Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81192
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor葛宇甯(Louis Ge)
dc.contributor.authorFu-Hsuan Yehen
dc.contributor.author葉馥瑄zh_TW
dc.date.accessioned2022-11-24T03:35:22Z-
dc.date.available2021-08-06
dc.date.available2022-11-24T03:35:22Z-
dc.date.copyright2021-08-06
dc.date.issued2021
dc.date.submitted2021-08-03
dc.identifier.citation[1] Pastor, M., Zienkiewicz, O.C., Leung, K.H. (1985). Simple model for transient soil loading in earthquake analysis. II. Non-associative models for sands. International Journal for Numerical and Analytical Methods in Geomechanics, 9(5), 477-498. doi: 10.1002/nag.1610090506. [2] Tatsuoka, F., Ishihara, K. (1974). Drained deformation of sand under cyclic stresses reversing direction. Soils and Foundations, 14(3), 51-65. doi: 10.3208/sandf1972.14.3_51. [3] Belkhatir, M., Missoum, H., Arab, A., Della, N., Schanz, T. (2011). Undrained shear strength of sand-silt mixture: Effect of intergranular void ratio and other parameters. Ksce Journal of Civil Engineering, 15(8), 1335-1342. doi: 10.1007/s12205-011-1051-x. [4] Lade, P.V., Yamamuro, J.A. (1997). Effects of nonplastic fines on static liquefaction of sands. Canadian Geotechnical Journal, 34(6), 918-928. doi: 10.1139/cgj-34-6-918. [5] Vaid, Y.P. (1994). Liquefaction of silty soils. Paper presented at the Ground failures under seismic conditions, New York. [6] Amini, F., Qi, G.Z. (2000). Liquefaction testing of stratified silty sands. Journal of Geotechnical and Geoenvironmental Engineering, 126(3), 208-217. doi: 10.1061/(Asce)1090-0241(2000)126:3(208). [7] Hsiao, D.H., Wu, S.E., Lee, C.C., Cho, E.V., Lin, W.F. (2004). A study on fines content affect the static and dynamic resistances based on inter-granular void ratio. Journal of Engineering Technology and Education, 1(2), 117-130. doi: 10.6451/jete.200411.0117. [8] Andrianopoulos, K.I., Bouckovalas, G.D., Papadimitriou, A.G. (2001). A critical state evaluation of fines effect on liquefaction potential. Paper presented at the International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, California. https://scholarsmine.mst.edu/icrageesd/04icrageesd/session04/3 [9] Yamamuro, J.A., Lade, P.V. (1997). Static liquefaction of very loose sands. Canadian Geotechnical Journal, 34(6), 905-917. doi: 10.1139/cgj-34-6-905. [10] Lade, P.V., Liggio, C.D., Yamamuro, J.A. (1998). Effects of non-plastic fines on minimum and maximum void ratios of sand. Geotechnical Testing Journal, 21(4), 336-347. doi: 10.1520/GTJ11373J. [11] Naeini, S.A., Baziar, M.H. (2004). Effect of fines content on steady-state strength of mixed and layered samples of a sand. Soil Dynamics and Earthquake Engineering, 24(3), 181-187. doi: 10.1016/j.soildyn.2003.11.003. [12] Belkhatir, M., Arab, A., Della, N., Missoum, H., Schanz, T. (2010). Influence of inter-granular void ratio on monotonic and cyclic undrained shear response of sandy soils. Comptes Rendus Mecanique, 338(5), 290-303. doi: 10.1016/j.crme.2010.04.002. [13] Yin, Z.Y., Zhao, J., Hicher, P.Y. (2014). A micromechanics-based model for sand-silt mixtures. International Journal of Solids and Structures, 51(6), 1350-1363. doi: 10.1016/j.ijsolstr.2013.12.027. [14] Monkul, M.M., Etminan, E., Şenol, A. (2017). Coupled influence of content, gradation and shape characteristics of silts on static liquefaction of loose silty sands. Soil Dynamics and Earthquake Engineering, 101, 12-26. doi: 10.1016/j.soildyn.2017.06.023. [15] Thevanayagam, S. (1998). Effect of fines and confining stress on undrained shear strength of silty sands. Journal of Geotechnical and Geoenvironmental Engineering, 124(6), 479-491. doi: 10.1061/(Asce)1090-0241(1998)124:6(479). [16] Thevanayagam, S., Shenthan, T., Mohan, S., Liang, J. (2002). Undrained fragility of clean sands, silty sands, and sandy silts. Journal of Geotechnical and Geoenvironmental Engineering, 128(10), 849-859. doi: 10.1061/(Asce)1090-0241(2002)128:10(849). [17] Yang, S.L., Sandven, R., Grande, L. (2006). Steady-state lines of sand-silt mixtures. Canadian Geotechnical Journal, 43(11), 1213-1219. doi: 10.1139/T06-069. [18] Rahman, M.M., Lo, S.R., Baki, M.A.L. (2011). Equivalent granular state parameter and undrained behaviour of sand–fines mixtures. Acta Geotechnica, 6(4), 183-194. doi: 10.1007/s11440-011-0145-4. [19] Yin, Z.Y., Huang, H.W., Hicher, P.Y. (2016). Elastoplastic modeling of sand–silt mixtures. Soils and Foundations, 56(3), 520-532. doi: 10.1016/j.sandf.2016.04.017. [20] Thevanayagam, S. (2007). Intergrain contact density indices for granular mixes - I: Framework. Earthquake Engineering and Engineering Vibration, 6(2), 123-134. doi: 10.1007/s11803-007-0705-7. [21] Zlatović, S., Ishihara, K. (1995, November). On the influence of nonplastic fines on residual strength. Paper presented at the Proceedings of IS-TOKYO'95, first international conference on earthquake geotechnical engineering, Rotterdam. [22] Polito, C.P., Martin, J.R. (2001). Effects of nonplastic fines on the liquefaction resistance of sands. Journal of Geotechnical and Geoenvironmental Engineering, 127(5), 408-415. doi: 10.1061/(Asce)1090-0241(2001)127:5(408). [23] Papadopoulou, A., Tika, T. (2008). The effect of fines on critical state and liquefaction resistance characteristics of non-plastic silty sands. Soils and Foundations, 48(5), 713-725. doi: 10.3208/sandf.48.713. [24] Chang, C.S., Wang, J.Y., Ge, L. (2016). Maximum and minimum void ratios for sand-silt mixtures. Engineering Geology, 211, 7-18. doi: 10.1016/j.enggeo.2016.06.022. [25] Yang, S.L., Lacasse, S., Sandven, R.F. (2006). Determination of the transitional fines content of mixtures of sand and non-plastic fines. Geotechnical Testing Journal, 29(2), 102-107. doi: 10.1520/GTJ14010. [26] Rahman, M.M., Lo, S.R., Gnanendran, C.T. (2008). On equivalent granular void ratio and steady state behaviour of loose sand with fines. Canadian Geotechnical Journal, 45(10), 1439-1456. doi: 10.1139/T08-064. [27] McGeary, R.K. (1961). Mechanical packing of spherical particles. Journal of the American Ceramic Society, 44(10), 513-522. doi: 10.1111/j.1151-2916.1961.tb13716.x. [28] Chang, C.S., Wang, J.Y., Ge, L. (2015). Modeling of minimum void ratio for sand–silt mixtures. Engineering Geology, 196, 293-304. doi: 10.1016/j.enggeo.2015.07.015. [29] Mróz, Z. (1967). On the description of anisotropic workhardening. Journal of the Mechanics and Physics of Solids, 15(3), 163-175. doi: 10.1016/0022-5096(67)90030-0. [30] Iwan, W.D. (1967). On a class of models for the yielding behavior of continuous and composite systems. Journal of Applied Mechanics, 34(3), 612-617. doi: 10.1115/1.3607751. [31] Dafalias, Y.F., Popov, E.P. (1975). A model of nonlinearly hardening materials for complex loading. Acta Mechanica, 21(3), 173-192. doi: 10.1007/bf01181053. [32] Dafalias, Y.F. (1986). Bounding surface plasticity. I: Mathematical foundation and hypoplasticity. Journal of Engineering Mechanics, 112(9), 966-987. [33] Bardet, J.P. (1986). Bounding surface plasticity model for sands. Journal of Engineering Mechanics-Asce, 112(11), 1198-1217. doi: 10.1061/(Asce)0733-9399(1986)112:11(1198). [34] Dafalias, Y.F., Manzari, M.T. (2004). Simple plasticity sand model accounting for fabric change effects. Journal of Engineering Mechanics, 130(6), 622-634. doi: 10.1061/(Asce)0733-9399(2004)130:6(622). [35] Boulanger, R.W., Ziotopoulou, K. (2017). PM4Sand (Version 3.1): A sand plasticity model for earthquake engineering applications (pp. 114): Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California, Davis, CA. [36] Been, K., Jefferies, M.G. (1985). A state parameter for sands. Geotechnique, 35(2), 99-112. doi: 10.1680/geot.1985.35.2.99. [37] Parra Bastidas, A.M. (2016). Ottawa F-65 sand characterization. (Ph.D. Dissertation), University of California Davis. [38] Boulanger, R.W., Ziotopoulou, K. (2018). PM4Silt (Version 1): A silt plasticity model for earthquake engineering applications (pp. 108): Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California, Davis, CA. [39] Rowe, P.W., Taylor, G.I. (1962). The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 269(1339), 500-527. doi: 10.1098/rspa.1962.0193. [40] Bray, J.D., Dashti, S. (2014). Liquefaction-induced building movements. Bulletin of Earthquake Engineering, 12(3), 1129-1156. doi: 10.1007/s10518-014-9619-8. [41] Dashti, S., Bray, J.D. (2013). Numerical simulation of building response on liquefiable sand. Journal of Geotechnical and Geoenvironmental Engineering, 139(8), 1235-1249. doi: 10.1061/(Asce)Gt.1943-5606.0000853. [42] Beaty, M.H. (2018). Application of UBCSAND to the LEAP centrifuge experiments. Soil Dynamics and Earthquake Engineering, 104, 143-153. doi: 10.1016/j.soildyn.2017.10.006. [43] Zienkiewicz, O.C., Mroz, Z. (1984). Generalized plasticity formulation and applications to geomechanics. In C.S. Desai, and Gallagher, R. H. (Ed.), Mechanics of Engineering Materials (pp. 655-680): John Wiley Sons Ltd. [44] Zienkiewicz, O.C., Leung, K.H., Pastor, M. (1985). Simple model for transient soil loading in earthquake analysis. I. Basic model and its application. International Journal for Numerical and Analytical Methods in Geomechanics, 9(5), 453-476. doi: 10.1002/nag.1610090505. [45] Pastor, M., Zienkiewicz, O.C., Chan, A.H.C. (1990). Generalized plasticity and the modeling of soil behavior. International Journal for Numerical and Analytical Methods in Geomechanics, 14(3), 151-190. doi: 10.1002/nag.1610140302. [46] Ling, H.I., Liu, H.B. (2003). Pressure-level dependency and densification behavior of sand through generalized plasticity model. Journal of Engineering Mechanics-Asce, 129(8), 851-860. doi: 10.1061/(Asce)0733-9399(2003)129:8(851). [47] Ling, H.I., Yang, S.T. (2006). Unified sand model based on the critical state and generalized plasticity. Journal of Engineering Mechanics, 132(12), 1380-1391. doi: 10.1061/(Asce)0733-9399(2006)132:12(1380). [48] Manzanal, D., Merodo, J.A.F., Pastor, M. (2011). Generalized plasticity state parameter-based model for saturated and unsaturated soils. Part 1: Saturated state. International Journal for Numerical and Analytical Methods in Geomechanics, 35(12), 1347-1362. doi: 10.1002/nag.961. [49] Liu, H., Ling, H.I. (2008). Constitutive description of interface behavior including cyclic loading and particle breakage within the framework of critical state soil mechanics. International Journal for Numerical and Analytical Methods in Geomechanics, 32(12), 1495-1514. doi: 10.1002/nag.682. [50] Li, H.E., He, Y.J., Fan, G.Y., Li, T.C., Pastor, M. (2011). Recent developments of generalized plasticity models for saturated and unsaturated soils. Water Science and Engineering, 4(3), 329-344. doi: 10.3882/j.issn.1674-2370.2011.03.009. [51] Manzanal, D., Pastor, M., Merodo, J.A.F. (2011). Generalized plasticity state parameter-based model for saturated and unsaturated soils. Part II: Unsaturated soil modeling. International Journal for Numerical and Analytical Methods in Geomechanics, 35(18), 1899-1917. doi: 10.1002/nag.983. [52] Sadeghian, S., Namin, M.L. (2013). Using state parameter to improve numerical prediction of a generalized plasticity constitutive model. Computers Geosciences, 51, 255-268. doi: 10.1016/j.cageo.2012.06.025. [53] Liu, M.C., Gao, Y.F. (2017). Constitutive modeling of coarse-grained materials incorporating the effect of particle breakage on critical state behavior in a framework of generalized plasticity. International Journal of Geomechanics, 17(5), 04016113. doi: 10.1061/(ASCE)GM.1943-5622.0000759. [54] Cen, W.J., Luo, J.R., Bauer, E., Zhang, W.D. (2018). Generalized plasticity model for sand with enhanced state parameters. Journal of Engineering Mechanics, 144(12), 04018108. doi: 10.1061/(Asce)Em.1943-7889.0001534. [55] Heidarzadeh, H., Oliaei, M. (2018). An Efficient Generalized Plasticity Constitutive Model with Minimal Complexity and Required Parameters. Ksce Journal of Civil Engineering, 22(4), 1109-1120. doi: 10.1007/s12205-017-1037-4. [56] Nocedal, J., Wright, S.J. (2006). Numerical Optimization (Second ed.). New York: Springer. [57] Rosenbrock, H. (1960). An automatic method for finding greatest or least value of a function. 3(3), 175–184. doi: 10.1093/comjnl/3.3.175. [58] Box, M.J. (1965). A new method of constrained optimization and a comparison with other methods. Computer Journal, 8(1), 42-52. doi: 10.1093/comjnl/8.1.42. [59] Kolda, T.G., Lewis, R.M., Torczon, V. (2003). Optimization by direct search: New perspectives on some classical and modern methods. Siam Review, 45(3), 385-482. doi: 10.1137/S003614450242889. [60] Hoare, M.R., Ruijgrok, T.W. (1970). Inversion of Partition Function . First-Order Steepest-Descent Method. Journal of Chemical Physics, 52(1), 113- . doi: Doi 10.1063/1.1672655. [61] Langrand, B., Geoffroy, P., Petitniot, J.L., Fabis, J., Markiewicz, E., Drazetic, P. (1999). Identification technique of constitutive model parameters for crashworthiness modelling. Aerospace Science and Technology, 3(4), 215-227. doi: 10.1016/S1270-9638(99)80044-3. [62] Powell, M.J.D., Yuan, Y. (1990). A Trust Region Algorithm for Equality Constrained Optimization. Mathematical Programming, 49(2), 189-211. doi: 10.1007/Bf01588787. [63] Yuan, Y.X. (2000). A review of trust region algorithms for optimization. Paper presented at the 4th International Con-gress on Industrial Applied Mathematics (ICIAM 99), Edinburgh. [64] Coleman, T., Branch, M.A., Grace, A. (1999). Optimization toolbox. For Use with MATLAB. User’s Guide for MATLAB 5, Version 2, Relaese II. Retrieved from [65] Cekerevac, C., Girardin, S., Klubertanz, G., Laloui, L. (2006). Calibration of an elasto-plastic constitutive model by a constrained optimisation procedure. Computers and Geotechnics, 33, 432-443. doi: 10.1016/j.compgeo.2006.07.009. [66] Pal, S., Wathugala, G.W., Kundu, S. (1996). Calibration of a constitutive model using genetic algorithms. Computers and Geotechnics, 19(4), 325-348. doi: 10.1016/S0266-352x(96)00006-7. [67] Samarajiva, P., Macari, E.J., Wathugala, W. (2005). Genetic Algorithms for the Calibration of Constitutive Models for Soils. International Journal of Geomechanics, 5(3), 206-217. doi: 10.1061/(asce)1532-3641(2005)5:3(206). [68] Levasseur, S., Malecot, Y., Boulon, M., Flavigny, E. (2008). Soil parameter identification using a genetic algorithm. International Journal for Numerical and Analytical Methods in Geomechanics, 32(2), 189-213. doi: 10.1002/nag.614. [69] Rokonuzzaman, M., Sakai, T. (2010). Calibration of the parameters for a hardening–softening constitutive model using genetic algorithms. Computers and Geotechnics, 37(4), 573-579. doi: 10.1016/j.compgeo.2010.02.007. [70] Yazdani, M., Daryabari, A., Farshi, A., Talatahari, S. (2013). Application of Taguchi Method and Genetic Algorithm for Calibration of Soil Constitutive Models. Journal of Applied Mathematics, 2013, 1-11. doi: 10.1155/2013/258721. [71] Yeh, F.H., Chuang, T.S., Tsai, F.J., Ge, L. (2020). Calibration of Advanced Constitutive Model Using Optimization Techniques. Journal of Testing and Evaluation, 48(3), 2196-2212. doi: 10.1520/Jte20190137. [72] Jones, D.R., Perttunen, C.D., Stuckman, B.E. (1993). Lipschitzian Optimization without the Lipschitz Constant. Journal of Optimization Theory and Applications, 79(1), 157-181. doi: 10.1007/Bf00941892. [73] Finkel, D.E. (2003). DIRECT optimization algorithm user guide. Center for Research in Scientific Computation, North Carolina State University, 2, 1-14. [74] Holland, J.H. (1992). Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence: MIT Press. [75] Sastry, K., Goldberg, D., Kendall, G. (2005). Genetic Algorithms. In E.K. Burke G. Kendall (Eds.), Search Methodologies (pp. 97-125). Boston, MA: Springer US. [76] Castro, G. (1969). Liquefaction of Sand. (Ph.D. Thesis), Harvard University, Cambridge. [77] Seed, H.B., Wong, R.T., Idriss, I.M., Tokimatsu, K. (1986). Moduli and damping factors for dynamic analyses of cohesionless soils. Journal of Geotechnical Engineering-Asce, 112(11), 1016-1032. doi: 10.1061/(Asce)0733-9410(1986)112:11(1016). [78] Richart, F.E., Hall, J.R., Woods, R.D. (1970). Vibrations of soils and foundations by F.E. Richart Jr, J.R. Hall Jr, R.D. Woods: Prentice-Hall. [79] Ueng, T.S., Lee, C.J. (1990). Deformation behavior of sand under shear - particulate approach. Journal of Geotechnical Engineering-Asce, 116(11), 1625-1640. doi: 10.1061/(Asce)0733-9410(1990)116:11(1625). [80] Li, X.S., Dafalias, Y.F. (2000). Dilatancy for cohesionless soils. Geotechnique, 50(4), 449-460. doi: 10.1680/geot.2000.50.4.449. [81] Li, X.S., Wang, Y. (1998). Linear representation of steady-state line for sand. Journal of Geotechnical and Geoenvironmental Engineering, 124(12), 1215-1217. doi: 10.1061/(Asce)1090-0241(1998)124:12(1215). [82] Verdugo, R., Ishihara, K. (1996). The steady state of sandy soils. Soils and Foundations, 36(2), 81-91. doi: 10.3208/sandf.36.2_81. [83] Yang, Y.H. (2020). Soil stiffness reduction due to undrained cyclic loading under the framework of binary packing. (Master’s dissertation), National Taiwan University, Taipei, Taiwan. [84] Chu, M.C. (2020). Stiffness degradation and excess pore water pressure generation of coarse and fine sand mixture due to cyclic loading. (Doctoral dissertation), National Taiwan University, Taipei, Taiwan. [85] Thevanayagam, S., Mohan, S. (2000). Intergranular state variables and stress–strain behaviour of silty sands. Geotechnique, 50(1), 1-23. doi: 10.1680/geot.2000.50.1.1. [86] Zuo, L., Baudet, B.A. (2015). Determination of the transitional fines content of sand-non plastic fines mixtures. Soils and Foundations, 55(1), 213-219. doi: 10.1016/j.sandf.2014.12.017. [87] Rahman, M.M., Lo, S.R. (2008). The prediction of equivalent granular steady state line of loose sand with fines. Geomechanics and Geoengineering, 3(3), 179-190. doi: 10.1080/17486020802206867. [88] Huang, Y.T., Huang, A.B., Kuo, Y.C., Tsai, M.D. (2004). A laboratory study on the undrained strength of a silty sand from Central Western Taiwan. Soil Dynamics and Earthquake Engineering, 24(9-10), 733-743. doi: 10.1016/j.soildyn.2004.06.013. [89] Lashkari, A. (2014). Recommendations for extension and re-calibration of an existing sand constitutive model taking into account varying non-plastic fines content. Soil Dynamics and Earthquake Engineering, 61-62, 212-238. doi: 10.1016/j.soildyn.2014.02.012. [90] Miftah, A., Garoushi, A.H.B., Bilsel, H. (2020). Effects of fine content on undrained shear response of sand–clay mixture. International Journal of Geosynthetics and Ground Engineering, 6(2), 10. doi: 10.1007/s40891-020-0193-7. [91] Murthy, T.G., Loukidis, D., Carraroy, J.A.H., Prezzi, M., Salgado, R. (2007). Undrained monotonic response of clean and silty sands. Geotechnique, 57(3), 273-288. doi: 10.1680/geot.2007.57.3.273. [92] Chang, C.S., Meidani, M. (2013). Dominant grains network and behavior of sand–silt mixtures: stress–strain modeling. International Journal for Numerical and Analytical Methods in Geomechanics, 37(15), 2563-2589. doi: 10.1002/nag.2152.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81192-
dc.description.abstract過去世界發生地震引致土壤液化災害,影響範圍遍布,顯示土壤液化對人口稠密地區為一大威脅,如1999年土耳其地震與同年於臺灣發生的921集集地震、2018年花蓮地震等。調查過去災後液化區,地表有厚層粉土質砂,也於礫質土壤中發現疑似液化現象,故瞭解不同粗細顆粒比之非塑性土壤材料力學行為,並建立可描述其行為的組成律,則可透過數值分析,對土壤液化後所造成之災害進行分析模擬,如噴砂、地表沉陷、建物及橋墩下沉與傾斜或維生管線受損、上浮等。 透過一系列力學試驗,給定不同應力路徑、排水與圍壓等條件,獲得材料基本特性,且試驗結果為率定土壤組成律參數而使用。為簡化參數率定過程,考慮不同圍壓、相對密度或孔隙比下行為模擬,本研究以二元堆積理論探討砂土之行為,並建立可分析土壤靜態與動態行為下之組成律模式。藉由引進二元堆積 (binary packing) 理論,將土壤視為兩種粗細顆粒混合組合之二元混合物,細顆粒為非塑性,且兩者顆粒粒徑比需在一定比例以上,在不同粗細顆粒配比下,探討試驗結果並提出合適數學模型,並且對材料參數作一歸納。另外,以廣義塑性模式為基礎,提出可模擬砂土於單調試驗與反覆循環應力試驗下力學行為之組成律模式,並提出參數最佳化方法,於本研究中採用基因演算法率定土壤參數。 除此之外,本廣義塑性組成律模型已寫成User-defined material subroutine (UMAT) 使用者開發模式,於有限元素分析軟體ABAQUS架構下使用,可模擬砂土受單調與反覆應力作用下力學行為之模擬分析。總結,本研究提出之廣義塑性組成律模式,可模擬砂土於靜態與動態作用下之力學行為,並有初步模型驗證結果與比較,以期於未來可作為模擬砂土受反覆循環應力作用下,土壤液化引致地表或建物沉陷量評估等大地工程問題分析探討使用。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:35:22Z (GMT). No. of bitstreams: 1
U0001-0308202100471000.pdf: 11961714 bytes, checksum: 4684bcc61fdaf97c040850499de01ce9 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"口試委員會審定書 i Acknowledgment ii 摘要 iv ABSTRACT v CONTENTS vii List of Figures xii List of Tables xxiii List of Operations, Symbols and Acronym xxv Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis framework 2 1.3 The scope of work 3 Chapter 2 Literature review 5 2.1 The characteristics of granular materials 5 2.1.1 The saturated sand under monotonic loading test 5 2.1.2 The saturated sand under cyclic loading test 6 2.1.3 The relationship between fines content and strength of soil 7 2.2 The correlation between the physical mechanism of granular materials and binary packing theory 8 2.3 Constitutive Modeling 12 2.3.1 Multi-Surface Plasticity 13 2.3.2 Bounding surface plasticity model 14 2.3.2.1 PM4Sand and PM4Silt 15 2.3.2.2 UBCSAND 17 2.3.2.3 Generalized plasticity model 18 2.4 Numerical Optimization 25 2.4.1 The definition of numerical optimization 25 2.4.2 Calibration of Model Using Optimization Techniques 26 2.4.3 DIRECT Optimization Algorithm 28 2.4.4 Trust-Region-Reflective Least Squares 29 2.4.5 Genetic Algorithm 31 Chapter 3 Model Formulation 44 3.1 Computational Aspects 44 3.2 Generalized Plasticity Theory 47 3.2.1 Elastic behavior 47 3.2.2 Dilatancy and Plastic Flow 48 3.2.3 Determination of Mf and Mg 51 3.2.4 Plastic modulus for loading and unloading 52 3.2.4.1 Original generalized plasticity model (PZ model) 52 3.2.4.2 Modified generalized plasticity model considering state parameter 54 3.3 Parameter Identification 55 3.4 Model Validation under Monotonic Loading 57 3.4.1 Consolidated undrained (CU) triaxial compression tests 57 3.4.2 Consolidated drained (CD) triaxial compression tests 60 3.5 Model Simulation under Cyclic Loading 63 3.5.1 Cyclic loading, drained condition 63 3.5.2 Cyclic loading, undrained condition 64 3.6 Sensitivity Analysis of Model Parameters 68 3.7 Discussion of this Chapter 69 Chapter 4 Static Behavior of Binary Mixtures 112 4.1 Specimen Preparation 112 4.2 Prediction of Maximum and Minimum Void Ratios 113 4.3 Validation of the Proposed Equations for Predictions of Maximum and Minimum Void Ratios 115 4.4 Comparisons of Different Methods for the Determination of Threshold Fines Contents 117 4.5 Critical State and State Parameter 118 4.5.1 Critical state friction angle 118 4.5.2 State parameter 120 4.6 Discussion of this Chapter 122 Chapter 5 Finite Element Implementation 133 5.1 Introduction of How to Write a UMAT 133 5.2 Formulation of a Generalized Plasticity Model 134 5.2.1 Steps in forming the UMAT 134 5.2.2 Single element analysis 136 5.3 Simulations of the User-defined Generalized Plasticity Model 138 Chapter 6 Calibration by Using Optimization Techniques 149 6.1 Objective Function 149 6.2 Numerical Optimization 150 6.3 Optimization Procedures 151 6.3.1 Process of optimization 151 6.3.2 The configuration settings 152 6.4 Calibration Example 152 6.5 Discussion of this Chapter 155 Chapter 7 Conclusions and Recommendations 165 7.1 Conclusions 165 7.2 Recommendations 168 References 170 Appendix A UMAT 185"
dc.language.isoen
dc.subject基因演算法zh_TW
dc.subject土壤液化zh_TW
dc.subject單調試驗zh_TW
dc.subject反覆循環應力zh_TW
dc.subject廣義塑性模式zh_TW
dc.subject二元堆積理論zh_TW
dc.subject二元混合物zh_TW
dc.subject參數最佳化zh_TW
dc.subjectcyclic loadingen
dc.subjectLiquefactionen
dc.subjectbinary mixturesen
dc.subjectbinary packingen
dc.subjectoptimization algorithmen
dc.subjectgeneralized plasticityen
dc.title二元堆積理論下砂土行為及液化分析之組成律模式zh_TW
dc.titleA Plasticity Model for Liquefaction Simulation Considering Binary Packing Theoryen
dc.date.schoolyear109-2
dc.description.degree博士
dc.contributor.author-orcid0000-0002-6482-045X
dc.contributor.advisor-orcid葛宇甯(0000-0002-1150-3733)
dc.contributor.oralexamcommittee楊國鑫(Hsin-Tsai Liu),邱俊翔(Chih-Yang Tseng),蔡祁欽,盧之偉,洪汶宜
dc.subject.keyword土壤液化,單調試驗,反覆循環應力,廣義塑性模式,二元堆積理論,二元混合物,參數最佳化,基因演算法,zh_TW
dc.subject.keywordLiquefaction,cyclic loading,generalized plasticity,binary packing,binary mixtures,optimization algorithm,en
dc.relation.page199
dc.identifier.doi10.6342/NTU202102022
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-08-04
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
Appears in Collections:土木工程學系

Files in This Item:
File SizeFormat 
U0001-0308202100471000.pdf
Access limited in NTU ip range
11.68 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved