenchymal stem cells in mice. J Cell Physiol, 234(6), 9687-9697. doi:10.1002/jcp.27655 Takarada, T., Hinoi, E., Nakazato, R., Ochi, H., Xu, C., Tsuchikane, A., Yoneda, Y. (2013). An analysis of skeletal development in osteoblast-specific and chondrocyte-specific runt-related transcription factor-2 (Runx2) knockout mice. J Bone Miner Res, 28(10), 2064-2069. doi:10.1002/jbmr.1945 Terling, C., Rass, A., Mitsiadis, T. A., Fried, K., Lendahl, U., Wroblewski, J. (1995). Expression of the intermediate filament nestin during rodent tooth development. Int J Dev Biol, 39(6), 947-956. Tomlinson, M. J., Dennis, C., Yang, X. B., Kirkham, J. (2015). Tissue non-specific alkaline phosphatase production by human dental pulp stromal cells is enhanced by high density cell culture. Cell Tissue Res, 361(2), 529-540. doi:10.1007/s00441-014-2106-3 Wang, K., Feng, H., Ren, W., Sun, X., Luo, J., Tang, M., Zhang, Y. (2011). BMP9 inhibits the proliferation and invasiveness of breast cancer cells MDA-MB-231. Journal of Cancer Research and Clinical Oncology, 137(11), 1687. doi:10.1007/s00432-011-1047-4 Wang, P., Wang, Y., Tang, W., Wang, X., Pang, Y., Yang, S., Cao, Z. (2017). Bone Morphogenetic Protein-9 Enhances Osteogenic Differentiation of Human Periodontal Ligament Stem Cells via the JNK Pathway. PLoS One, 12(1), e0169123. doi:10.1371/journal.pone.0169123 Wang, R. N., Green, J., Wang, Z., Deng, Y., Qiao, M., Peabody, M., Shi, L. L. (2014). Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes Dis, 1(1), 87-105. doi:10.1016/j.gendis.2014.07.005 Wiesmann, H. P., Meyer, U., Plate, U., Höhling, H. J. (2005). Aspects of collagen mineralization in hard tissue formation. Int Rev Cytol, 242, 121-156. doi:10.1016/s0074-7696(04)42003-8 Xu, D. J., Zhao, Y. Z., Wang, J., He, J. W., Weng, Y. G., Luo, J. Y. (2012). Smads, p38 and ERK1/2 are involved in BMP9-induced osteogenic differentiation of C3H10T1/2 mesenchymal stem cells. BMB Rep, 45(4), 247-252. doi:10.5483/bmbrep.2012.45.4.247 Yan, S., Zhang, R., Wu, K., Cui, J., Huang, S., Ji, X., . . . Weng, Y. (2018). Characterization of the essential role of bone morphogenetic protein 9 (BMP9) in osteogenic differentiation of mesenchymal stem cells (MSCs) through RNA interference. Genes Dis, 5(2), 172-184. doi:10.1016/j.gendis.2018.04.006 Yang, G., Li, X., Yuan, G., Liu, P., Fan, M. (2014). The Effects of Osterix on the Proliferation and Odontoblastic Differentiation of Human Dental Papilla Cells. Journal of Endodontics, 40. doi:10.1016/j.joen.2014.04.012 Zhang, W., Walboomers, X. F., Shi, S., Fan, M., Jansen, J. A. (2006). Multilineage differentiation potential of stem cells derived from human dental pulp after cryopreservation. Tissue Eng, 12(10), 2813-2823. doi:10.1089/ten.2006.12.2813 Zhao, Y., Song, T., Wang, W., Wang, J., He, J., Wu, N., . . . Luo, J. (2012). P38 and ERK1/2 MAPKs act in opposition to regulate BMP9-induced osteogenic differentiation of mesenchymal progenitor cells. PLoS One, 7(8), e43383. doi:10.1371/journal.pone.0043383 Zheng, W., Chen, Q., Zhang, Y., Xia, R., Gu, X., Hao, Y., Hu, D. (2020). BMP9 promotes osteogenic differentiation of SMSCs by activating the JNK/Smad2/3 signaling pathway. J Cell Biochem, 121(4), 2851-2863. doi:10.1002/jcb.29519 Zhou, X., Zhang, Z., Feng, J. Q., Dusevich, V. M., Sinha, K., Zhang, H., de Crombrugghe, B. (2010). Multiple functions of Osterix are required for bone growth and homeostasis in postnatal mice. Proc Natl Acad Sci U S A, 107(29), 12919-12924. doi:10.1073/pnas.0912855107
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81211-
dc.description.abstract"實驗目的 再生牙醫學是當今牙科治療的新興研究領域,此種治療主要是希望能夠借助組織工程學及再生醫學的力量修復受損的牙髓及牙周組織並保留其活性,其中,找到合適的生長因子和幹細胞是治療成功的關鍵。來自人類脫落的乳牙牙髓幹細胞(SHEDs)是容易藉由非侵入性方法取得的有效幹細胞來源,而骨形成蛋白-9(BMP-9)在目前許多研究中發現具有誘導間質幹細胞進行組織再生及分化的功能。本研究旨在通過分析相關標誌物的表現來探討BMP-9對SHEDs的生物活性的影響,標誌物包括:Osterix (Osx)、骨鈣蛋白(Osteoclacin, OCN)、鹼性磷酸酶(Alkaline phosphatase, ALP)、第一型膠原蛋白(Type I collagen)、金屬肽酶抑製劑-1(TIMP-1)、巢蛋白(Nestin)、Runx-2、神經性鈣粘附蛋白(N-cadherin)和纖溶原激活物抑制劑-1(PAI-1)等,並探討其訊號傳導路徑。 實驗方法 使用原代培養的SHEDs作為實驗細胞,並使用不同濃度的BMP-9 (0, 10, 25, 50, 100, 200 ng/ml)處理24小時後,通過即時定量聚合酶連鎖反應(Real-time quantitative PCR)、西方墨點法(western blot)以及免疫化學螢光染色法(Immunofluorescence staining)來檢測Osx、OCN、Runx-2、ALP、Type I collagen、TIMP-1、Nestin、N-cadherin和PAI-1的表現。另外,也使用western blot來檢測檢測p-Smad 1/5/8與p-Smad 2/3的蛋白表現量來研究SHEDs中BMP-9誘發的信號傳導途徑。 實驗結果: 加入BMP-9處理24小時後的SHEDs細胞顯示:Osx、OCN、ALP、Runx-2、Type I collagen、Nestin、TIMP-1、PAI-1、N-cadherin的蛋白表現量皆增加,RNA表現量Osx、OCN、Runx-2、Nestin、PAI-1、N-cadherin可以觀察到在加入BMP-9處理24小時候有些微提升,其餘組別則並沒有觀察到與控制組有明顯差異。另外也可以觀察到加入BMP-9處理24小時後,p-smad 1/5/8、p-smad 2/3以及p-p38的蛋白表現量有隨著BMP-9加入濃度上升而上升的趨勢。 結論 根據本篇研究結果可得知,BMP-9 可能具有促進SHEDs分化成骨/牙源性細胞之潛力,並具有調節SHEDs細胞外間質代謝作用。此外,Smad 1/5/8、Smad 2/3以及p-p38這三種途徑可能在加入BMP-9後的SHEDs細胞上都有被啟發進而影響SHEDs的細胞活性。SHEDs和BMP-9的共同使用未來或許可以運用在牙科組織修復工程的領域。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:36:27Z (GMT). No. of bitstreams: 1
U0001-3107202113473800.pdf: 3424858 bytes, checksum: 9a2f833ac0ee5638a0442f39fb16fc26 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"目錄 口試委員會審定書 i 誌謝 ii 中文摘要 iii Abstract v 目錄 vii 第一章 文獻回顧 1 1.1 再生性牙科醫學(Regenerative Dentistry) 1 1.2 人類脫落乳牙牙髓幹細胞(SHEDs) 2 1.3 骨形成蛋白(Bone morphogenic protein, BMP) 3 1.3.1 BMP家族 3 1.3.2 BMP受體及傳導路徑 4 1.3.3 BMP在牙科組織再生工程的應用 5 1.3.4 BMP-9之功能及介紹 5 1.3.5 BMP-9的相關研究 7 1.4 細胞分化標誌物 8 1.4.1 Osterix (Osx, Sp7) 8 1.4.2 Runt相關轉錄因子-2 (Runx-2) 9 1.4.3 骨鈣蛋白(Osteocalcin, OCN) 9 1.4.4 鹼性磷酸酶(Alkaline phosphatase, ALP) 10 1.4.5 第一型膠原蛋白(Type I collagen, Collagen-I) 11 1.4.6 金屬肽酶抑製劑-1(TIMP-1) 11 1.4.7 纖溶原激活物抑制劑-1(PAI-1) 12 1.4.8 神經性鈣黏附蛋白(N-cadherin) 13 1.4.9 巢蛋白(Nestin) 13 第二章 實驗目的及假說 15 第三章 材料及方法 16 3.1 材料準備 16 3.2 SHEDs細胞培養 17 3.3 細胞存活率分析(MTT assay) 17 3.4 即時定量聚合酶連鎖反應(Real-time quantitative PCR) 18 3.4.1 核糖核酸(RNA)萃取 18 3.4.2 RNA定量 19 3.4.3 反轉錄(Reverse transcription) 19 3.4.4 即時定量聚合酶連鎖反應(Real-time quantitative PCR) 20 3.5 西方墨點法(Western blot) 21 3.5.1 蛋白質萃取 21 3.5.2 蛋白質定量 21 3.5.3 十二烷基硫酸鈉聚丙烯醯胺凝膠電泳(SDS-PAGE) 22 3.5.4 轉漬(Transfer gel) 23 3.5.5 封閉及抗體雜交(Blocking and antibody hybridization) 23 3.5.6 化學冷光影像擷取(Chemiluminescence photography) 23 3.6 免疫組織化學螢光染色(Immunofluorescence assay) 24 3.6.1 細胞培養 24 3.6.2 免疫組織化學螢光染色(Immunofluorescence staining) 24 第四章 實驗結果 26 4.1 BMP-9濃度對於SHED型態的影響 26 4.2 BMP-9對於SHED的影響 26 4.3 BMP-9濃度對於SHEDs蛋白質及RNA表現量的影響 26 4.3.1 BMP-9濃度對於Osterix蛋白質及RNA表現量的影響 26 4.3.2 BMP-9濃度對於Runx-2蛋白質及RNA表現量的影響 27 4.3.3 BMP-9濃度對於OCN蛋白質及RNA表現量的影響 27 4.3.4 BMP-9濃度對於ALP蛋白質及RNA表現量的影響 27 4.3.5 BMP-9濃度對於Collagen-I蛋白質及RNA表現量的影響 28 4.3.6 BMP-9濃度對於TIMP-I蛋白質及RNA表現量的影響 28 4.3.7 BMP-9濃度對於PAI-I蛋白質及RNA表現量的影響 28 4.3.8 BMP-9濃度對於N-cadherin蛋白質及RNA表現量的影響 29 4.3.9 BMP-9濃度對於Nestin蛋白質及RNA表現量的影響 29 4.4 BMP-9濃度對於磷酸化之Smad 1/5/8 、Smad 2/3及p-38蛋白質表現量的影響 30 第五章 討論 31 第六章 總結 37 參考文獻 38 表格 表格1. PCR的引子(primer)序列(sequence) 48 表格2. 西式墨點法中蛋白質萃取緩衝液(Protein extraction buffer)的調製 49 表格3. SDS-PAGE膠體的調製 49 表格4A. 西式墨點法SDS-PAGE電泳緩衝液(Running buffer)的調製 50 表格4B. 西式墨點法SDS-PAGE轉漬緩衝液(Transfer buffer)的調製 50 表格4C. 西式墨點法Tween TBS洗液的調製 51 表格5. 西式墨點法以及免疫螢光化學染色法使用的一級抗體 51 表格6. 重要名詞縮寫表 52 圖示 圖示1. SHEDs細胞在各種不同BMP-9濃度下24小時後的型態 53 圖示2. BMP-9 的濃度差異對於Osx的mRNA以及蛋白質的影響 54 圖示3. 免疫螢光化學染色的結果。BMP-9 的濃度差異對於SHEDs表現Osx的影響 55 圖示4. BMP-9 的濃度差異對於Runx-2的mRNA以及蛋白質的影響 56 圖示5. BMP-9 的濃度差異對於OCN的mRNA以及蛋白質的影響 57 圖示6. BMP-9 的濃度差異對於ALP的mRNA以及蛋白質的影響 58 圖示7. 免疫螢光化學染色的結果。BMP-9 的濃度差異對於SHEDs表現ALP的影響 59 圖示8. BMP-9 的濃度差異對於Collagen-I的mRNA以及蛋白質的影響 60 圖示9. 免疫螢光化學染色的結果。BMP-9 的濃度差異對於SHEDs表現Type-I collagen的影響 61 圖示10. BMP-9 的濃度差異對於TIMP-1的mRNA以及蛋白質的影響 62 圖示11. 免疫螢光化學染色的結果。BMP-9 的濃度差異對於SHEDs表現TIMP-1的影響 63 圖示12. BMP-9 的濃度差異對於PAI-1的mRNA以及蛋白質的影響 64 圖示13. 免疫螢光化學染色的結果。BMP-9 的濃度差異對於SHEDs表現PAI-1的影響 65 圖示14. BMP-9 的濃度差異對於N-cadherin的mRNA以及蛋白質的影響 66 圖示15. 免疫螢光化學染色的結果。BMP-9 的濃度差異對於SHEDs表現N-cadherin的影響 67 圖示16. BMP-9 的濃度差異對於Nestin的mRNA以及蛋白質的影響 68 圖示17. 免疫螢光化學染色的結果。BMP-9 的濃度差異對於SHEDs表現Nestin的影響 69 圖示18. BMP-9 的濃度差異對於p-Smad 1/5/8、p-Smad 2、p-Smad 3以及p-p38蛋白質的影響 70 圖示19. BMP-9對於SHEDs的生物活性之影響以及相關路徑 71"
dc.language.isozh-TW
dc.subject人類脫落乳牙牙髓幹細胞zh_TW
dc.subject再生牙醫學zh_TW
dc.subjectBMP-9zh_TW
dc.subjectRegenerative dentistryen
dc.subjectBMP-9en
dc.subjectStem cells from human exfoliated deciduous teethen
dc.titleBMP-9對於人類脫落乳牙牙髓幹細胞生物活性的影響暨其訊息傳導機制zh_TW
dc.titleEffect of BMP-9 on the Biological Activities of SHEDs and the Associated Signal Transduction Pathwaysen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張美姬(Hsin-Tsai Liu),邱賢忠(Chih-Yang Tseng),張維仁
dc.subject.keyword再生牙醫學,BMP-9,人類脫落乳牙牙髓幹細胞,zh_TW
dc.subject.keywordRegenerative dentistry,BMP-9,Stem cells from human exfoliated deciduous teeth,en
dc.relation.page71
dc.identifier.doi10.6342/NTU202101961
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-08-04
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-3107202113473800.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved