Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81196
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊宗傑(Tsung-Chieh Yang),林立德(Li-Deh Lin)
dc.contributor.authorChun-Min Shenen
dc.contributor.author沈峻民zh_TW
dc.date.accessioned2022-11-24T03:35:36Z-
dc.date.available2021-08-31
dc.date.available2022-11-24T03:35:36Z-
dc.date.copyright2021-08-31
dc.date.issued2021
dc.date.submitted2021-08-04
dc.identifier.citation[1] Hattab FN, Yassin OM. Etiology and diagnosis of tooth wear: a literature review and presentation of selected cases. International Journal of Prosthodontics. 2000;13. [2] Carvalho TS, Lussi A, Jaeggi T, Gambon DL. Erosive tooth wear in children. Erosive tooth wear. 2014;25:262-78. [3] Lussi A, Carvalho TS. Erosive tooth wear: a multifactorial condition of growing concern and increasing knowledge. Erosive tooth wear. 2014;25:1-15. [4] Wetselaar P, Vermaire JH, Visscher CM, Lobbezoo F, Schuller AA. The prevalence of tooth wear in the Dutch adult population. Caries research. 2016;50:543-50. [5] Van’t Spijker A, Rodriguez JM, Kreulen CM, Bronkhorst EM, Bartlett DW, Creugers N. Prevalence of tooth wear in adults. Int J Prosthodont. 2009;22:35-42. [6] Kanzow P, Wegehaupt FJ, Attin T, Wiegand A. Etiology and pathogenesis of dental erosion. Quintessence international. 2016;47. [7] Lussi A, Hellwig E, Zero D, Jaeggi T. Erosive tooth wear: diagnosis, risk factors and prevention. American journal of dentistry. 2006;19:319. [8] Mehta SB, Banerji S, Millar BJ, Suarez-Feito JM. Current concepts on the management of tooth wear: part 1. Assessment, treatment planning and strategies for the prevention and the passive management of tooth wear. Br Dent J. 2012;212:17-27. [9] Picos A, Badea ME, Dumitrascu DL. Dental erosion in gastro-esophageal reflux disease. A systematic review. Clujul Medical. 2018;91:387. [10] Bishop K, Kelleher M, Briggs P, Joshi R. Wear now? An update on the etiology of tooth wear. Quintessence International. 1997;28. [11] Watson ML, Trevor Burke F. Investigation and treatment of patients with teeth affected by tooth substance loss: a review. Dental update. 2000;27:175-83. [12] Milosevic A, Jones C. Use of resin-bonded ceramic crowns in a bulimic patient with severe tooth erosion. Quintessence International. 1996;27. [13] Lee A, He LH, Lyons K, Swain MV. Tooth wear and wear investigations in dentistry. J Oral Rehabil. 2012;39:217-25. [14] Rees JS, Somi S. A guide to the clinical management of attrition. Br Dent J. 2018;224:319-23. [15] De Boever J, Carlsson G, Klineberg I. Need for occlusal therapy and prosthodontic treatment in the management of temporomandibular disorders. Part I. Occlusal interferences and occlusal adjustment. Journal of oral rehabilitation. 2000;27:367-79. [16] Clark GT, Tsukiyama Y, Baba K, Watanabe T. Sixty-eight years of experimental occlusal interference studies: what have we learned? The Journal of prosthetic dentistry. 1999;82:704-13. [17] Lavigne G, Khoury S, Abe S, Yamaguchi T, Raphael K. Bruxism physiology and pathology: an overview for clinicians. Journal of oral rehabilitation. 2008;35:476-94. [18] Milosevic A, Agrawal N, Redfearn P, Mair L. The occurrence of toothwear in users of Ecstasy (3, 4 MethyleneDioxyMethAmphetamine). Community dentistry and oral epidemiology. 1999;27:283-7. [19] Milanlıoglu A. Paroxetine-induced severe sleep bruxism successfully treated with buspirone. Clinics. 2012;67:191-2. [20] Shellis RP, Addy M. The interactions between attrition, abrasion and erosion in tooth wear. Erosive Tooth Wear. 2014;25:32-45. [21] Dietschi D, Argente A. A comprehensive and conservative approach for the restoration of abrasion and erosion. part II: clinical procedures and case report. European Journal of Esthetic Dentistry. 2011;6. [22] Davies S, Gray R, Qualtrough A. Management of tooth surface loss. British dental journal. 2002;192:11-23. [23] Dietschi D, Argente A. A comprehensive and conservative approach for the restoration of abrasion and erosion. Part I: concepts and clinical rationale for early intervention using adhesive techniques. European Journal of Esthetic Dentistry. 2011;6. [24] Muts EJ, van Pelt H, Edelhoff D, Krejci I, Cune M. Tooth wear: a systematic review of treatment options. J Prosthet Dent. 2014;112:752-9. [25] Turner KA, Missirlian DM. Restoration of the extremely worn dentition. The Journal of prosthetic dentistry. 1984;52:467-74. [26] I A, I K, D H, B H, M C. Principles and guidelines for managing tooth wear: a Review. Internal Medicine and Care. 2018;2. [27] Sangeetha S, Mitra K, Yadalam U, Narayan SJ, Nagaraj T. Current concepts of trauma from occlusion - A review. Journal of Advanced Clinical and Research Insights. 2019;6:14-9. [28] Lambrechts P, Braem M, Vuylsteke-Wauters M, Vanherle G. Quantitative in vivo wear of human enamel. Journal of dental research. 1989;68:1752-4. [29] Ray D, Wiemann A, Patel P, Ding X, Kryscio R, Miller C. Estimation of the rate of tooth wear in permanent incisors: a cross‐sectional digital radiographic study. Journal of oral rehabilitation. 2015;42:460-6. [30] Jaeggi T, Lussi A. Prevalence, incidence and distribution of erosion. Erosive Tooth Wear. 2014;25:55-73. [31] Wetselaar P, Lobbezoo F. The tooth wear evaluation system: a modular clinical guideline for the diagnosis and management planning of worn dentitions. J Oral Rehabil. 2016;43:69-80. [32] Smith B. An index for measuring the wear of teeth. Br Dent J. 1984;156:435-8. [33] Bartlett D, Ganss C, Lussi A. Basic Erosive Wear Examination (BEWE): a new scoring system for scientific and clinical needs. Clin Oral Investig. 2008;12 Suppl 1:S65-8. [34] Vailati F, Christoph Belser U. Classification and treatment of the anterior maxillary dentition affected by dental erosion: the ACE classification. The International journal of periodontics restorative dentistry. 2010;30:559. [35] Loomans B, Opdam N, Attin T, Bartlett D, Edelhoff D, Frankenberger R et al. Severe Tooth Wear: European Consensus Statement on Management Guidelines. J Adhes Dent. 2017;19:111-9. [36] Ormianer Z, Gross M. A 2‐year follow‐up of mandibular posture following an increase in occlusal vertical dimension beyond the clinical rest position with fixed restorations. Journal of oral rehabilitation. 1998;25:877-83. [37] Ormianer Z, Palty A. Altered vertical dimension of occlusion: a comparative retrospective pilot study of tooth-and implant-supported restorations. International Journal of Oral Maxillofacial Implants. 2009;24. [38] Gross MD, Ormianer Z. A preliminary study on the effect of occlusal vertical dimension increase on mandibular postural rest position. International Journal of Prosthodontics. 1994;7. [39] Carlsson GE, Ingervall B. Effect of increasing vertical dimension on the masticatory system in subjects with natural teeth. The Journal of prosthetic dentistry. 1979;41:284-9. [40] Dahl BL, Krogstad O. The effect of a partial bite raising splint on the occlusal face height: An x-ray cephalometric study in human adults. Acta odontologica scandinavica. 1982;40:17-24. [41] Dahl B, Krogstad O. Long‐term observations of an increased occlusal face height obtained by a combined orthodontic/prosthetic approach. Journal of oral rehabilitation. 1985;12:173-6. [42] Mehta SB, Banerji S, Millar BJ, Suarez-Feito JM. Current concepts on the management of tooth wear: part 3. Active restorative care 2: the management of generalised tooth wear. Br Dent J. 2012;212:121-7. [43] Abduo J. Safety of increasing vertical dimension of occlusion: A systematic review. Quintessence international. 2012;43. [44] Edelhoff D, Stimmelmayr M, Schweiger J, Ahlers MO, Guth JF. Advances in materials and concepts in fixed prosthodontics: a selection of possible treatment modalities. Br Dent J. 2019;226:739-48. [45] Bevenius J, Evans S, L'Estrange P. Conservative management of erosion‐abrasion: A system for the general practitioner. Australian dental journal. 1994;39:4-10. [46] Kilpatrick N, Mahoney EK. Dental erosion: part 2. The management of dental erosion. New Zealand Dental Journal. 2004;100:42-7. [47] Suzuki S, Nagai E, Taira Y, Minesaki Y. In vitro wear of indirect composite restoratives. The Journal of prosthetic dentistry. 2002;88:431-6. [48] Robinson S, Nixon PJ, Gahan MJ, Chan MFW. Techniques for restoring worn anterior teeth with direct composite resin. Dental update. 2008;35:551-8. [49] Opdam N, Skupien J, Kreulen C, Roeters J, Loomans B, Huysmans MD. Case report: a predictable technique to establish occlusal contact in extensive direct composite resin restorations: the DSO-technique. Operative dentistry. 2016;41:S96-S108. [50] Hamburger J, Opdam N, Loomans B. Direct posterior esthetics: a management protocol for the treatment of severe tooth wear with resin composite (chapter 6); Direct posterior esthetics: clinical case (chapter 7). Minimally invasive esthetics: essentials in esthetic dentistry series Amsterdam: Elsevier Health Sciences. 2015. [51] Ramseyer ST, Helbling C, Lussi A. Posterior Vertical Bite Reconstructions of Erosively Worn Dentitions and the 'Stamp Technique' - A Case Series with a Mean Observation Time of 40 Months. J Adhes Dent. 2015;17:283-9. [52] Coachman C, De Arbeloa L, Mahn G, Sulaiman TA, Mahn E. An Improved Direct Injection Technique With Flowable Composites. A Digital Workflow Case Report. Oper Dent. 2020;45:235-42. [53] Attin T, Filli T, Imfeld C, Schmidlin PR. Composite vertical bite reconstructions in eroded dentitions after 5· 5 years: a case series. Journal of Oral Rehabilitation. 2012;39:73-9. [54] Schmidlin PR, Filli T, Imfeld C, Tepper S, Attin T. Three-year evaluation of posterior vertical bite reconstruction using direct resin composite--a case series. Operative Dentistry. 2009;34:102-8. [55] Firas Daoudi M, Radford JR. Use of a matrix to form directly applied resin composite to restore worn anterior teeth. Dental update. 2001;28:512-4. [56] Mizrahi B. A technique for simple and aesthetic treatment of anterior toothwear. Dental update. 2004;31:109-14. [57] Mehta SB, Banerji S, Millar BJ, Suarez-Feito JM. Current concepts on the management of tooth wear: part 4. An overview of the restorative techniques and dental materials commonly applied for the management of tooth wear. Br Dent J. 2012;212:169-77. [58] Marais J. Restoring palatal tooth loss with composite resin, aided by increased vertical height. SADJ: journal of the South African Dental Association= tydskrif van die Suid-Afrikaanse Tandheelkundige Vereniging. 1998;53:111-9. [59] Darbar U, Hemmings K. Treatment of localized anterior toothwear with composite restorations at an increased occlusal vertical dimension. Dental update. 1997;24:72-5. [60] Briggs P, Bishop K, Djemal S. The clinical evolution of the'Dahl Principle'. British dental journal. 1997;183:171-6. [61] Christensen GJ. A new technique for restoration of worn anterior teeth—1995. The Journal of the American Dental Association. 1995;126:1543-6. [62] Poyser N, Porter R, Briggs P, Kelleher M. Demolition experts: management of the parafunctional patient: 2. Restorative management strategies. Dental update. 2007;34:262-8. [63] Gulamali A, Hemmings K, Tredwin C, Petrie A. Survival analysis of composite Dahl restorations provided to manage localised anterior tooth wear (ten year follow-up). British dental journal. 2011;211:E9-E. [64] Poyser N, Porter R, Briggs P, Chana H, Kelleher M. The Dahl Concept: past, present and future. British Dental Journal. 2005;198:669-76. [65] Welbury R. A clinical study of a microfilled composite resin for labial veneers. International journal of paediatric dentistry. 1991;1:9-15. [66] Hemmings KW, Darbar UR, Vaughan S. Tooth wear treated with direct composite restorations at an increased vertical dimension: results at 30 months. The Journal of prosthetic dentistry. 2000;83:287-93. [67] Redman C, Hemmings K, Good J. The survival and clinical performance of resin–based composite restorations used to treat localised anterior tooth wear. British dental journal. 2003;194:566-72. [68] Bartlett D, Sundaram G. An up to 3-year randomized clinical study comparing indirect and direct resin composites used to restore worn posterior teeth. International Journal of Prosthodontics. 2006;19. [69] Loomans BAC, Kreulen CM, Huijs-Visser H, Sterenborg B, Bronkhorst EM, Huysmans M et al. Clinical performance of full rehabilitations with direct composite in severe tooth wear patients: 3.5 Years results. J Dent. 2018;70:97-103. [70] Vajani D, Tejani TH, Milosevic A. Direct Composite Resin for the Management of Tooth Wear: A Systematic Review. Clin Cosmet Investig Dent. 2020;12:465-75. [71] Gow AM, Hemmings KW. The treatment of localised anterior tooth wear with indirect Artglass restorations at an increased occlusal vertical dimension. Results after two years. The European journal of prosthodontics and restorative dentistry. 2002;10:101-5. [72] Kassardjian V, Andiappan M, Creugers NHJ, Bartlett D. A systematic review of interventions after restoring the occluding surfaces of anterior and posterior teeth that are affected by tooth wear with filled resin composites. J Dent. 2020;99:103388. [73] Lauvahutanon S, Takahashi H, Shiozawa M, Iwasaki N, Asakawa Y, Oki M et al. Mechanical properties of composite resin blocks for CAD/CAM. Dent Mater J. 2014;33:705-10. [74] Suh BI. New concepts and technology for processing of indirect composites. Compendium of continuing education in dentistry (Jamesburg, NJ: 1995). 2003;24:40-2. [75] Nguyen JF, Migonney V, Ruse ND, Sadoun M. Resin composite blocks via high-pressure high-temperature polymerization. Dent Mater. 2012;28:529-34. [76] Rocca GT, Bonnafous F, Rizcalla N, Krejci I. A technique to improve the esthetic aspects of CAD/CAM composite resin restorations. The Journal of prosthetic dentistry. 2010;104:273-5. [77] Ferracane J, Berge H, Condon J. In vitro aging of dental composites in water—effect of degree of conversion, filler volume, and filler/matrix coupling. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and the Australian Society for Biomaterials. 1998;42:465-72. [78] Smales RJ, Berekally TL. Long-term survival of direct and indirect restorations placed for the treatment of advanced tooth wear. European Journal of Prosthodontics and Restorative Dentistry. 2007;15:2. [79] Wada T. Development of a new adhesive material and its properties. Proceedings of the International Symposium on Adhesive Prosthodontics, Amsterdam, Netherlands, 1986: Academy of Dental Materials; 1986. [80] Chana H, Kelleher M, Briggs P, Hooper R. Clinical evaluation of resin-bonded gold alloy veneers. The Journal of Prosthetic Dentistry. 2000;83:294-300. [81] Nohl FS, King PA, Harley KE, Ibbetson RJ. Retrospective survey of resin-retained cast-metal palatal veneers for the treatment of anterior palatal tooth wear. Quintessence International. 1997;28. [82] Ma L, Guess PC, Zhang Y. Load-bearing properties of minimal-invasive monolithic lithium disilicate and zirconia occlusal onlays: finite element and theoretical analyses. Dental Materials. 2013;29:742-51. [83] Manicone PF, Iommetti PR, Raffaelli L. An overview of zirconia ceramics: basic properties and clinical applications. Journal of dentistry. 2007;35:819-26. [84] Aristidis GA, Dimitra B. Five-year clinical performance of porcelain laminate veneers. Quintessence Int. 2002;33:21-30. [85] Brignardello-Petersen R. Ceramic inlays, onlays, and overlays have a high survival rate and a low rate of complications. J Am Dent Assoc. 2017;148:e3. [86] Edelhoff D, Guth JF, Erdelt K, Brix O, Liebermann A. Clinical performance of occlusal onlays made of lithium disilicate ceramic in patients with severe tooth wear up to 11 years. Dent Mater. 2019;35:1319-30. [87] Oh W-s, DeLong R, Anusavice KJ. Factors affecting enamel and ceramic wear: a literature review. The Journal of prosthetic dentistry. 2002;87:451-9. [88] Fradeani M, Barducci G, Bacherini L, Brennan M. Esthetic rehabilitation of a severely worn dentition with minimally invasive prosthetic procedures (MIPP). International Journal of Periodontics Restorative Dentistry. 2012;32. [89] Vailati F, Gruetter L, Belser UC. Adhesively restored anterior maxillary dentitions affected by severe erosion: up to 6-year results of a prospective clinical study. Eur J Esthet Dent. 2013;8. [90] Schlichting LH, Resende TH, Reis KR, Magne P. Simplified treatment of severe dental erosion with ultrathin CAD-CAM composite occlusal veneers and anterior bilaminar veneers. J Prosthet Dent. 2016;116:474-82. [91] Fradeani M, Barducci G, Bacherini L. Esthetic rehabilitation of a worn dentition with a minimally invasive prosthetic procedure (MIPP). Int J Esthet Dent. 2016;11:16-35. [92] Vailati F, Bruguera A, Belser U. Minimally invasive treatment of initial dental erosion using pressed lithium disilicate glass-ceramic restorations: a case report. Quintessence Dental Technology. 2012;35:65-78. [93] Hickel R, Manhart J. Longevity of restorations in posterior teeth and reasons for failure. Journal of adhesive dentistry. 2001;3. [94] Mannhart J, Chen H, Hamm G, Hickel R. Review of the clinical survival of direct and indirect restorations in posterior teeth of the permanent dentition. Operative Dentistry. 2004;29:481-508. [95] Schlichting LH, Maia HP, Baratieri LN, Magne P. Novel-design ultra-thin CAD/CAM composite resin and ceramic occlusal veneers for the treatment of severe dental erosion. The Journal of Prosthetic Dentistry. 2011;105:217-26. [96] Magne P, Schlichting LH, Maia HP, Baratieri LN. In vitro fatigue resistance of CAD/CAM composite resin and ceramic posterior occlusal veneers. The Journal of prosthetic dentistry. 2010;104:149-57. [97] Albero A, Pascual A, Camps I, Grau-Benitez M. Comparative characterization of a novel cad-cam polymer-infiltrated-ceramic-network. Journal of clinical and experimental dentistry. 2015;7:e495. [98] Campos F, Almeida C, Rippe M, De Melo R, Valandro L, Bottino M. Resin bonding to a hybrid ceramic: effects of surface treatments and aging. Operative dentistry. 2016;41:171-8. [99] Mihali S, Bortun C, Bratu E. Nano-ceramic particle reinforced composite-Lava Ultimate CAD/CAM restorative. Rev Chim. 2013;64:435-7. [100] Jorquera G, Mahn E, Sanchez J, Berrera S, Prado M, Stange VB. Hybrid Ceramics in Dentistry: A Literature Review. 2018. [101] Ab-Ghani Z, Jaafar W, Foo SF, Ariffin Z, Mohamad D. Shear bond strength of computer-aided design and computer-aided manufacturing feldspathic and nano resin ceramics blocks cemented with three different generations of resin cement. Journal of conservative dentistry: JCD. 2015;18:355. [102] Sismanoglu S, Yildirim-Bilmez Z, Erten-Taysi A, Ercal P. Influence of different surface treatments and universal adhesives on the repair of CAD-CAM composite resins: An in vitro study. J Prosthet Dent. 2020;124:238 e1- e9. [103] Dirxen C, Blunck U, Preissner S. Clinical performance of a new biomimetic double network material. The open dentistry journal. 2013;7:118. [104] Aboushelib MN, Elsafi MH. Survival of resin infiltrated ceramics under influence of fatigue. Dental materials. 2016;32:529-34. [105] Naffah N, Ounsi H, Ozcan M, Bassal H, Salameh Z. Evaluation of the adaptation and fracture resistance of three cad-cam resin ceramics: An in vitro study. J Contemp Dent Pract. 2019;20:571-6. [106] Swain M, Coldea A, Bilkhair A, Guess P. Interpenetrating network ceramic-resin composite dental restorative materials. Dental Materials. 2016;32:34-42. [107] Sorrentino R. In Vitro Analysis of the Fracture Resistance of Cad-Cam Cerasmart Molar Crowns with Different Occlusal Thickness. Biomedical Journal of Scientific Technical Research. 2018;3. [108] Lawson NC, Bansal R, Burgess JO. Wear, strength, modulus and hardness of CAD/CAM restorative materials. Dent Mater. 2016;32:e275-e83. [109] Aboushelib MN, Elsafi MH. Survival of resin infiltrated ceramics under influence of fatigue. Dent Mater. 2016;32:529-34. [110] Swain MV, Coldea A, Bilkhair A, Guess PC. Interpenetrating network ceramic-resin composite dental restorative materials. Dent Mater. 2016;32:34-42. [111] El-Damanhoury HM, Haj-Ali RN, Platt JA. Fracture resistance and microleakage of endocrowns utilizing three CAD-CAM blocks. Oper Dent. 2015;40:201-10. [112] Argyrou R, Thompson GA, Cho SH, Berzins DW. Edge chipping resistance and flexural strength of polymer infiltrated ceramic network and resin nanoceramic restorative materials. J Prosthet Dent. 2016;116:397-403. [113] Shembish FA, Tong H, Kaizer M, Janal MN, Thompson VP, Opdam NJ et al. Fatigue resistance of CAD/CAM resin composite molar crowns. Dent Mater. 2016;32:499-509. [114] Lebon N, Tapie L, Vennat E, Mawussi B. Influence of CAD/CAM tool and material on tool wear and roughness of dental prostheses after milling. J Prosthet Dent. 2015;114:236-47. [115] Tsitrou EA, Northeast SE, van Noort R. Brittleness index of machinable dental materials and its relation to the marginal chipping factor. J Dent. 2007;35:897-902. [116] Awada A, Nathanson D. Mechanical properties of resin-ceramic CAD/CAM restorative materials. J Prosthet Dent. 2015;114:587-93. [117] Magne P, Carvalho AO, Bruzi G, Giannini M. Fatigue resistance of ultrathin CAD/CAM complete crowns with a simplified cementation process. J Prosthet Dent. 2015;114:574-9. [118] Mormann WH, Stawarczyk B, Ender A, Sener B, Attin T, Mehl A. Wear characteristics of current aesthetic dental restorative CAD/CAM materials: two-body wear, gloss retention, roughness and Martens hardness. J Mech Behav Biomed Mater. 2013;20:113-25. [119] Stawarczyk B, Liebermann A, Eichberger M, Guth JF. Evaluation of mechanical and optical behavior of current esthetic dental restorative CAD/CAM composites. J Mech Behav Biomed Mater. 2015;55:1-11. [120] Ludovichetti FS, Trindade FZ, Werner A, Kleverlaan CJ, Fonseca RG. Wear resistance and abrasiveness of CAD-CAM monolithic materials. J Prosthet Dent. 2018;120:318 e1- e8. [121] Bansal R. In-vitro Wear of Four CAD-CAM Materials in the UAB Wear Simulating Device: The University of Alabama at Birmingham; 2015. [122] Tinastepe N, Turkes E, Kazazoglu E. Comparative approach to analyse the effects of different surface treatments on CAD/CAM resin nanoceramics–resin composite repair bond strength. Biotechnology Biotechnological Equipment. 2017;32:142-9. [123] Chen C, Trindade FZ, de Jager N, Kleverlaan CJ, Feilzer AJ. The fracture resistance of a CAD/CAM Resin Nano Ceramic (RNC) and a CAD ceramic at different thicknesses. Dent Mater. 2014;30:954-62. [124] Johnson AC, Versluis A, Tantbirojn D, Ahuja S. Fracture strength of CAD/CAM composite and composite-ceramic occlusal veneers. J Prosthodont Res. 2014;58:107-14. [125] Coldea A, Swain MV, Thiel N. Mechanical properties of polymer-infiltrated-ceramic-network materials. Dent Mater. 2013;29:419-26. [126] Alamoush RA, Silikas N, Salim NA, Al-Nasrawi S, Satterthwaite JD. Effect of the Composition of CAD/CAM Composite Blocks on Mechanical Properties. Biomed Res Int. 2018;2018:4893143. [127] Krejci I, Daher R. Stress distribution difference between Lava Ultimate full crowns and IPS e.max CAD full crowns on a natural tooth and on tooth-shaped implant abutments. Odontology. 2017;105:254-6. [128] Mainjot AK, Dupont NM, Oudkerk JC, Dewael TY, Sadoun MJ. From Artisanal to CAD-CAM Blocks: State of the Art of Indirect Composites. J Dent Res. 2016;95:487-95. [129] Acar O, Yilmaz B, Altintas SH, Chandrasekaran I, Johnston WM. Color stainability of CAD/CAM and nanocomposite resin materials. J Prosthet Dent. 2016;115:71-5. [130] Okamura K, Koizumi H, Kodaira A, Nogawa H, Yoneyama T. Surface properties and gloss of CAD/CAM composites after toothbrush abrasion testing. J Oral Sci. 2019;61:358-63. [131] Egbert JS, Johnson AC, Tantbirojn D, Versluis A. Fracture strength of ultrathin occlusal veneer restorations made from CAD/CAM composite or hybrid ceramic materials. Oral Science International. 2015;12:53-8. [132] Abu-Izze FO, Ramos GF, Borges ALS, Anami LC, Bottino MA. Fatigue behavior of ultrafine tabletop ceramic restorations. Dent Mater. 2018;34:1401-9. [133] Ioannidis A, Muhlemann S, Ozcan M, Husler J, Hammerle CHF, Benic GI. Ultra-thin occlusal veneers bonded to enamel and made of ceramic or hybrid materials exhibit load-bearing capacities not different from conventional restorations. J Mech Behav Biomed Mater. 2019;90:433-40. [134] Maeder M, Pasic P, Ender A, Ozcan M, Benic GI, Ioannidis A. Load-bearing capacities of ultra-thin occlusal veneers bonded to dentin. J Mech Behav Biomed Mater. 2019;95:165-71. [135] Zimmermann M, Koller C, Reymus M, Mehl A, Hickel R. Clinical Evaluation of Indirect Particle-Filled Composite Resin CAD/CAM Partial Crowns after 24 Months. J Prosthodont. 2018;27:694-9. [136] Spitznagel FA, Scholz KJ, Strub JR, Vach K, Gierthmuehlen PC. Polymer-infiltrated ceramic CAD/CAM inlays and partial coverage restorations: 3-year results of a prospective clinical study over 5 years. Clin Oral Investig. 2018;22:1973-83. [137] Oudkerk J, Eldafrawy M, Bekaert S, Grenade C, Vanheusden A, Mainjot A. The one-step no-prep approach for full-mouth rehabilitation of worn dentition using PICN CAD-CAM restorations: 2-yr results of a prospective clinical study. J Dent. 2020;92:103245. [138] Tekce N, Fidan S, Tuncer S, Kara D, Demirci M. The effect of glazing and aging on the surface properties of CAD/CAM resin blocks. J Adv Prosthodont. 2018;10:50-7. [139] Sagsoz O, Demirci T, Demirci G, Sagsoz NP, Yildiz M. The effects of different polishing techniques on the staining resistance of CAD/CAM resin-ceramics. J Adv Prosthodont. 2016;8:417-22. [140] Hickel R, Roulet J-F, Bayne S, Heintze SD, Mjör IA, Peters M et al. Recommendations for conducting controlled clinical studies of dental restorative materials. Science Committee Project 2/98--FDI World Dental Federation study design (Part I) and criteria for evaluation (Part II) of direct and indirect restorations including onlays and partial crowns. The journal of adhesive dentistry. 2007;9:121-47. [141] Hickel R, Peschke A, Tyas M, Mjor I, Bayne S, Peters M et al. FDI World Dental Federation - clinical criteria for the evaluation of direct and indirect restorations. Update and clinical examples. J Adhes Dent. 2010;12:259-72. [142] Zimmermann M, Ender A, Mehl A. Local accuracy of actual intraoral scanning systems for single-tooth preparations in vitro. J Am Dent Assoc. 2020;151:127-35. [143] Guth JF, Erdelt K, Keul C, Burian G, Schweiger J, Edelhoff D. In vivo wear of CAD-CAM composite versus lithium disilicate full coverage first-molar restorations: a pilot study over 2 years. Clin Oral Investig. 2020;24:4301-11. [144] Opdam N, Frankenberger R, Magne P. From 'Direct Versus Indirect' Toward an Integrated Restorative Concept in the Posterior Dentition. Oper Dent. 2016;41:S27-S34. [145] Cvar JF, Ryge G. Criteria for the clinical evaluation of dental restorative materials: US Department of Health, Education, and Welfare, Public Health Service …; 1971. [146] Marquillier T, Domejean S, Le Clerc J, Chemla F, Gritsch K, Maurin JC et al. The use of FDI criteria in clinical trials on direct dental restorations: A scoping review. J Dent. 2018;68:1-9. [147] Gungor MB, Nemli SK, Bal BT, Unver S, Dogan A. Effect of surface treatments on shear bond strength of resin composite bonded to CAD/CAM resin-ceramic hybrid materials. J Adv Prosthodont. 2016;8:259-66. [148] Moura DMD, Verissimo AH, Leite Vila-Nova TE, Calderon PS, Ozcan M, Assuncao Souza RO. Which surface treatment promotes higher bond strength for the repair of resin nanoceramics and polymer-infiltrated ceramics? A systematic review and meta-analysis. J Prosthet Dent. 2021. [149] Rodriguez JM, Austin RS, Bartlett DW. In vivo measurements of tooth wear over 12 months. Caries Res. 2012;46:9-15. [150] Etman MK, Woolford M, Dunne S. Quantitative measurement of tooth and ceramic wear: in vivo study. International journal of prosthodontics. 2008;21. [151] Esquivel-Upshaw JF, Rose WF, Jr., Barrett AA, Oliveira ER, Yang MC, Clark AE et al. Three years in vivo wear: core-ceramic, veneers, and enamel antagonists. Dent Mater. 2012;28:615-21. [152] Aladag A, Oguz D, Comlekoglu ME, Akan E. In vivo wear determination of novel CAD/CAM ceramic crowns by using 3D alignment. J Adv Prosthodont. 2019;11:120-7. [153] Stanley HR, Going RE, Chauncey HH. Human pulp response to acid pretreatment of dentin and to composite restoration. J Am Dent Assoc. 1975;91:817-25. [154] Coskun E, Aslan YU, Ozkan YK. Evaluation of two different CAD-CAM inlay-onlays in a split-mouth study: 2-year clinical follow-up. J Esthet Restor Dent. 2020;32:244-50. [155] Ozkan Y, Aslan YU, Coskun E, Dard M. Clinical performance of new CAD CAM materials for inlay onlay restorations–Three‐year results. Clinical Oral Implants Research. 2019;30:339-. [156] Petrova-Pashova V, Kirilova J, Kirov D. One Year Clinical Investigation of Laboratory-Fabricated and Cad/Cam Inlay/Onlay. Journal of IMAB - Annual Proceeding (Scientific Papers). 2020;26:3336-40. [157] Avci B, Arslan S. One-Year Clinical Evaluation of Class II Indirect Porcelain, Hybrid and Composite Blocks Restorations. Cumhuriyet Dental Journal. 2021. [158] Souza J, Fuentes MV, Baena E, Ceballos L. One-year clinical performance of lithium disilicate versus resin composite CAD/CAM onlays. Odontology. 2021;109:259-70. [159] Pallesen U, Van Dijken JW. An 8‐year evaluation of sintered ceramic and glass ceramic inlays processed by the Cerec CAD/CAM system. European journal of oral sciences. 2000;108:239-46. [160] Archibald JJ, Santos Jr GC, Santos MJMC. Retrospective clinical evaluation of ceramic onlays placed by dental students. The Journal of prosthetic dentistry. 2018;119:743-8. e1. [161] Pallesen U, Qvist V. Composite resin fillings and inlays. An 11-year evaluation. Clinical oral investigations. 2003;7:71-9. [162] van Dijken JW, Hasselrot L. A prospective 15-year evaluation of extensive dentin-enamel-bonded pressed ceramic coverages. Dent Mater. 2010;26:929-39. [163] Rauch A, Reich S, Schierz O. Chair-side generated posterior monolithic lithium disilicate crowns: clinical survival after 6 years. Clin Oral Investig. 2017;21:2083-9. [164] Rauch A, Reich S, Dalchau L, Schierz O. Clinical survival of chair-side generated monolithic lithium disilicate crowns:10-year results. Clin Oral Investig. 2018;22:1763-9. [165] Guess PC, Selz CF, Steinhart Y-N, Stampf S, Strub JR. Prospective clinical split-mouth study of pressed and CAD/CAM all-ceramic partial-coverage restorations: 7-year results. International Journal of Prosthodontics. 2013;26. [166] Teichmann M, Gockler F, Weber V, Yildirim M, Wolfart S, Edelhoff D. Ten-year survival and complication rates of lithium-disilicate (Empress 2) tooth-supported crowns, implant-supported crowns, and fixed dental prostheses. J Dent. 2017;56:65-77."………
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81196-
dc.description.abstract實驗目的: 本研究旨在評估彈性奈米陶瓷使用在牙齒磨耗的病人口中的臨床表現及使用狀況,觀察材料的長期穩定性、成功率以及存活率。 材料與方法: 本研究包含27名有牙齒磨耗的病人(贋復體 n=67個)。在進行診斷評估並確認需要贋復體修復後,進行臨床試驗。受試者經過口內黏著彈性奈米陶瓷之後定期回診(黏著後第一次追蹤、黏著後三個月、黏著後六個月),並在術前以及術後每次回診讓受試者填寫VAS主觀調查問卷。術後每次的回診也會由本研究的研究醫師依據修正過的FDI criteria進行客觀條件評估。此外,本實驗也會探討彈性奈米陶瓷在六個月的觀察期間在受試者咀嚼過程中的總平均磨耗量,並與其對咬牙,以及受試者自然對咬齒質磨耗的總平均量作比較。 在得到各追蹤時間的主觀性的VAS分數以及客觀性的FDI分數之後,會以統計軟體(SAS 9.4)計算分析,以Sample Paired t-Test將VAS scale中6個評估項目及FDI critiera的15個評估項目在不同時間點的分數去作比較。最後再將FDI分數以Kaplan-Meier Analysis統計整體贋復體的成功率以及存活率;並以存活曲線來呈現這六個月追蹤期的成功率以及存活率變化。 實驗結果: 27名受試者中,大部分造成齒質磨耗的原因為咬硬物習慣以及磨牙症。在六個月的回診期間中,受試者填寫主觀問卷在術後的分數比起術前在各評估項目中皆有顯著增加。術後六個月受試者給予最高分數的項目是咀嚼效率;最低分為顏色表現。從客觀條件的分析下的FDI評估,少數贋復體在顏色表現上呈現掉色而需要補染色的情形。從整體的磨耗量平均值來看,贋復體、對咬牙,以及參考對咬自然齒質的磨耗量無太大差異。兩個贋復體在觀察期間斷裂,但範圍均不大皆可以於口內修復。Kaplan-Meier分析整體存活率為100%;而在三個月時的成功率為97.06%,在六個月時成功率為93.93%。 結論: 以彈性奈米陶瓷修復於牙齒磨耗的患者,在六個月的觀察期中表現出了臨床可接受的成功率以及高的存活率。受試者在修復贋復體過後的主觀評估項目,與術前相比皆明顯較滿意。然而,在患者贋復空間不足或異常咀嚼功能習慣等情況下,彈性奈米陶瓷使用於牙齒磨耗患者,仍可能會有輕微斷裂的情形。但由於其材料特性易於在口內修復。此外,也需要注意材料的顏色穩定度,使用的染色劑可能會較容易掉色或被磨耗掉。而以總磨耗量的平均值來看,彈性奈米陶瓷、對咬自然齒質、自然對咬齒質的磨耗量相近。因此基於本實驗的結果,彈性奈米陶瓷不會磨損太多對咬牙齒質,本身磨耗的狀況也與自然齒質類似,對於使用在牙齒磨耗患者身上比其他材料更具優勢。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:35:36Z (GMT). No. of bitstreams: 1
U0001-0208202122360700.pdf: 6038004 bytes, checksum: fc51c36602dd4d70af1914cb4704787a (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents國立臺灣大學碩士學位論文口試委員會審定書   I 中文摘要    II  Abstract IV 目錄  VII 圖表目錄    IX 第一章、 文獻回顧 1 1. 牙齒磨耗 1 2. 用於牙齒磨耗的贋復體材料選擇 9 第二章、 研究動機與目的 28 第三章、 材料與方法 29 1. 實驗設計 29 2. 病例登記 31 3. 受試者選擇 31 4. 磨耗定量化調查 32 5. 臨床步驟 33 6. 後續觀察與追蹤 35 7. 贋復體主觀性臨床結果綜觀評估(Subjective evaluation) 35 8. 贋復體客觀性臨床結果綜觀評估(Objective evaluation) 36 9. 贋復體咬合面磨耗測量 37 10. 統計分析 40 第四章、 實驗結果 41 1. 受試者臨床資料 41 2. 贋復體臨床資訊 41 3. 主觀性問卷統計分析 42 4. 客觀性評估統計分析 45 第五章、 討論 51 1. 磨耗評估方法選定 52 2. 綜觀主觀問卷及客觀分析 54 3. 成功率及存活率 58 4. 實驗誤差與限制 63 第六章、 結論     65 第七章、 未來展望 66 圖表 67 參考文獻    116
dc.language.isozh-TW
dc.subjectVAS量表zh_TW
dc.subject牙齒磨耗zh_TW
dc.subject複合陶瓷zh_TW
dc.subjectFDI標準zh_TW
dc.subjectKaplan Meier存活曲線zh_TW
dc.subject磨耗量zh_TW
dc.subject彈性奈米陶瓷zh_TW
dc.subjectKaplan Meier survival curveen
dc.subjectFlexible nano ceramicen
dc.subjectCerasmarten
dc.subjecttooth wearen
dc.subjectworn dentitionen
dc.subjectQuantitative measurement of wearen
dc.subjectVAS scaleen
dc.subjectFDI criteriaen
dc.title彈性奈米陶瓷在齒質磨耗病人中臨床使用之評估─臨床研究zh_TW
dc.titleEvaluation of Flexible Nano Ceramic on material characteristic and clinical use over tooth wear patients-a clinical studyen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee洪志遠(Hsin-Tsai Liu),(Chih-Yang Tseng)
dc.subject.keyword彈性奈米陶瓷,複合陶瓷,牙齒磨耗,磨耗量,VAS量表,FDI標準,Kaplan Meier存活曲線,zh_TW
dc.subject.keywordFlexible nano ceramic,Cerasmart,tooth wear,worn dentition,Quantitative measurement of wear,VAS scale,FDI criteria,Kaplan Meier survival curve,en
dc.relation.page134
dc.identifier.doi10.6342/NTU202102014
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-08-05
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-0208202122360700.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved