請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81168完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳哲夫(Jeffrey D. Ward) | |
| dc.contributor.author | Jo-Yu Chien | en |
| dc.contributor.author | 錢若宇 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:34:02Z | - |
| dc.date.available | 2021-09-01 | |
| dc.date.available | 2022-11-24T03:34:02Z | - |
| dc.date.copyright | 2021-09-01 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-11 | |
| dc.identifier.citation | 1. Stankiewicz, A. I.; Moulijn, J. A., Process intensification: Transforming chemical engineering. Chem Eng Prog 2000, 96 (1), 22-34. 2. Partin, L. R.; Agreda, V. H. Reactive distillation process for the production of methyl acetate. US Patent 4,435,595, 1984. 3. Harmsen, G. J., Reactive distillation: The front-runner of industrial process intensification - A full review of commercial applications, research, scale-up, design and operation. Chem Eng Process 2007, 46 (9), 774-780. 4. Kaymak, D. B.; Luyben, W. L., Quantitative comparison of reactive distillation with conventional multiunit reactor/column/recycle systems for different chemical equilibrium constants. Industrial Engineering Chemistry Research 2004, 43 (10), 2493-2507. 5. Taylor, R.; Krishna, R., Modelling reactive distillation. Chemical Engineering Science 2000, 55 (22), 5183-5229. 6. Huss, R. S.; Chen, F.; Malone, M. F.; Doherty, M. F., Computer-aided tools for the design of reactive distillation systems. Computers Chemical Engineering 1999, 23, S955-S962. 7. Barbosa, D.; Doherty, M. F., Design and Minimum-Reflux Calculations for Double-Feed Multicomponent Reactive Distillation-Columns. Chemical Engineering Science 1988, 43 (9), 2377-2389. 8. Barbosa, D.; Doherty, M. F., Design and Minimum-Reflux Calculations for Single-Feed Multicomponent Reactive Distillation-Columns. Chemical Engineering Science 1988, 43 (7), 1523-1537. 9. Espinosa, J.; Scenna, N.; Perez, G., Graphical Procedure for Reactive Distillation Systems. Chem Eng Commun 1993, 119, 109-124. 10. Espinosa, J.; Aguirre, P.; Perez, G., Some Aspects in the Design of Multicomponent Reactive Distillation-Columns Including Nonreactive Species. Chemical Engineering Science 1995, 50 (3), 469-484. 11. Espinosa, J.; Aguirre, P. A.; Perez, G. A., Product Composition Regions of Single-Feed Reactive Distillation-Columns - Mixtures Containing Inerts. Industrial Engineering Chemistry Research 1995, 34 (3), 853-861. 12. Espinosa, J.; Aguirre, P.; Perez, G., Some aspects in the design of multicomponent reactive distillation columns with a reacting core: Mixtures containing inerts. Industrial Engineering Chemistry Research 1996, 35 (12), 4537-4549. 13. Bessling, B.; Schembecker, G.; Simmrock, K. H., Design of processes with reactive distillation line diagrams. Industrial Engineering Chemistry Research 1997, 36 (8), 3032-3042. 14. Groemping, M.; Dragomir, R.-M.; Jobson, M., Conceptual design of reactive distillation columns using stage composition lines. Chemical Engineering and Processing: Process Intensification 2004, 43 (3), 369-382. 15. Dragomir, R. M.; Jobson, M., Conceptual design of single-feed kinetically controlled reactive distillation columns. Chemical Engineering Science 2005, 60 (18), 5049-5068. 16. Dragomir, R. M.; Jobson, M., Conceptual design of single-feed hybrid reactive distillation columns. Chemical Engineering Science 2005, 60 (16), 4377-4395. 17. Carrera-Rodriguez, M.; Segovia-Hernandez, J. G.; Bonilla-Petriciolet, A., Short-Cut Method for the Design of Reactive Distillation Columns. Industrial Engineering Chemistry Research 2011, 50 (18), 10730-10743. 18. Venimadhavan, G.; Malone, M. F.; Doherty, M. F., Bifurcation study of kinetic effects in reactive distillation. Aiche Journal 1999, 45 (3), 546-556. 19. Baur, R.; Taylor, R.; Krishna, R., Bifurcation analysis for TAME synthesis in a reactive distillation column: comparison of pseudo-homogeneous and heterogeneous reaction kinetics models. Chem Eng Process 2003, 42 (3), 211-221. 20. Wang, J.; Chang, Y.; Wang, E. Q.; Li, C. Y., Bifurcation analysis for MTBE synthesis in a suspension catalytic distillation column. Computers Chemical Engineering 2008, 32 (6), 1316-1324. 21. Qi, Z. W.; Sundmacher, K., Bifurcation analysis of reactive distillation systems with liquid-phase splitting. Computers Chemical Engineering 2002, 26 (10), 1459-1471. 22. Lee, H. Y.; Tang, Y. T.; Huang, H. P.; Chien, I. L., Bifurcation in the reactive distillation for ethyl acetate at lower Murphree plate efficiency. Journal of Chemical Engineering of Japan 2006, 39 (6), 642-651. 23. Chadda, N.; Malone, M. F.; Doherty, M. F., Feasibility and synthesis of hybrid reactive distillation systems. Aiche Journal 2002, 48 (12), 2754-2768. 24. Chadda, N.; Malone, M. F.; Doherty, M. F., Effect of chemical kinetics on feasible splits for reactive distillation. Aiche Journal 2001, 47 (3), 590-601. 25. Feinberg, M., Optimal reactor design from a geometric viewpoint. Part II. Critical sidestream reactors. Chemical Engineering Science 2000, 55 (13), 2455-2479. 26. Feinberg, M., Optimal reactor design from a geometric viewpoint - III. Critical CFSTRs. Chemical Engineering Science 2000, 55 (17), 3553-3565. 27. Feinberg, M.; Hildebrandt, D., Optimal reactor design from a geometric viewpoint .1. Universal properties of the attainable region. Chemical Engineering Science 1997, 52 (10), 1637-1665. 28. Amte, V.; Gaikwad, R.; Malik, R.; Mahajani, S., Attainable region of reactive distillation-Part IV: Inclusion of multistage units for complex reaction schemes. Chemical Engineering Science 2012, 68 (1), 166-183. 29. Amte, V.; Nistala, S.; Malik, R.; Mahajani, S., Attainable regions of reactive distillation-Part III. Complex reaction scheme: Van de Vusse reaction. Chemical Engineering Science 2011, 66 (11), 2285-2297. 30. Agarwal, V.; Thotla, S.; Mahajani, S. M., Attainable regions of reactive distillation - Part I. Single reactant non-azeotropic systems. Chemical Engineering Science 2008, 63 (11), 2946-2965. 31. Agarwal, V.; Thotla, S.; Kaur, R.; Mahajani, S. M., Attainable regions of reactive distillation. Part II: Single reactant azeotropic systems. Chemical Engineering Science 2008, 63 (11), 2928-2945. 32. Gadewar, S. B.; Malone, M. F.; Doherty, M. F., 'Feasible products for double-feed reactive distillation columns. Industrial Engineering Chemistry Research 2007, 46 (10), 3255-3264. 33. Gadewar, S. B.; Malone, M. F.; Doherty, M. F., Feasible region for a countercurrent cascade of vapor-liquid CSTRs. Aiche Journal 2002, 48 (4), 800-814. 34. Lee, J. W.; Hauan, S.; Westerberg, A. W., Graphical methods for reaction distribution in a reactive distillation column. Aiche Journal 2000, 46 (6), 1218-1233. 35. Lee, J. W.; Hauan, S.; Westerberg, A. W., Feasibility of a reactive distillation column with ternary mixtures. Industrial Engineering Chemistry Research 2001, 40 (12), 2714-2728. 36. Lee, J. W., Feasibility studies on quaternary reactive distillation systems. Industrial Engineering Chemistry Research 2002, 41 (18), 4632-4642. 37. Kang, D.; Lee, K.; Lee, J. W., Feasibility Evaluation of Quinary Heterogeneous Reactive Extractive Distillation. Industrial Engineering Chemistry Research 2014, 53 (31), 12387-12398. 38. Kang, D.; Lee, J. W., Graphical Design of Integrated Reaction and Distillation in Dividing Wall Columns. Industrial Engineering Chemistry Research 2015, 54 (12), 3175-3185. 39. Proios, P.; Pistikopoulos, E. N., Generalized modular framework for the representation and synthesis of complex distillation column sequences. Industrial Engineering Chemistry Research 2005, 44 (13), 4656-4675. 40. Ismail, S. R.; Proios, P.; Pistikopoulos, E. N., Modular synthesis framework for combined separation/reaction systems. Aiche Journal 2001, 47 (3), 629-649. 41. Ismail, S. R.; Pistikopoulos, E. N.; Papalexandri, K. P., Modular representation synthesis framework for homogeneous azeotropic separation. Aiche Journal 1999, 45 (8), 1701-1720. 42. Takase, H.; Okayama, N.; Hasebe, S., Efficient structure synthesis of reactive distillation processes using the IDEAS approach. Aiche Journal 2021. 43. Segovia-Hernández, J. G.; Hernández, S.; Bonilla Petriciolet, A., Reactive distillation: A review of optimal design using deterministic and stochastic techniques. Chemical Engineering and Processing: Process Intensification 2015, 97, 134-143. 44. Cardoso, M. F.; Salcedo, R. L.; de Azevedo, S. F.; Barbosa, D., Optimization of reactive distillation processes with simulated annealing. Chemical Engineering Science 2000, 55 (21), 5059-5078. 45. Babu, B. V.; Khan, M., Optimization of reactive distillation processes using differential evolution strategies. Asia-Pac J Chem Eng 2007, 2 (4), 322-335. 46. Cheng, J. K.; Lee, H. Y.; Huang, H. P.; Yu, C. C., Optimal steady-state design of reactive distillation processes using simulated annealing. Journal of the Taiwan Institute of Chemical Engineers 2009, 40 (2), 188-196. 47. Miranda-Galindo, E. Y.; Segovia-Hernandez, J. G.; Hernandez, S.; Gutierrez-Antonio, C.; Briones-Ramirez, A., Reactive Thermally Coupled Distillation Sequences: Pareto Front. Industrial Engineering Chemistry Research 2011, 50 (2), 926-938. 48. Kiss, A. A.; Segovia-Hernandez, J. G.; Bildea, C. S.; Miranda-Galindo, E. Y.; Hernandez, S., Reactive DWC leading the way to FAME and fortune. Fuel 2012, 95 (1), 352-359. 49. Dimian, A. C.; Omota, F.; Bliek, A., Entrainer-enhanced reactive distillation. Chem Eng Process 2004, 43 (3), 411-420. 50. Hu, S.; Zhang, B. J.; Hou, X. Q.; Li, D. L.; Chen, Q. L., Design and simulation of an entrainer-enhanced ethyl acetate reactive distillation process. Chem Eng Process 2011, 50 (11-12), 1252-1265. 51. Tang, Y. T.; Huang, H. P.; Chien, I. L., Design of a complete ethyl acetate reactive distillation system. Journal of Chemical Engineering of Japan 2003, 36 (11), 1352-1363. 52. Wang, S. J.; Huang, H. P., Design of entrainer-enhanced reactive distillation for the synthesis of butyl cellosolve acetate. Chem Eng Process 2011, 50 (7), 709-717. 53. Cho, M.; Jo, S.; Kim, G.; Han, M., Entrainer-Enhanced Reactive Distillation for the Production of Butyl Acetate. Industrial Engineering Chemistry Research 2014, 53 (19), 8095-8105. 54. Cho, M.; Han, M., Dynamics and control of entrainer enhanced reactive distillation using an extraneous entrainer for the production of butyl acetate. J Process Contr 2018, 61, 58-76. 55. Tang, Y. T.; Chen, Y. W.; Huang, H. P.; Yu, C. C.; Hung, S. B.; Lee, M. J., Design of reactive distillations for acetic acid esterification. Aiche Journal 2005, 51 (6), 1683-1699. 56. Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P., Optimization by Simulated Annealing. Science 1983, 220 (4598), 671-680. 57. Patel, A. N.; Mah, R. S. H.; Karimi, I. A., Preliminary Design of Multiproduct Noncontinuous Plants Using Simulated Annealing. Computers Chemical Engineering 1991, 15 (7), 451-469. 58. Painton, L. A.; Diwekar, U. M., Synthesizing Optimal-Design Configurations for a Brayton Cycle Power-Plant. Computers Chemical Engineering 1994, 18 (5), 369-381. 59. Vanlaarhoven, P. J. M.; Aarts, E. H. L., Simulated Annealing: Theory and Applications. Reidel Publishing Co.: Holland, 1987. 60. Aarts, E. H. L.; Vanlaarhoven, P. J. M., Statistical Cooling - a General-Approach to Combinatorial Optimization Problems. Philips J Res 1985, 40 (4), 193-226. 61. Huang, M. D.; Romeo, F.; Sangiovanni-Vincentelli, A. L., An efficient general cooling schedule for simulated annealing. In Proceedings of the IEEE International Conference on Computer-Aided Design, Santa Clara, 1986. 62. Johnson, D. S.; Aragon, C. R.; Mcgeoch, L. A.; Schevon, C., Optimization by Simulated Annealing - an Experimental Evaluation .1. Graph Partitioning. Oper Res 1989, 37 (6), 865-892. 63. Dolan, W. B.; Cummings, P. T.; Levan, M. D., Process Optimization Via Simulated Annealing - Application to Network Design. Aiche Journal 1989, 35 (5), 725-736. 64. Luyben, W. L.; Yu, C. C., Reactive Distillation Design and Control. Wiley: 2009. 65. . Aspen Physical Property System V12 Physical Properties Methods Reference Manua 2020, p. 25-56. 66. Pöpken, T.; Götze, L.; Gmehling, J., Reaction Kinetics and Chemical Equilibrium of Homogeneously and Heterogeneously Catalyzed Acetic Acid Esterification with Methanol and Methyl Acetate Hydrolysis. Industrial Engineering Chemistry Research 2000, 39 (7), 2601-2611. 67. Horsley, L. H., Azeotropic Data .3. Tables of Azeotropes and Nonazeotropes. 1973; p Chapter 1, 1-613. 68. Dechema Chemistry Data Series. Deutsche Gesellschaft für Chemisches Aparatewesen.: 2004. 69. Dortmund Data Bank. 2002. 70. Amezaga, S. A.; Biarge, J. F., Thermodynamic study of the binary systems containing acetic acid and an alcohol in vapor liquid equilibrium. An. Quim. 1973, 69, 569. 71. Gonzalez, E.; Ortega, J., Densities and isobaric vapor-liquid equilibria for the mixtures formed by four butyl esters and 1-butanol. J Chem Eng Data 1996, 41 (1), 53-58. 72. Distillation Economic Optimization. In Distillation Design and Control Using Aspen™ Simulation, 2013; pp 81-94. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81168 | - |
| dc.description.abstract | 反應蒸餾是一個將分離和反應整合於同一個單元的嶄新程序,相較於傳統設計能大幅降低資本及能源開支。數十年來科學家們已經研究了反應蒸餾的方方面面,而各種確定性或隨機性方法被用於完成其最佳化。有鑒於反應蒸餾複雜的本質,模擬退火法被認為是能克服這種高度非線性程序的合適演算法。儘管它不能百分之百確保全域最佳解,但能夠大幅降低CPU執行時間並且避免落入區域最小值。 此時不少脂化反應的製程已被模擬退火法成功最佳化,然而塔內催化劑負重問題在最佳化過程中缺乏討論。每一板用於容納催化劑的體積可能無法吻合基於水力計算的體積,我們可以通過將此體積差異整合到演算法中來解決這個問題,避免過於繁複的迭代。此外,在模擬過程中也同時考慮壓降的變化,因為它同時影響汽液平衡和反應動力學。反應蒸餾最佳化面臨的另一個問題是如何確保不同設計變數下都能成功獲得收斂結果,因此在本文也提出完整策略。 最後,產出水和醇可能形成最小共沸物作為餾出物,導致反應物損失。一種解決方案是引入夾帶劑以形成新的共沸物。這種三元(或二元)共沸物將在傾析器中分成兩相,並產生含有少量醇類的水相產物,這就是我們所說的夾帶劑增強反應蒸餾(ERD)。其最佳化還未被任何隨機性演算法完成。我們將示範如何使用上述方法來實現夾帶劑增強反應蒸餾的最佳化。結果表明,夾帶劑的使用減少了反應物的損失並相應地給出了較低的年度總成本(TAC),尤其當產物純度要求提升時,其優勢更為明顯。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:34:02Z (GMT). No. of bitstreams: 1 U0001-0508202116160300.pdf: 7020935 bytes, checksum: 0e1f9789d0167110f7ec98821c47d99a (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 致謝 i Abstract ii 摘要 iv Table of contents v List of figures x List of tables xiii Chapter 1 Introduction 1 1.1. Background 1 1.2. Literature review 3 1.2.1. Conceptual design 3 1.2.2. Simulation 6 1.2.3. Entrainer-enhanced reactive distillation 6 1.3. Motivation 7 1.4. Dissertation organization 8 Chapter 2 Methods 10 2.1. Three flowsheets for Acetic Acid Esterification 10 2.2. Flowsheets for Entrainer-Enhanced RD 16 2.3. Automation server 18 2.4. Simulated annealing algorithm 21 2.4.1. Overview 21 2.4.2. Introduction to SA parameters 24 2.4.3. Flowchart of Simulated Annealing 30 2.5. Choice of the SA parameters 32 2.6. Determination of the column diameter 38 2.7. Convergence strategy 40 Chapter 3 Applications for RD 44 3.1. Methyl Acetate 44 3.1.1. Thermodynamics 46 3.1.2. Kinetics 48 3.1.3. Settings of SA 48 3.1.4. Results 51 3.2. Isopropyl Acetate 56 3.2.1. Thermodynamics 58 3.2.2. Kinetics 59 3.2.3. Settings of SA 61 3.2.4. Results 63 3.3. Butyl Acetate 67 3.3.1. Thermodynamics 68 3.3.2. Kinetics 71 3.3.3. Settings of SA 71 3.3.4. Results 73 3.4. Amyl Acetate 78 3.4.1. Thermodynamics 79 3.4.2. Kinetics 80 3.4.3. Settings of SA 81 3.4.4. Results 83 Chapter 4 Applications for ERD 88 4.1. Butyl Acetate 88 4.1.1. Thermodynamics 92 4.1.2. Setting of SA 95 4.1.1. Results when the purity of 99.0% 97 4.1.2. Results when the purity of 99.2% 100 4.1.3. Results when the purity of 99.5% 104 4.1.4. Results when the purity of 99.8% 108 4.2. Amyl Acetate 112 4.2.1. Thermodynamics 114 4.2.2. Setting of SA 116 4.2.3. Results when the purity of 99.0% 117 4.2.4. Results when the purity of 99.5% 120 4.2.5. Results when the purity of 99.8% 122 4.3. Discussions 124 4.3.1. ERD for the esterification of BuAc 128 4.3.2. ERD for the esterification of AmAc 130 4.3.3. The multipicity of ERD 131 Chapter 5 Conclusions 135 Nomenclature 137 References 142 Appendix A: TAC calculation 147 A.1. Column Capital Cost 147 A.2. Condenser Capital Cost 147 A.3. Reboiler Capital Cost 148 A.4. Cooling Cost 148 A.5. Steam Cost 148 A.6. Catalyst Cost 149 A.7. 'Entrainer Cost' 149 A.8. Flowrate Compensation 149 Appendix B: Matlab code 151 B.1. Get the handle of Automation 151 B.2. Open Aspen Plus 151 B.3. Set values into the server 151 B.4. Get values from the server 152 B.5. Execute Aspen Plus 152 B.6. Check the status of the flowsheet 152 B.7. Generate design variables 153 B.8. Simulated annealing 153 Appendix C: User kinetic for esterification of IPAc 155 C.1. Fortran code 155 C.2. Compiling and Linking 160 C.2.1. compile_link_open.bat 160 C.2.2. list.opt 161 C.3. Setting in Aspen plus 161 C.3.1. In Aspen Plus 161 C.3.2. IPAC.opt 162 | |
| dc.language.iso | en | |
| dc.subject | 模擬退火法 | zh_TW |
| dc.subject | 最佳化 | zh_TW |
| dc.subject | 挾帶劑增強反應蒸餾 | zh_TW |
| dc.subject | 反應蒸餾 | zh_TW |
| dc.subject | Entrainer-enhanced reactive distillation | en |
| dc.subject | Simulated annealing algorithm | en |
| dc.subject | Reactive distillation | en |
| dc.subject | Optimization | en |
| dc.title | 利用Aspen Plus自動化伺服器與模擬退火演算法進行反應蒸餾及挾帶劑增強反應蒸餾之最佳化 | zh_TW |
| dc.title | Optimization of Reactive Distillation and Entrainer-Enhanced Reactive Distillation using the Aspen Plus Automation Server and a Simulated Annealing Algorithm | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 錢義隆(Hsin-Tsai Liu),陳誠亮(Chih-Yang Tseng),李豪業,余柏毅 | |
| dc.subject.keyword | 反應蒸餾,挾帶劑增強反應蒸餾,模擬退火法,最佳化, | zh_TW |
| dc.subject.keyword | Reactive distillation,Entrainer-enhanced reactive distillation,Simulated annealing algorithm,Optimization, | en |
| dc.relation.page | 162 | |
| dc.identifier.doi | 10.6342/NTU202102116 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-08-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0508202116160300.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 6.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
