請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81202完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭憶中(I-CHUNG CHENG) | |
| dc.contributor.author | Cheng-Wei Hung | en |
| dc.contributor.author | 洪晟瑋 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:35:56Z | - |
| dc.date.available | 2021-08-20 | |
| dc.date.available | 2022-11-24T03:35:56Z | - |
| dc.date.copyright | 2021-08-20 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-17 | |
| dc.identifier.citation | [1]J. Hansen et al., 'Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 C global warming could be dangerous,' Atmospheric Chemistry and Physics, vol. 16, no. 6, pp. 3761-3812, 2016. [2]D. A. Ussiri and R. Lal, 'Introduction to Global Carbon Cycling: An Overview of the Global Carbon Cycle,' Carbon Sequestration for Climate Change Mitigation and Adaptation, pp. 61-76, 2017. [3]M. W. Markus Fischer, Susanne Herritsch, Jutta Trube, 'International Technology Roadmap of Photovoltaic(ITRPV) 2019 results,' vol. Eleventh edition, 2020. [4]R. Deng, N. L. Chang, Z. Ouyang, and C. M. Chong, 'A techno-economic review of silicon photovoltaic module recycling,' Renewable and Sustainable Energy Reviews, vol. 109, pp. 532-550, 2019. [5]S. Weckend, A. Wade, and G. A. Heath, 'End of life management: solar photovoltaic panels,' National Renewable Energy Lab.(NREL), Golden, CO (United States), 2016. [6]R. Steeneveldt, B. Berger, and T. Torp, 'CO2 capture and storage: closing the knowing–doing gap,' Chemical Engineering Research and Design, vol. 84, no. 9, pp. 739-763, 2006. [7]J. P. Jones, G. S. Prakash, and G. A. Olah, 'Electrochemical CO2 reduction: recent advances and current trends,' Israel Journal of Chemistry, vol. 54, no. 10, pp. 1451-1466, 2014. [8]H. Arakawa et al., 'Catalysis research of relevance to carbon management: progress, challenges, and opportunities,' Chemical Reviews, vol. 101, no. 4, pp. 953-996, 2001. [9]Y. Hori, H. Wakebe, T. Tsukamoto, and O. Koga, 'Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media,' Electrochimica Acta, vol. 39, no. 11-12, pp. 1833-1839, 1994. [10]Y. Peng, T. Wu, L. Sun, J. M. Nsanzimana, A. C. Fisher, and X. Wang, 'Selective electrochemical reduction of CO2 to ethylene on nanopores-modified copper electrodes in aqueous solution,' ACS applied materials interfaces, vol. 9, no. 38, pp. 32782-32789, 2017. [11]J. Erlebacher and R. Seshadri, 'Hard materials with tunable porosity,' Mrs Bulletin, vol. 34, no. 8, pp. 561-568, 2009. [12]M. Watanabe, M. Shibata, A. Kato, M. Azuma, and T. Sakata, 'Design of alloy electrocatalysts for CO 2 reduction: III. The selective and reversible reduction of on Cu alloy electrodes,' Journal of the Electrochemical Society, vol. 138, no. 11, p. 3382, 1991. [13]S. Lee, G. Park, and J. Lee, 'Importance of Ag–Cu biphasic boundaries for selective electrochemical reduction of CO2 to ethanol,' Acs Catalysis, vol. 7, no. 12, pp. 8594-8604, 2017. [14]I. E. Agency, Coal 2017: Analysis and Forecasts to 2022. 2017. [15]G. Granata, F. Pagnanelli, E. Moscardini, T. Havlik, and L. Toro, 'Recycling of photovoltaic panels by physical operations,' Solar energy materials and solar cells, vol. 123, pp. 239-248, 2014. [16]L. Zhang and Z. Xu, 'Separating and recycling plastic, glass, and gallium from waste solar cell modules by nitrogen pyrolysis and vacuum decomposition,' Environmental science technology, vol. 50, no. 17, pp. 9242-9250, 2016. [17]T. Doi, I. Tsuda, H. Unagida, A. Murata, K. Sakuta, and K. Kurokawa, 'Experimental study on PV module recycling with organic solvent method,' Solar energy materials and solar cells, vol. 67, no. 1-4, pp. 397-403, 2001. [18]B. Jung, J. Park, D. Seo, and N. Park, 'Sustainable system for raw-metal recovery from crystalline silicon solar panels: from noble-metal extraction to lead removal,' ACS Sustainable Chemistry Engineering, vol. 4, no. 8, pp. 4079-4083, 2016. [19]W.-H. Huang, W. J. Shin, L. Wang, W.-C. Sun, and M. Tao, 'Strategy and technology to recycle wafer-silicon solar modules,' Solar Energy, vol. 144, pp. 22-31, 2017. [20]E. Abdel-Aal and F. Farghaly, 'Preparation of silver powders in micron size from used photographic films via leaching–cementation technique,' Powder Technology, vol. 178, no. 1, pp. 51-55, 2007. [21]J. Erlebacher, 'An atomistic description of dealloying: porosity evolution, the critical potential, and rate-limiting behavior,' Journal of the Electrochemical Society, vol. 151, no. 10, p. C614, 2004. [22]Y.-Z. Lee, W.-Y. Zeng, and I.-C. Cheng, 'Synthesis and characterization of nanoporous copper thin films by magnetron sputtering and subsequent dealloying,' Thin Solid Films, vol. 699, p. 137913, 2020. [23]X. Lu, J. Chen, S. Skrabalak, and Y. Xia, 'Galvanic replacement reaction: a simple and powerful route to hollow and porous metal nanostructures,' Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, vol. 221, no. 1, pp. 1-16, 2007. [24]L. Chen, L. Zhang, T. Fujita, and M. Chen, 'Surface-Enhanced Raman Scattering of Silver@ Nanoporous Copper Core− Shell Composites Synthesized by an In Situ Sacrificial Template Approach,' The Journal of Physical Chemistry C, vol. 113, no. 32, pp. 14195-14199, 2009. [25]F. l. Urbain, P. Tang, N. M. Carretero, T. Andreu, J. Arbiol, and J. R. Morante, 'Tailoring copper foam with silver dendrite catalysts for highly selective carbon dioxide conversion into carbon monoxide,' ACS applied materials interfaces, vol. 10, no. 50, pp. 43650-43660, 2018. [26]T. Juarez and A. M. Hodge, 'Synthesis of Nanoporous Gold Tubes,' Advanced Engineering Materials, vol. 18, no. 1, pp. 65-69, 2016. [27]S. Sen, D. Liu, and G. T. R. Palmore, 'Electrochemical reduction of CO2 at copper nanofoams,' Acs Catalysis, vol. 4, no. 9, pp. 3091-3095, 2014. [28]T. T. Hoang et al., 'Nanoporous copper–silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol,' Journal of the American Chemical Society, vol. 140, no. 17, pp. 5791-5797, 2018. [29]J. Choi et al., 'Electrochemical CO2 reduction to CO on dendritic Ag–Cu electrocatalysts prepared by electrodeposition,' Chemical Engineering Journal, vol. 299, pp. 37-44, 2016. [30]D. Ren, B. S.-H. Ang, and B. S. Yeo, 'Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived Cu x Zn catalysts,' Acs Catalysis, vol. 6, no. 12, pp. 8239-8247, 2016. [31]S. Sarfraz, A. T. Garcia-Esparza, A. Jedidi, L. Cavallo, and K. Takanabe, 'Cu–Sn bimetallic catalyst for selective aqueous electroreduction of CO2 to CO,' ACS Catalysis, vol. 6, no. 5, pp. 2842-2851, 2016. [32]D. R. Lide, CRC handbook of chemistry and physics. CRC press, 2004. [33]M. Li et al., 'Hierarchically porous micro/nanostructured copper surfaces with enhanced antireflection and hydrophobicity,' Applied Surface Science, vol. 361, pp. 11-17, 2016. [34]Y. S. Ham, M. J. Kim, T. Lim, D.-K. Kim, S.-K. Kim, and J. J. Kim, 'Direct formation of dendritic Ag catalyst on a gas diffusion layer for electrochemical CO2 reduction to CO and H2,' International Journal of Hydrogen Energy, vol. 43, no. 24, pp. 11315-11325, 2018. [35]H. Wang, M. Jiang, J. Su, and Y. Liu, 'Fabrication of porous CuO nanoplate-films by oxidation-assisted dealloying method,' Surface and Coatings Technology, vol. 249, pp. 19-23, 2014. [36]H. Yu et al., 'Characterization and nano-mechanical properties of tribofilms using Cu nanoparticles as additives,' Surface and Coatings Technology, vol. 203, no. 1-2, pp. 28-34, 2008. [37]M. Ma, K. Djanashvili, and W. A. Smith, 'Selective electrochemical reduction of CO 2 to CO on CuO-derived Cu nanowires,' Physical Chemistry Chemical Physics, vol. 17, no. 32, pp. 20861-20867, 2015. [38]A. Gautam, P. Tripathy, and S. Ram, 'Microstructure, topology and X-ray diffraction in Ag-metal reinforced polymer of polyvinyl alcohol of thin laminates,' Journal of materials science, vol. 41, no. 10, pp. 3007-3016, 2006. [39]C. Song, Z. Zhao, X. Sun, Y. Zhou, Y. Wang, and D. Wang, 'In situ growth of Ag nanodots decorated Cu2O porous nanobelts networks on copper foam for efficient HER electrocatalysis,' Small, vol. 15, no. 29, p. 1804268, 2019. [40]G. B. Hoflund, J. F. Weaver, and W. S. Epling, 'Ag foil by XPS,' Surface Science Spectra, vol. 3, no. 2, pp. 151-156, 1994. [41]M. Du, H.-w. Zhang, Y.-x. Li, Y. Liu, X. Chen, and Y. He, 'Fabrication and wettability of monolithic bimodal porous Cu with Gasar macro-pores and dealloying nano-pores,' Applied Surface Science, vol. 353, pp. 804-810, 2015. [42]T. N. Huan, P. Simon, A. Benayad, L. Guetaz, V. Artero, and M. Fontecave, 'Cu/Cu2O electrodes and CO2 reduction to formic acid: Effects of organic additives on surface morphology and activity,' Chemistry–A European Journal, vol. 22, no. 39, pp. 14029-14035, 2016. [43]A. A. Permyakova et al., 'On the oxidation state of Cu2O upon electrochemical CO2 reduction: an XPS study,' ChemPhysChem, vol. 20, no. 22, pp. 3120-3127, 2019. [44]C.-J. Chang et al., 'Dynamic reoxidation/reduction-driven atomic interdiffusion for highly selective CO2 reduction toward methane,' Journal of the American Chemical Society, vol. 142, no. 28, pp. 12119-12132, 2020. [45]A. J. Bard and L. R. Faulkner, 'Fundamentals and applications,' Electrochemical methods, vol. 2, no. 482, pp. 580-632, 2001. [46]T.-K. Huang et al., 'Growth of Cu nanobelt and Ag belt-like materials by surfactant-assisted galvanic reductions,' Langmuir, vol. 23, no. 10, pp. 5722-5726, 2007. [47]Z. Hu et al., 'Bilayer nanoporous copper films with various morphology features synthesized by one-step dealloying,' Journal of Alloys and Compounds, vol. 754, pp. 26-31, 2018. [48]Y. Li, X. Zhao, H. Liu, W. Li, and X. Wang, 'Synthesis and Morphology Control of Nanoporous Cu2O/Cu and Their Application as Electrode Materials for Capacitors,' Nanomaterials, vol. 9, no. 3, p. 340, 2019. [49]C. Lakshmanan, R. Viswanath, S. Polaki, and R. Rajaraman, 'Determination of surface area of nanoporous metals: Insights from double layer charging,' in AIP Conference Proceedings, 2015, vol. 1665, no. 1: AIP Publishing LLC, p. 140033. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81202 | - |
| dc.description.abstract | 為了因應過度排放的溫室氣體所帶來的劇烈氣候變遷,世界各國的研究團隊以及各方學者皆試圖透過各種手段來減緩溫室氣體的排放以及發展可再生能源,為了地球環境的永續發展而努力。其中在永續能源的發展部分,太陽能發電產業因其具備無限的發電來源且幾乎不受地域的限制,更不會有任何的廢氣排放,使得該相關產業在近年來蓬勃發展,甚至可能在未來成為負載量最大的可再生能源。然而負責進行能量轉換的重要零件,太陽能模組材料,因其有限的使用壽命以及轉化率的衰退,在未來勢必將面臨淘汰的命運。而這些模組材料中含有各種不同的微量金屬元素如:銀、銅、錫等,若是可以將這些金屬進行提純精煉,除了可以增加太陽能發電產業的永續發展性外,也可以提升相關回收產業的附加價值。 本研究將使用硝酸來將這些微量金屬進行溶解,並且將提純目標設定為模組材料中單位價值最高的銀,隨後利用電化學的方法來將其還原,並且在-0.2V (vs. Ag/AgCl)持續60分鐘後可以將存在於電解液中的銀還原出72.6%。而該還原產物經過EDS檢測後並未發現任何其他的金屬元素,顯示該金屬銀的純度極高。除了金屬銀的提純外,也將把銀提純技術與二氧化碳還原反應做結合,利用模板法的方式,以純銅箔以及支架尺寸為30±6 nm的奈米多孔銅薄膜做為基材,分別利用自發氧化還原法以及間歇性電鍍法的方式來將硝酸水溶液中的銀沉積於這些基材上,以此來製備銅銀合金電極。 實驗結果顯示兩種沉積方法皆可以完成銅銀合金電極的製備,然而使用間歇性電鍍法更可以在基材表面創造出更均勻的銀顆粒沉積。在使用奈米多孔薄膜做為基材鍍銀後,因其高比表面積的特性,使得在進行二氧化碳還原催化反應時的電流密度表現相較於以純銅箔為基材來得更加優異。此外,在產物選擇性部分,純銅箔鍍銀後對CO、HCOOH和C2H4的法拉第效率分別為35%、10%和1%;奈米多孔銅鍍銀後則對CO、HCOOH和C2H4的法拉第效率分別為6%、29%和4%。銅銀電極的選擇性更可以透過改變基材的表面結構以及沉積銀的數量來將CO對HCOOH的法拉第效率比從0.2調整至3.5,而造成此現象是由於奈米多孔結構所具備的雙連續通道,使得奈米多孔銅薄膜表面批覆銀後仍然可以維持下方多孔結構與電解液的接觸,維持奈米多孔銅的電催化特性。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:35:56Z (GMT). No. of bitstreams: 1 U0001-0208202113114900.pdf: 7875973 bytes, checksum: 89f8ce2f4b7032d50346e447dc6aa73f (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 論文口試委員審定書...i 致謝...iii 摘要...iv Abstract...vi 目錄...viii 圖目錄...x 表目錄...xv 第 1 章、 緒論...1 1.1、 前言...1 1.2、 研究目的...5 第 2 章、 文獻回顧...6 2.1、 純化及提煉...6 2.2、 奈米多孔金屬製程...10 2.3、 濕法冶金鍍銀...12 2.4、 二氧化碳還原反應...16 第 3 章、 實驗步驟...20 3.1、 金屬銀提純...20 3.2、 製備銅基材...22 3.3、 製備銅銀電極...23 3.4、 電極材料分析與儀器...25 3.5、 二氧化碳還原催化實驗...26 第 4 章、 結果與討論...29 4.1、 金屬銀提純...29 4.2、 製備銅基材...33 4.3、 製備銅銀電極...36 4.3.1、 自發氧化還原法(GRR)...36 4.3.2、 間歇性電鍍法(PED)...42 4.4、 電極之成分分析...48 4.4.1、 XRD...48 4.4.2、 XPS...50 4.5、 銅銀電極之催化分析...54 第 5 章、 結論...61 第 6 章、 未來展望...62 第 7 章、 附錄...66 7.1、 多層奈米多孔銅薄膜...66 7.2、 超級電容...71 7.2.1、 氫氧化銅...75 7.2.2、 氧化銅...77 第 8 章、 參考資料...79 | |
| dc.language.iso | zh-TW | |
| dc.subject | 電催化觸媒 | zh_TW |
| dc.subject | 二氧化碳還原反應 | zh_TW |
| dc.subject | 奈米多孔銅 | zh_TW |
| dc.subject | 太陽能模組廢棄物 | zh_TW |
| dc.subject | 銀提純 | zh_TW |
| dc.subject | silver extraction | en |
| dc.subject | solar modules waste | en |
| dc.subject | nanoporous copper | en |
| dc.subject | electrocatalysts | en |
| dc.subject | CO2 reduction reaction | en |
| dc.title | 模組材料銀提純及其與奈米多孔銅於二氧化碳還原之應用 | zh_TW |
| dc.title | Silver Recovery From End-of-Life Solar Modules and its Application with Nanoporous Copper for Electrochemical CO2 reduction | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.author-orcid | 0000-0002-6595-7239 | |
| dc.contributor.advisor-orcid | 鄭憶中(0000-0001-5354-5707) | |
| dc.contributor.oralexamcommittee | 王正全(Hsin-Tsai Liu),李文錦(Chih-Yang Tseng),林招松 | |
| dc.subject.keyword | 銀提純,太陽能模組廢棄物,電催化觸媒,奈米多孔銅,二氧化碳還原反應, | zh_TW |
| dc.subject.keyword | silver extraction,solar modules waste,electrocatalysts,nanoporous copper,CO2 reduction reaction, | en |
| dc.relation.page | 83 | |
| dc.identifier.doi | 10.6342/NTU202101990 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-08-17 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0208202113114900.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 7.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
