請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81176完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 魏志潾(Chih-Lin Wei) | |
| dc.contributor.author | Mariana Gabrielle Cangco Reyes | en |
| dc.contributor.author | 雷元妠 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:34:29Z | - |
| dc.date.available | 2021-11-19 | |
| dc.date.available | 2022-11-24T03:34:29Z | - |
| dc.date.copyright | 2021-11-19 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-07 | |
| dc.identifier.citation | Abdullah, A. L. (2013). Guide to Coral Propagation. Perpustakaan Negara, Malaysia: Cataloguing-in-Publication Data. Alvarez-Filip, L., Dulvy, N. K., Gill, J. A., Côté, I. M., Watkinson, A. R. (2009). Flattening of Caribbean coral reefs: Region-wide declines in architectural complexity. Proceedings of the Royal Society B: Biological Sciences, 276(1669), 3019–3025. https://doi.org/10.1098/rspb.2009.0339 Baird, A., Hughes, T. (2000). Competitive dominance by tabular corals: an experimental analysis of recruitment and survival of understorey assemblages. Journal of Experimental Marine Biology and Ecology, 251(1), 117–132. https://doi.org/10.1016/s0022-0981(00)00209-4 Bastian, M., Heymann, S., Jacomy, M. (2009). Gephi: An Open Source Software for Exploring and Manipulating Networks. Proceedings of the International AAAI Conference on Web and Social Media, 3(1). Retrieved from https://ojs.aaai.org/index.php/ICWSM/article/view/13937 Baums, I. B., Baker, A. C., Davies, S. W., Grottoli, A. G., Kenkel, C. D., Kitchen, S. A., … Shantz, A. A. (2019). Considerations for maximizing the adaptive potential of restored coral populations in the western Atlantic. Ecological Applications, 29(8). doi: 10.1002/eap.1978 Bellwood, D. R., Hughes, T.P. (2001). Regional-Scale assembly rules and biodiversity of coral reefs. Science, 292(5521), 1532-1535. doi:10.1126/science.1058635 BFAR. (2014). Philippine Coral Reefs. Retrieved July 04, 2020, from https://www.bfar.da.gov.ph/habitat.jsp?id=4 Borthagaray, A. I., Arim, M., Marquet, P. A. (2014). Inferring species roles in metacommunity structure from species co-occurrence networks. Proceedings of the Royal Society B: Biological Sciences, 281(1792), 20141425. doi:10.1098/rspb.2014.1425 Boström-Einarsson, L., Babcock, R. C., Bayraktarov, E., Ceccarelli, D., Cook, N., Ferse, S. C. A., … Mcleod, I. M. (2020). Coral restoration – A systematic review of current methods, successes, failures and future directions. PLoS One, 15(1). doi: 10.1371/journal.pone.0226631 Bozec, Y. M., Mumby, P. J. (2015). Synergistic impacts of global warming on the resilience of coral reefs. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1659), 1–9. https://doi.org/10.1098/rstb.2013.0267 Brandes, U. (2001). A faster algorithm for betweenness centrality. The Journal of Mathematical Sociology, 25(2), 163–17. https://doi.org/10.1080/0022250x.2001.9990249 Brandl, S. J., Tornabene, L., Goatley, C. H., Casey, J. M., Morais, R. A., Côté, I. M., . . . Bellwood, D. R. (2019). Demographic dynamics of the smallest marine vertebrates fuel coral reef ecosystem functioning. Science, 364(6446), 1189-1192. doi:10.1126/science.aav3384 Brown, B. E., Dunne, R. P., Goodson, M. S., Douglas, A. E. (2002). Experience shapes the susceptibility of a reef coral to bleaching. Coral Reefs, 21(2), 119–126. https://doi.org/10.1007/s00338-002-0215-z Büttner, K., Krieter, J. (2018). Comparison of weighted and Unweighted network analysis in the case of a PIG trade network in Northern Germany. Preventive Veterinary Medicine, 156, 49–57. https://doi.org/10.1016/j.prevetmed.2018.05.008 Carpenter, K.E., Springer, V.G. (2005). The center of the center of marine shore fish biodiversity: The Philippine Islands. Environmental Biology of Fishes. 72. 467-480. 10.1007/s10641-004-3154-4. Cazelles, K., Araújo, M. B., Mouquet, N., Gravel, D. (2015). A theory for species co-occurrence in interaction networks. Theoretical Ecology, 9(1), 39-48. doi:10.1007/s12080-015-0281-9 Ceccarelli, D. M., Loffler, Z., Bourne, D. G., Moajil-Cole, G. S. A., Boström-Einarsson, L., Evans-Illidge, E., … Bay, L. (2018). Rehabilitation of coral reefs through removal of macroalgae: state of knowledge and considerations for management and implementation. Restoration Ecology, 26(5), 827–838. https://doi.org/10.1111/rec.12852 Chamberland, V. F., Petersen, D., Guest, J. R., Petersen, U., Brittsan, M. (2017). New Seeding Approach Reduces Costs and Time to Outplant Sexually Propagated Corals for Reef Restoration. November, 1–12. https://doi.org/10.1038/s41598-017-17555-z Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., Ellison, A. M. (2014). Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological monographs, 84(1), 45-67. Charrad, M., Ghazzali, N., Boiteau, V., Niknafs, A. (2014). NbClust: AnRPackage for determining the relevant number of clusters in a data set. Journal of Statistical Software, 61(6). doi:10.18637/jss.v061.i06 Chou, L. M., Toh, T. C., Toh, K. Ben, Ng, C. S. L., Cabaitan, P., Tun, K., Goh, E., Afiq-Rosli, L., Taira, D., Du, R. C. P., Loke, H. X., Khalis, A., Li, J., Song, T. (2016). Differential response of coral assemblages to thermal stress underscores the complexity in predicting bleaching susceptibility. PLoS ONE, 11(7), 1–12. https://doi.org/10.1371/journal.pone.0159755 Cruz, D. W. D., Harrison, P. L. (2017). Enhanced larval supply and recruitment can replenish reef corals on degraded reefs. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/s41598-017-14546-y D’Angelo, C., Wiedenmann, J. (2014). ScienceDirect Impacts of nutrient enrichment on coral reefs : new perspectives and implications for coastal management and reef survival. 2, 82–93. https://doi.org/10.1016/j.cosust.2013.11.029 Darling, E. S., Alvarez-Filip, L., Oliver, T. A., Mcclanahan, T. R., Côté, I. M. (2012). Evaluating life-history strategies of reef corals from species traits. Ecology Letters, 15(12), 1378–1386. https://doi.org/10.1111/j.1461-0248.2012.01861.x Darling, E. S., Côté, I. M. (2018). Seeking resilience in marine ecosystems. Science, 359(6379), 986-987. doi:10.1126/science.aas9852 Darling, E. S., McClanahan, T. R., Côté, I. M. (2013). Life histories predict coral community disassembly under multiple stressors. Global Change Biology, 19(6), 1930–1940. https://doi.org/10.1111/gcb.12191 DeCarlo, T. M., Harrison, H. B., Gajdzik, L., Alaguarda, D., Rodolfo-Metalpa, R., D’Olivo, J., Liu, G., Patalwala, D., McCulloch, M. T. (2019). Acclimatization of massive reef-building corals to consecutive heatwaves. Proceedings of the Royal Society B: Biological Sciences, 286(1898). https://doi.org/10.1098/rspb.2019.0235 Denis, V., Mezaki, T., Tanaka, K., Kuo, C. Y., de Palmas, S., Keshavmurthy, S., Chen, C. A. (2013). Coverage, Diversity, and Functionality of a High-Latitude Coral Community (Tatsukushi, Shikoku Island, Japan). PLoS ONE, 8(1), 1–9. https://doi.org/10.1371/journal.pone.0054330 Denis, V., Ribas-Deulofeu, L., Sturaro, N., Kuo, C., Chen, C. A. (2017). A functional approach to the structural complexity of coral assemblages based on colony morphological features. Scientific Reports, 7(1). doi:10.1038/s41598-017-10334-w Ding, C., He, X. (2004). K-means clustering via principal component analysis. Twenty-First International Conference on Machine Learning - ICML '04. https://doi.org/10.1145/1015330.1015408 Dufrêne, M., Legendre, P. (1997). Species assemblages and Indicator species: The need for a Flexible Asymmetrical Approach. Ecological Monographs, 67(3), 345. doi:10.2307/2963459 Edwards, A. J. (2010). Reef rehabilitation manual. St. Lucia, Australia. Coral Reef Targeted Research Capacity Building for Management Program. Flores, R. C., Paguia, H. M., Guzman, R. D., Guzman, D. D., Varua, N. N. (2017). Application of Transplantation Technology to Improve Coral Reef Resources for Sustainable Fisheries and Underwater Tourism. International Journal of Environmental Science and Development, 8(1), 44-49. doi:10.18178/ijesd.2017.8.1.918 Foo, S. A., Asner, G. P. (2019). Scaling up coral reef restoration using remote sensing technology. Frontiers in Marine Science, 6(MAR), 1–8. https://doi.org/10.3389/fmars.2019.00079 Fox, H. E., Harris, J. L., Darling, E. S., Ahmadia, G. N., Estradivari, Razak, T. B. (2019). Rebuilding coral reefs: success (and failure) 16 years after low-cost, low-tech restoration. Restoration Ecology, 27(4), 862–869. https://doi.org/10.1111/rec.12935 Gibbs, M. T., Gibbs, B. L., Newlands, M., Ivey, J. (2021). Scaling up the global reef restoration activity: Avoiding ecological imperialism and ongoing colonialism. PLoS ONE, 16(5 May), 1–15. https://doi.org/10.1371/journal.pone.0250870 González-Rivero, M., Yakob, L., Mumby, P. J. (2011). The role of sponge competition on coral reef alternative steady states. Ecological Modelling, 222(11), 1847-1853. doi:10.1016/j.ecolmodel.2011.03.020 Good, A. M., Bahr, K. D. (2021). The coral conservation crisis: Interacting local and global stressors reduce reef resiliency and create challenges for conservation solutions. SN Applied Sciences, 3(3). doi:10.1007/s42452-021-04319-8 Graham, N. A. J., Nash, K. L. (2013). The importance of structural complexity in coral reef ecosystems. Coral Reefs, 32(2), 315–326. https://doi.org/10.1007/s00338-012-0984-y Griffith, D. M., Veech, J. A., Marsh, C. J. (2016). cooccur: Probabilistic Species Co-Occurrence Analysis in R. Journal of Statistical Software, 69(Code Snippet 2). https://doi.org/10.18637/jss.v069.c02 Guest, J. R., Tun, K., Low, J., Vergés, A., Marzinelli, E. M., Campbell, A. H., . . . Steinberg, P. D. (2016). 27 years of benthic and coral community dynamics ON turbid, highly Urbanised reefs off Singapore. Scientific Reports, 6(1). doi:10.1038/srep36260 Harriott, V., Smith, S., Harrison, P. (1994). Patterns of coral community structure of Subtropical reefs in the solitary Islands Marine reserve, Eastern Australia. 109(1952), 67–76. Harvey, B. J., Nash, K. L., Blanchard, J. L., Edwards, D. P. (2018). Ecosystem-based management of coral reefs under climate change. Ecology and Evolution, 8(12), 6354–6368. doi: 10.1002/ece3.4146 Hoegh-Guldberg, O., Jacob, D., Taylor, M., Bolaños, T. G., Bindi, M., Brown, S., … Zhou, G. (2019). The human imperative of stabilizing global climate change at 1.5°C. Science, 365(6459). doi: 10.1126/science.aaw6974 Hsiao, W., Lin, Y., Lin, H., Denis, V. (2021). Learning from differences : Abiotic determinism of benthic communities in Northern Taiwan. Marine Environmental Research, 170(1), 105361. https://doi.org/10.1016/j.marenvres.2021.105361 Hughes, T. P. (2003). Climate Change, Human Impacts, and the Resilience of Coral Reefs. Science, 301(5635), 929-933. doi:10.1126/science.1085046 Hughes, T. P., Barnes, M. L., Bellwood, D. R., Cinner, J. E., Cumming, G. S., Jackson, J. B., . . . Scheffer, M. (2017). Coral reefs in the Anthropocene. Nature, 546(7656), 82-90. doi:10.1038/nature22901 Hughes, T. P., Kerry, J. T., Baird, A. H., Connolly, S. R., Dietzel, A., Eakin, C. M., … Torda, G. (2018). Global warming transforms coral reef assemblages. Nature, 556(7702), 492–496. doi: 10.1038/s41586-018-0041-2 IPCC. (2019). Global warming of 1.5°C: An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Geneva, Switzerland: Intergovernmental Panel on Climate Change. Januchowski-Hartley, F. A., Bauman, A. G., Morgan, K. M., Seah, J. C. L., Huang, D., Todd, P. A. (2020). Accreting coral reefs in a highly urbanized environment. Coral Reefs, 39(3), 717–731. https://doi.org/10.1007/s00338-020-01953-3 Knowlton, N. (2001). The future of coral reefs. Proceedings of the National Academy of Sciences, 98(10), 5419–5425. https://doi.org/10.1073/pnas.091092998. Kohler, K. E., Gill, S. M. (2006). Coral Point Count with Excel extensions (CPCe): A Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Computers Geosciences, 32(9), 1259-1269. doi:10.1016/j.cageo.2005.11.009 Komyakova, V., Munday, P. L., Jones, G. P. (2013). Relative Importance of Coral Cover, Habitat Complexity and Diversity in Determining the Structure of Reef Fish Communities. PLoS ONE, 8(12), 83178. https://doi.org/10.1371/journal.pone.0083178 Koschützki, D., Schreiber, F. (2008). Centrality analysis methods for biological networks and their application to gene regulatory networks. Gene Regulation and Systems Biology, 2. https://doi.org/10.4137/grsb.s702 Ladd, M. C., Miller, M. W., Hunt, J. H., Sharp, W. C., Burkepile, D. E. (2018). Harnessing ecological processes to facilitate coral restoration. Frontiers in Ecology and the Environment, 16(4), 239–247. doi: 10.1002/fee.1792 Legendre, P., Gallagher, E. D. (2001). Ecologically meaningful transformations for ordination of species data. Oecologia, 129(2), 271-280. doi:10.1007/s004420100716 Lewinsohn, T. M., Cagnolo, L. (2012). Keystones in a tangled bank. Science, 335(6075), 1449-1451. doi:10.1126/science.1220138 Lewis, A. R. (1997). Effects of experimental coral disturbance on the structure of fish communities on large patch reefs. Lin, Y. V., Denis, V. (2019). Acknowledging differences: Number, characteristics, and distribution of marine benthic communities along Taiwan coast. Ecosphere, 10(7). doi:10.1002/ecs2.2803 López-Victoria, M., Zea, S., Weil, E. (2006). Competition for space between encrusting excavating Caribbean sponges and other coral reef organisms. Marine Ecology Progress Series, 312, 113–121. https://doi.org/10.3354/meps312113 MacQueen, J. (1967). Classification analysis: Allocation of observations to groups. Methods of Multivariate Analysis, 309-337. doi:10.1002/9781118391686.ch9 Madin, J. (2016): Coral Trait Database 1.1.1. figshare. Dataset. https://doi.org/10.6084/m9.figshare.2067414.v1 Magel, J. M., Burns, J. H., Gates, R. D., Baum, J. K. (2019). Effects of bleaching-associated mass coral mortality on reef structural complexity across a gradient of local disturbance. Scientific Reports, 9(1). doi:10.1038/s41598-018-37713-1 McCowan, D., Pratchett, M., Baird, A. (2012). Bleaching susceptibility and mortality among corals with differing growth forms. Proceedings of the 12th International Coral Reef Symposium, July, 6. http://eprints.jcu.edu.au/22384/ McField, M. (2017) Impacts of Climate Change on Coral in the Coastal and Marine Environments of Caribbean Small Island Developing States (SIDS), Caribbean Marine Climate Change Report Card: Science Review 2017, pp 52-59. McGarvey, D. J. Veech, J. A. (2018). Modular structure in fish co-occurrence networks: A comparison across spatial scales and grouping methodologies. PLoS ONE, 13(12). doi:10.1371/journal.pone.0208720 Mello, M. A., Rodrigues, F. A., Costa, L. da, Kissling,Şekercioğlu, Ç. H., Marquitti, F. M., amp; Kalko,K. (2014). Keystone species in seed dispersal networks are mainly determined by Dietary specialization. Oikos, 124(8), 1031–1039. https://doi.org/10.1111/oik.01613 Morgan, K. M., Perry, C. T., Smithers, S. G., Johnson, J. A., Daniell, J. J. (2016). Evidence of extensive reef development and high coral cover in nearshore environments: Implications for understanding coral adaptation in turbid settings. Scientific Reports, 6(June), 1–10. https://doi.org/10.1038/srep29616 Muthukrishnan, R., Fong, P. (2014). Multiple anthropogenic stressors exert complex, interactive effects on a coral reef community. Coral Reefs, 33(4), 911-921. doi:10.1007/s00338-014-1199-1 Nooy, W., Mrvar, A., Batagelj, V. (2005). Exploratory Social Network Analysis with Pajek. Social Networks, 46, 103–105. https://doi.org/10.1016/j.socnet.2016.03.003 Oksanen, J., Kindt, R., Legendre, P., O'Hara, B., Simpson, G. L., Solymos, P., Stevens, M. H. H. Wagner, H. (2008). vegan: Community Ecology Package (R package version 1.15-1) Pearson, K. (1900). X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 50(302), 157-175. Perry, C. T., Larcombe, P. (2003). Marginal and non-reef-building coral environments. Coral Reefs, 22(4), 427–432. https://doi.org/10.1007/s00338-003-0330-5 Pollnac, R. B., Crawford, B. R., Gorospe, M. L. G. (2001). Discovering factors that influence the success of community-based marine protected areas in the Visayas, Philippines. Ocean and Coastal Management, 44(11–12), 683–710. https://doi.org/10.1016/S0964-5691(01)00075-8 Riegl, B. M., Sheppard, C. R. C., Purkis, S. J. (2012). Human impact on atolls leads to coral loss and community homogenisation: A modeling study. PLoS ONE, 7(6). https://doi.org/10.1371/journal.pone.0036921 Rinkevich, B. (2014). Rebuilding coral reefs: does active reef restoration lead to sustainable reefs? Current Opinion in Environmental Sustainability, 7, 28–36. doi: 10.1016/j.cosust.2013.11.018 RStudio Team (2021). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/. Salao, C., Honasan, A., and Sandalo, R. (2007). Anilao, Paying to Play: the Dive Fees of Mabini and Tingloy: a Case Study on the Philippines. Quezon City, Philippines: WWF-Philippines, Shaish, L., Levy, G., Gomez, E., Rinkevich, B. (2008). Fixed and suspended coral nurseries in the Philippines: Establishing the first step in the “gardening concept” of reef restoration. Journal of Experimental Marine Biology and Ecology, 358(1), 86–97. doi: 10.1016/j.jembe.2008.01.024 Skern-Mauritzen, M., Olsen, E., Huse, G. (2018). Opportunities for advancing ecosystem-based management in a rapidly changing, high latitude ecosystem. ICES Journal of Marine Science, 75(7), 2425–2433. https://doi.org/10.1093/icesjms/fsy150 Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G., Van Woesik, R. (2019). A global analysis of coral bleaching over the past two decades. Nature Communications, 10(1). doi:10.1038/s41467-019-09238-2 van Oppen, M. J. H. V., Oliver, J. K., Putnam, H. M., Gates, R. D. (2015). Building coral reef resilience through assisted evolution. Proceedings of the National Academy of Sciences, 112(8), 2307–2313. doi: 10.1073/pnas.1422301112 Vu, V.Q. (2011). ggbiplot: A ggplot2 based biplot. R package version 0.55. http://github.com/vqv/ggbiplot Wakeford, M., Done, T. J., Johnson, C. R. (2008). Decadal trends in a coral community and evidence of changed disturbance regime. Coral Reefs, 27(1), 1–13. https://doi.org/10.1007/s00338-007-0284-0 Weijerman, M., Veazey, L., Yee, S., Vaché, K., Delevaux, J. M. S., Donovan, M. K., … Oleson, K. L. L. (2018). Managing Local Stressors for Coral Reef Condition and Ecosystem Services Delivery Under Climate Scenarios. Frontiers in Marine Science, 5. doi: 10.3389/fmars.2018.00425 White, K. N., Ohara, T., Fujii, T., Kawamura, I., Mizuyama, M., Montenegro, J., Shikiba, H., Naruse, T., McClelland, T., Denis, V., Reimer, J. D. (2013). Typhoon damage on a shallow mesophotic reef in Okinawa, Japan. PeerJ, 2013(1), 1–12. https://doi.org/10.7717/peerj.151https://doi.org/10.7717/peerj.151 Woodhead, A. J., Hicks, C. C., Norström, A. V., Williams, G. J., Graham, N. A. J. (2019).Coral reef ecosystem services in the Anthropocene. Functional Ecology, 33(6), 1023–1034. https://doi.org/10.1111/1365-2435.13331 Zawada, K. J. A., Madin, J. S., Baird, A. H., Bridge, T. C. L., Dornelas, M. (2019). Morphological traits can track coral reef responses to the Anthropocene. Functional Ecology, 33(6), 962–975. https://doi.org/10.1111/1365-2435.13358 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81176 | - |
| dc.description.abstract | "珊瑚礁是重要的海洋生態系之一,然而近年來全球氣候變遷和各種有害的人為活動造成了珊瑚礁的衰退。為了減緩衰退,不同的珊瑚復育方法因而被提出來,例如使用遠端遙測技術來偵測衰退的珊瑚礁、珊瑚種苗放流、選擇較具抵抗性的珊瑚群體進行繁殖以及藉由優先選取特定表徵的物種來刺激基因流動以幫助珊瑚演化的目的。然而,上述這些方法大多所費不貲且無法顯著地在大空間尺度上保育這個生態系。本研究提出了一個可以應用在一定空間規模的復育方法,藉由鑑定出不同的底棲群聚,再挑選這些群聚內關鍵的石珊瑚型態功能群(morpho-functional groups)並優先種植以促進群聚的動態消長。我們在菲律賓馬比尼阿尼洛的五個區域內橫跨三個深度(5、10、15米) 共記錄了55條穿越線,並且記錄在每條側線上拍攝的21張照片中出現的型態功能群來計算底棲生物的組成。我們使用 k-平均演算法(k-means)來找尋最佳的分群數量以代表底棲群聚數量,並計算每個群聚的hill指數以作為此群聚的多樣性特徵。我們在每個群聚的共現網絡(Co-occurrence) 分析中取最高介數中心性的底棲生物型態功能群做為此群聚內的關鍵型態功能群。k-平均演算法表示七個群聚為最佳的分群數量,且各群聚皆擁有不同的特性和多樣性。然而因為群聚4缺乏重複的穿越線,只有六個共現網絡能被分析,。在這六個網絡中,關鍵的底棲生物生長型態為葉片狀的石珊瑚(群聚1、2、5)、皮質較厚的藻類(群聚3)、表覆型海綿(群聚5)、枝狀石珊瑚(群聚6)和桌狀石珊瑚(群聚7)。有趣的是,每個群聚的關鍵底棲型態功能群皆不相同。在這些群聚中,我們以關鍵的石珊瑚生長型態為移植的目標,並從中挑選出不受人為壓力影響的群體來當作移植的母群體,以作為當地在未來可以實施的珊瑚復育指南。這些從關鍵的石珊瑚生長型態上採取的分枝很有可能會加快當地生態動態的消長。本研究旨在發展一個不昂貴的珊瑚移植方法來連結科學和當地的保育工作以造就更好的珊瑚移植策略。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:34:29Z (GMT). No. of bitstreams: 1 U0001-0408202115020500.pdf: 2590014 bytes, checksum: 36fc7597b668268c8eaff75f9d451eb4 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "摘要 iii Abstract v I. Introduction 1 II. Methods/materials/study site 6 2.1 Study locations 6 2.2 Benthic surveys 7 2.3 Data Analysis 7 2.3.1 Pre-treatment, k-mean partitions and multivariate visualization 7 2.3.2 BC differentiation, diversity, and distribution 8 2.3.3 Morpho-functional group centrality 9 2.4 Community-based restoration protocol 10 III. Results 11 IV. Discussion 25 4.1 BCs description 25 4.2 Key morpho-functional group of each community 26 4.3 Development of coral restoration protocol 28 V. References 30 Supplementary materials 43 " | |
| dc.language.iso | en | |
| dc.subject | 介數中心性 | zh_TW |
| dc.subject | 珊瑚礁 | zh_TW |
| dc.subject | 底棲群落 | zh_TW |
| dc.subject | 共現網絡 | zh_TW |
| dc.subject | betweenness centrality | en |
| dc.subject | co-occurrence network | en |
| dc.subject | benthic communities | en |
| dc.subject | coral reefs | en |
| dc.title | 利用對底棲生物群聚及其特徵的了解來優化珊瑚復育方法 | zh_TW |
| dc.title | Recognition of benthic communities and their specificities in optimizing reef restoration strategies | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 單偉彌(Vianney Denis) | |
| dc.contributor.oralexamcommittee | 王慧瑜(Hsin-Tsai Liu),野澤洋耕(Chih-Yang Tseng) | |
| dc.subject.keyword | 珊瑚礁,底棲群落,共現網絡,介數中心性, | zh_TW |
| dc.subject.keyword | coral reefs,benthic communities,co-occurrence network,betweenness centrality, | en |
| dc.relation.page | 51 | |
| dc.identifier.doi | 10.6342/NTU202102081 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-08-09 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 氣候變遷與永續發展國際學位學程 | zh_TW |
| 顯示於系所單位: | 氣候變遷與永續發展國際學位學程(含碩士班、博士班) | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0408202115020500.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
