請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81156完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊啓伸(Chii-Shen Yang) | |
| dc.contributor.author | Kuan-Lin Chen | en |
| dc.contributor.author | 陳冠霖 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:33:24Z | - |
| dc.date.available | 2021-08-11 | |
| dc.date.available | 2022-11-24T03:33:24Z | - |
| dc.date.copyright | 2021-08-11 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-09 | |
| dc.identifier.citation | 1. Capes MD, DasSarma P, DasSarma S. The core and unique proteins of haloarchaea. BMC Genomics ,13-39, doi: 10.1186/1471-2164-13-39 (2012). 2. Horneck G, Klaus DM, Mancinelli RL. Space microbiology. Microbiol Mol Biol Rev 74, 121-156, doi: 10.1128/MMBR.00016-09 (2010). 3. Vreeland RH, Rosenzweig WD, Lowenstein T, Satterfield C, Ventosa A. Fatty acid and DNA analyses of Permian bacteria isolated from ancient salt crystals reveal differences with their modern relatives. Extremophiles 10, 71-78, doi: 10.1007/s00792-005-0474-z (2006). 4. Baliga NS, Bonneau R, Facciotti MT, Pan M, Glusman G, Deutsch EW, Shannon P, Chiu Y, Weng RS, Gan RR, Hung P, Date SV, Marcotte E, Hood L, Ng WV. Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. Genome Res 14, 2221-2234, doi: 10.1101/gr.2700304 (2004). 5. Ng WV, Kennedy SP, Mahairas GG, Berquist B, Pan M, Shukla HD, Lasky SR, Baliga NS, Thorsson V, Sbrogna J, Swartzell S, Weir D, Hall J, Dahl TA, Welti R, Goo YA, Leithauser B, Keller K, Cruz R, Danson MJ, Hough DW, Maddocks DG, Jablonski PE, Krebs MP, Angevine CM, Dale H, Isenbarger TA, Peck RF, Pohlschroder M, Spudich JL, Jung KW, Alam M, Freitas T, Hou S, Daniels CJ, Dennis PP, Omer AD, Ebhardt H, Lowe TM, Liang P, Riley M, Hood L, DasSarma S. Genome sequence of Halobacterium species NRC-1. Proc Natl Acad Sci U S A 97, 12176-12181, doi: 10.1073/pnas.190337797 (2000). 6. Govorunova EG, Sineshchekov OA, Li H, Spudich JL. Microbial rhodopsins: diversity, mechanisms, and optogenetic applications. Annu Rev Biochem 86, 845-872, doi: 10.1146/annurev-biochem-101910-144233 (2017). 7. Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown LS, Kandori H. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev 114, 126-163, doi: 10.1021/cr4003769 (2014). 8. Briggs, W. R. Spudich, J. L. Handbook of Photosensory Receptors. (2005). 9. Kuan G, Saier MH Jr. Phylogenetic relationships among bacteriorhodopsins. Res Microbiol 145, 273-285, doi: 10.1016/0923-2508(94)90183-x (1994). 10. Grote M, O'Malley MA. Enlightening the life sciences: the history of halobacterial and microbial rhodopsin research. FEMS Microbiol Rev 35, 1082-1099, doi: 10.1111/j.1574-6976.2011.00281 (2011). 11. Lynch EA, Langille MG, Darling A, Wilbanks EG, Haltiner C, Shao KS, Starr MO, Teiling C, Harkins TT, Edwards RA, Eisen JA, Facciotti MT. Sequencing of seven haloarchaeal genomes reveals patterns of genomic flux. PLoS One 7, 41389, doi: 10.1371/journal.pone.0041389 (2012). 12. Oesterhelt D, Stoeckenius W. Functions of a new photoreceptor membrane. Proc Natl Acad Sci U S A 70, 2853-2857, doi: 10.1073/pnas.70.10.2853 (1973). 13. Matsuno-Yagi A, Mukohata Y. Two possible roles of bacteriorhodopsin; a comparative study of strains of Halobacterium halobium differing in pigmentation. Biochem Biophys Res Commun 78, 237-243, doi: 10.1016/0006-291x(77)91245-1 (1977). 14. Schobert B, Lanyi JK. Halorhodopsin is a light-driven chloride pump. J Biol Chem 257, 10306-10313 (1982). 15. Bogomolni RA, Spudich JL. Identification of a third rhodopsin-like pigment in phototactic Halobacterium halobium. Proc Natl Acad Sci U S A 79, 6250-6254, doi: 10.1073/pnas.79.20.6250 (1982). 16. Takahashi, T., Tomioka, H., Kamo, N. Kobatake, Y. A photosystem other than PS370 also mediates the negative phototaxis of Halobacterium halobium. FEMS Microbiology Letters, 161-164, doi:10.1111/j.1574-6968.1985.tb00784.x (1985). 17. Tamogami J, Iwano K, Matsuyama A, Kikukawa T, Demura M, Nara T, Kamo N. The effects of chloride ion binding on the photochemical properties of sensory rhodopsin II from Natronomonas pharaonis. J Photochem Photobiol B 141, 192-201, doi: 10.1016/j.jphotobiol.2014.10.010 (2014). 18. Hsu MF, Fu HY, Cai CJ, Yi HP, Yang CS, Wang AH. Structural and Functional Studies of a Newly Grouped Haloquadratum walsbyi Bacteriorhodopsin Reveal the Acid-resistant Light-driven Proton Pumping Activity. J Biol Chem 290, 29567-29577, doi: 10.1074/jbc.M115.685065 (2015). 19. Chizhov I, Schmies G, Seidel R, Sydor JR, Lüttenberg B, Engelhard M. The photophobic receptor from Natronobacterium pharaonis: temperature and pH dependencies of the photocycle of sensory rhodopsin II. Biophys J 75, 999-1009, doi: 10.1016/S0006-3495(98)77588-5 (1998). 20. Stenrup M, Pieri E, Ledentu V, Ferré N. pH-Dependent absorption spectrum of a protein: a minimal electrostatic model of Anabaena sensory rhodopsin. Phys Chem Chem Phys 19, 14073-14084, doi: 10.1039/c7cp00991g (2017). 21. Tamogami J, Iwano K, Matsuyama A, Kikukawa T, Demura M, Nara T, Kamo N. The effects of chloride ion binding on the photochemical properties of sensory rhodopsin II from Natronomonas pharaonis. J Photochem Photobiol B 141, 192-201, doi: 10.1016/j.jphotobiol.2014.10.010 (2014). 22. Luecke H, Schobert B, Lanyi JK, Spudich EN, Spudich JL. Crystal structure of sensory rhodopsin II at 2.4 angstroms: insights into color tuning and transducer interaction. Science 293, 1499-1503, doi: 10.1126/science.1062977 (2001). 23. Hayashi, S. et al. Structural Determinants of Spectral Tuning in Retinal Proteins Bacteriorhodopsin vs Sensory Rhodopsin II. The Journal of Physical Chemistry B 105, 10124-10131, doi:10.1021/jp011362b (2001). 24. Hoffmann M, Wanko M, Strodel P, König PH, Frauenheim T, Schulten K, Thiel W, Tajkhorshid E, Elstner M. Color tuning in rhodopsins: the mechanism for the spectral shift between bacteriorhodopsin and sensory rhodopsin II. J Am Chem Soc 128, 10808-10818, doi: 10.1021/ja062082i (2006). 25. Bogomolni RA, Spudich JL. Identification of a third rhodopsin-like pigment in phototactic Halobacterium halobium. Proc Natl Acad Sci U S A 79, 6250-6254, doi: 10.1073/pnas.79.20.6250 (1982). 26. Hoff WD, Jung KH, Spudich JL. Molecular mechanism of photosignaling by archaeal sensory rhodopsins. Annu Rev Biophys Biomol Struct 26, 223-258, doi: 10.1146/annurev.biophys.26.1.223 (1997). 27. Spudich EN, Sundberg SA, Manor D, Spudich JL. Properties of a second sensory receptor protein in Halobacterium halobium phototaxis. Proteins 1, 239-246, doi: 10.1002/prot.340010306 (1986). 28. Yao VJ, Spudich JL. Primary structure of an archaebacterial transducer, a methyl-accepting protein associated with sensory rhodopsin I. Proc Natl Acad Sci U S A 89, 11915-11919, doi: 10.1073/pnas.89.24.11915 (1992). 29. Wegener AA, Klare JP, Engelhard M, Steinhoff HJ. Structural insights into the early steps of receptor-transducer signal transfer in archaeal phototaxis. EMBO J 20, 5312-5319, doi: 10.1093/emboj/20.19.5312 (2001). 30. Gordeliy VI, Labahn J, Moukhametzianov R, Efremov R, Granzin J, Schlesinger R, Büldt G, Savopol T, Scheidig AJ, Klare JP, Engelhard M. Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex. Nature 419, 484-487, doi: 10.1038/nature01109 (2002). 31. Chen X, Spudich JL. Demonstration of 2:2 stoichiometry in the functional SRI-HtrI signaling complex in Halobacterium membranes by gene fusion analysis. Biochemistry 41, 3891-3896, doi: 10.1021/bi015966h (2002). 32. Yeh JI, Biemann HP, Pandit J, Koshland DE, Kim SH. The three-dimensional structure of the ligand-binding domain of a wild-type bacterial chemotaxis receptor. Structural comparison to the cross-linked mutant forms and conformational changes upon ligand binding. J Biol Chem 268, 9787-9792 (1993). 33. Yeh JI, Biemann HP, Privé GG, Pandit J, Koshland DE Jr, Kim SH. High-resolution structures of the ligand binding domain of the wild-type bacterial aspartate receptor. J Mol Biol 262, 186-201, doi: 10.1006/jmbi.1996.0507 (1996). 34. Milburn MV, Privé GG, Milligan DL, Scott WG, Yeh J, Jancarik J, Koshland DE Jr, Kim SH. Three-dimensional structures of the ligand-binding domain of the bacterial aspartate receptor with and without a ligand. Science 254, 1342-1347, doi: 10.1126/science.1660187 (1991). 35. Biemann HP, Koshland DE Jr. Aspartate receptors of Escherichia coli and Salmonella typhimurium bind ligand with negative and half-of-the-sites cooperativity. Biochemistry 33, 629-634, doi: 10.1021/bi00169a002 (1994). 36. Ottemann KM, Thorgeirsson TE, Kolodziej AF, Shin YK, Koshland DE Jr. Direct measurement of small ligand-induced conformational changes in the aspartate chemoreceptor using EPR. Biochemistry 37, 7062-7069, doi: 10.1021/bi980305e (1998). 37. Ottemann KM, Xiao W, Shin YK, Koshland DE Jr. A piston model for transmembrane signaling of the aspartate receptor. Science 285, 1751-1754, doi: 10.1126/science.285.5434.1751 (1999). 38. Mowbray SL, Sandgren MO. Chemotaxis receptors: a progress report on structure and function. J Struct Biol 124, 257-275, doi: 10.1006/jsbi.1998.4043 (1998). 39. Singh M, Berger B, Kim PS, Berger JM, Cochran AG. Computational learning reveals coiled coil-like motifs in histidine kinase linker domains. Proc Natl Acad Sci U S A 95, 2738-2743, doi: 10.1073/pnas.95.6.2738 (1998). 40. Appleman JA, Chen LL, Stewart V. Probing conservation of HAMP linker structure and signal transduction mechanism through analysis of hybrid sensor kinases. J Bacteriol 185, 4872-4882, doi: 10.1128/JB.185.16.4872-4882.2003 (2003). 41. Mehan RS, White NC, Falke JJ. Mapping out regions on the surface of the aspartate receptor that are essential for kinase activation. Biochemistry 42, 2952-2959, doi: 10.1021/bi027127g (2003). 42. Surette MG, Stock JB. Role of alpha-helical coil-coiled interactions in receptor dimerization, signaling, and adaptation during bacterial chemotaxis. J Biol Chem 271, 17966-17973, doi: 10.1074/jbc.271.30.17966 (1996). 43. Chen JL, Lin YC, Fu HY, Yang CS. The Blue-Green Sensory Rhodopsin SRM from Haloarcula marismortui Attenuates Both Phototactic Responses Mediated by Sensory Rhodopsin I and II in Halobacterium salinarum. Sci Rep 9, 5672, doi: 10.1038/s41598-019-42193-y (2019). 44. F Falke JJ, Bass RB, Butler SL, Chervitz SA, Danielson MA. The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu Rev Cell Dev Biol 13, 457-512, doi: 10.1146/annurev.cellbio.13.1.457 (1997). 45. Stock AM, Robinson VL, Goudreau PN. Two-component signal transduction. Annu Rev Biochem 69, 183-215, doi: 10.1146/annurev.biochem.69.1.183 (2000). 46. Capra EJ, Laub MT. Evolution of two-component signal transduction systems. Annu Rev Microbiol 66, 325-347, doi: 10.1146/annurev-micro-092611-150039 (2012). 47. Linder JU, Schultz JE. Transmembrane receptor chimeras to probe HAMP domain function. Methods Enzymol 471, 115-123, doi: 10.1016/S0076-6879(10)71007-7 (2010). 48. Bi S, Pollard AM, Yang Y, Jin F, Sourjik V. Engineering Hybrid Chemotaxis Receptors in Bacteria. ACS Synth Biol 5, 989-1001, doi:10.1021/acssynbio.6b00053 (2016). 49. Muok AR, Briegel A, Crane BR. Regulation of the chemotaxis histidine kinase CheA: A structural perspective. Biochim Biophys Acta Biomembr 1862, 183030, doi: 10.1016/j.bbamem.2019.183030 (2020). 50. Wong-Ng J, Celani A, Vergassola M. Exploring the function of bacterial chemotaxis. Curr Opin Microbiol 45, 16-21, doi: 10.1016/j.mib.2018.01.010 (2018). 51. Spudich JL. Variations on a molecular switch: transport and sensory signalling by archaeal rhodopsins. Mol Microbiol 28, 1051-1058, doi: 10.1046/j.1365-2958.1998.00859.x (1998). 52. Domagala JM, Alessi D, Cummings M, Gracheck S, Huang L, Huband M, Johnson G, Olson E, Shapiro M, Singh R, Song Y, Van Bogelen R, Vo D, Wold S. Bacterial two-component signalling as a therapeutic target in drug design. Inhibition of NRII by the diphenolic methanes (bisphenols). Adv Exp Med Biol 456, 269-286, doi: 10.1007/978-1-4615-4897-3_14 (1998). 53. Ryzhykau YL, Orekhov PS, Rulev MI, Vlasov AV, Melnikov IA, Volkov DA, Nikolaev MY, Zabelskii DV, Murugova TN, Chupin VV, Rogachev AV, Gruzinov AY, Svergun DI, Brennich ME, Gushchin IY, Soler-Lopez M, Bothe A, Büldt G, Leonard G, Engelhard M, Kuklin AI, Gordeliy VI. Molecular model of a sensor of two-component signaling system. Sci Rep 11, 10774, doi: 10.1038/s41598-021-89613-6 (2021). 54. Zschiedrich CP, Keidel V, Szurmant H. Molecular Mechanisms of Two-Component Signal Transduction. J Mol Biol 428, 3752-3775, doi: 10.1016/j.jmb.2016.08.003 (2016). 55. Zhao R, Pathak N, Jaffe H, Reese TS, Khan S. FliN is a major structural protein of the C-ring in the Salmonella typhimurium flagellar basal body. J Mol Biol 261, 195-208, doi: 10.1006/jmbi.1996.0452 (1996). 56. Hosu BG, Berg HC. CW and CCW Conformations of the E. coli Flagellar Motor C-Ring Evaluated by Fluorescence Anisotropy. Biophys J 114, 641-649, doi: 10.1016/j.bpj.2017.12.001 (2018). 57. Hazelbauer GL, Lai WC. Bacterial chemoreceptors: providing enhanced features to two-component signaling. Curr Opin Microbiol 13, 124-132, doi: 10.1016/j.mib.2009.12.014 (2010). 58. Levit MN, Liu Y, Stock JB. Mechanism of CheA protein kinase activation in receptor signaling complexes. Biochemistry 38, 6651-6658, doi: 10.1021/bi982839l (1999). 59. Suzuki D, Irieda H, Homma M, Kawagishi I, Sudo Y. Phototactic and chemotactic signal transduction by transmembrane receptors and transducers in microorganisms. Sensors (Basel) 10, 4010-4039, doi: 10.3390/s100404010 (2010). 60. Fu HY, Lin YC, Chang YN, Tseng H, Huang CC, Liu KC, Huang CS, Su CW, Weng RR, Lee YY, Ng WV, Yang CS. A novel six-rhodopsin system in a single archaeon. J Bacteriol 192, 5866-5873, doi: 10.1128/JB.00642-10 (2010). 61. Chen JL, Lin YC, Fu HY, Yang CS. The Blue-Green Sensory Rhodopsin SRM from Haloarcula marismortui Attenuates Both Phototactic Responses Mediated by Sensory Rhodopsin I and II in Halobacterium salinarum. Sci Rep 9, 5672, doi: 10.1038/s41598-019-42193-y (2019). 62. Ferris HU, Dunin-Horkawicz S, Mondéjar LG, Hulko M, Hantke K, Martin J, Schultz JE, Zeth K, Lupas AN, Coles M. The mechanisms of HAMP-mediated signaling in transmembrane receptors. Structure 19, 378-385, doi: 10.1016/j.str.2011.01.006 (2011). 63. Wang J, Sasaki J, Tsai AL, Spudich JL. HAMP domain signal relay mechanism in a sensory rhodopsin-transducer complex. J Biol Chem 287, 21316-21325, doi: 10.1074/jbc.M112.344622 (2012). 64. Koch MK, Staudinger WF, Siedler F, Oesterhelt D. Physiological sites of deamidation and methyl esterification in sensory transducers of Halobacterium salinarum. J Mol Biol 380, 285-302, doi: 10.1016/j.jmb.2008.04.063 (2008). 65. Wegener AA, Klare JP, Engelhard M, Steinhoff HJ. Structural insights into the early steps of receptor-transducer signal transfer in archaeal phototaxis. EMBO J 20, 5312-5319, doi: 10.1093/emboj/20.19.5312 (2001). 66. Ishchenko A, Round E, Borshchevskiy V, Grudinin S, Gushchin I, Klare JP, Remeeva A, Polovinkin V, Utrobin P, Balandin T, Engelhard M, Büldt G, Gordeliy V. New Insights on Signal Propagation by Sensory Rhodopsin II/Transducer Complex. Sci Rep 7, 41811, doi: 10.1038/srep41811 (2017). 67. Wegener AA, Chizhov I, Engelhard M, Steinhoff HJ. Time-resolved detection of transient movement of helix F in spin-labelled Natronomonas pharaonis sensory rhodopsin II. J Mol Biol 301, 881-891, doi: 10.1006/jmbi.2000.4008 (2000). 68. Yang CS, Sineshchekov O, Spudich EN, Spudich JL. The cytoplasmic membrane-proximal domain of the HtrII transducer interacts with the E-F loop of photoactivated Natronomonas pharaonis sensory rhodopsin II. J Biol Chem 279, 42970-42976, doi: 10.1074/jbc.M406504200 (2004). 69. Pebay-Peyroula E, Royant A, Landau EM, Navarro J. Structural basis for sensory rhodopsin function. Biochim Biophys Acta 1565, 196-205, doi: 10.1016/s0005-2736(02)00569-2 (2002). 70. Tirion MM. Large Amplitude Elastic Motions in Proteins from a Single-Parameter, Atomic Analysis. Phys Rev Lett 77, 1905-1908, doi: 10.1103/PhysRevLett.77.1905 (1996). 71. Tama F, Gadea FX, Marques O, Sanejouand YH. Building-block approach for determining low-frequency normal modes of macromolecules. Proteins 41, 1-7, doi: 10.1002/1097-0134(20001001)41:1<1::aid-prot10>3.0.co;2-p (2000). 72. Park S, Crane BR. Structural insight into the low affinity between Thermotoga maritima CheA and CheB compared to their Escherichia coli/Salmonella typhimurium counterparts. Int J Biol Macromol 49, 794-800, doi: 10.1016/j.ijbiomac.2011.07.012 (2011). 73. Li J, Swanson RV, Simon MI, Weis RM. The response regulators CheB and CheY exhibit competitive binding to the kinase CheA. Biochemistry 34, 14626-14636, doi: 10.1021/bi00045a003 (1995). 74. Cho KH, Crane BR, Park S. An insight into the interaction mode between CheB and chemoreceptor from two crystal structures of CheB methylesterase catalytic domain. Biochem Biophys Res Commun 411, 69-75, doi: 10.1016/j.bbrc.2011.06.090 (2011). 75. Perez E, Zheng H, Stock AM. Identification of methylation sites in Thermotoga maritima chemotaxis receptors. J Bacteriol 188, 4093-4100, doi: 10.1128/JB.00181-06 (2006). 76. Muok AR, Briegel A, Crane BR. Regulation of the chemotaxis histidine kinase CheA: A structural perspective. Biochim Biophys Acta Biomembr 1862, 183030, doi: 10.1016/j.bbamem.2019.183030 (2020). 77. Bilwes AM, Alex LA, Crane BR, Simon MI. Structure of CheA, a signal-transducing histidine kinase. Cell 96, 131-141, doi: 10.1016/s0092-8674(00)80966-6 (1999). 78. Quezada CM, Hamel DJ, Gradinaru C, Bilwes AM, Dahlquist FW, Crane BR, Simon MI. Structural and chemical requirements for histidine phosphorylation by the chemotaxis kinase CheA. J Biol Chem 280, 30581-30585, doi: 10.1074/jbc.M505316200 (2005). 79. Stewart RC, Jahreis K, Parkinson JS. Rapid phosphotransfer to CheY from a CheA protein lacking the CheY-binding domain. Biochemistry 39, 13157-13165. doi: 10.1021/bi001100k (2000). 80. Boukhvalova MS, Dahlquist FW, Stewart RC. CheW binding interactions with CheA and Tar. Importance for chemotaxis signaling in Escherichia coli. J Biol Chem 277, 22251-22259, doi: 10.1074/jbc.M110908200 (2002). 81. Park SY, Ham SW, Kim KY, Crane BR. Crystallization and preliminary X-ray crystallographic analysis of Escherichia coli CheA P3 dimerization domain. Acta Crystallogr Sect F Struct Biol Cryst Commun 67, 662-664, doi: 10.1107/S1744309111010335 (2011). 82. Garzón A, Parkinson JS. Chemotactic signaling by the P1 phosphorylation domain liberated from the CheA histidine kinase of Escherichia coli. J Bacteriol 178, 6752-6758, doi: 10.1128/jb.178.23.6752-6758.1996 (1996). 83. Y. C. Jean, C. H. Chao, Y. S. Huang, C. C. Tseng, C. H. Chiang, T. L. Lee, C. J. Chen, L. J. Lai, S. C. Chung, G. Y. Hsiung, C. S. Huang, K. L. Tsang, and C. T. Chen. Performance of the high-throughput protein crystallography beamline BL13B1 at the NSRRC. AIP Conf. Proc 879, 816 (2007). 84. Otwinowski Z, Minor W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276, 307-326 (1997). 85. Yang J, Anishchenko I, Park H, Peng Z, Ovchinnikov S, Baker D. Improved protein structure prediction using predicted interresidue orientations. Proc Natl Acad Sci U S A 117, 1496-1503, doi: 10.1073/pnas.1914677117 (2020). 86. Hiranuma N, Park H, Baek M, Anishchenko I, Dauparas J, Baker D. Improved protein structure refinement guided by deep learning based accuracy estimation. Nat Commun 12, 1340, doi: 10.1038/s41467-021-21511-x (2021). 87. Liebschner D, Afonine PV, Baker ML, Bunkóczi G, Chen VB, Croll TI, Hintze B, Hung LW, Jain S, McCoy AJ, Moriarty NW, Oeffner RD, Poon BK, Prisant MG, Read RJ, Richardson JS, Richardson DC, Sammito MD, Sobolev OV, Stockwell DH, Terwilliger TC, Urzhumtsev AG, Videau LL, Williams CJ, Adams PD. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D Struct Biol 75, 861-877, doi: 10.1107/S2059798319011471 (2019). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81156 | - |
| dc.description.abstract | "雙元協同訊息傳遞系統(Two-component system,TCS) 在微生物中負責偵測環境中的刺激,並對不同刺激產生專一的反應,協助微生物在多變的環境下生存。例如,細菌會利用TCS來感測環境中的營養成分或是有害物質的濃度高低,進一步改變泳動的行為,稱為趨化性(Chemotaxis)。在嗜鹽古菌中,則會透過TCS系統裡的感受型視紫質(sensory rhodopsin, SR)來偵測不同波長的光,產生趨光(attractant)或避光(repellent)的泳動行為,此稱為趨光性(phototaxis)。此趨光性反應之產生,需要透過可吸收偏紅光波長的SRI (sensory rhodopsin I)進行趨光,以及吸收偏藍光的SRII (sensory rhodopsin II)進行避光來擷抗;目前已知兩者皆藉由調控其 TCS 下游的傳導元(transducer),分別為 HtrI 與 HtrII,來與Che 系列蛋白質進行交互作用。除了上述提到的SRI及SRII外,先前研究發現在 Haloarcula marismortui 中還存在第三種可以感測綠光的 sensory rhodopsin M(SRM)以及其專屬傳導元, HtrM。並且在後續研究中發現,綠光可以同時抑制趨光/避光行為,但在只有表現SRI 和 SRII 的菌體時,綠光不會抑制此菌體的趨光/避光行為。為了解綠光使古菌的泳動光趨性受抑制的機制,本論文試圖提出假設,說明SRM-HtrM 如何抑制 SRII-HtrII 的避光和 SRI-HtrI 的趨光泳動行為。首先經由序列分析,發現HtrM的胺基酸長度僅有HtrI 和 HtrII 的一半不到,而且含有類似於HtrI 與HtrII 中的 HAMP 區域。而 HAMP 區域是 HtrI、HtrII與 CheW/CheA 蛋白質間的互觸區 (interaction region)。因為已知被 HtrI 與HtrII 活化的CheA,可以同時進一步磷酸化 CheY 和 CheB。而磷酸化的 CheY 會控制鞭毛轉動的方向,使菌體避光;磷酸化的 CheB則是產生負回饋作用,會去除HtrI與HtrII在HAMP 區域上的甲基。因此本論文決定透過解析目前科學界仍無法解出的 HmCheB完整結構,並依其結構來解釋細菌的趨光性行為,目前提出兩個假設:一、 HtrM可能會和兩個 Htr 競爭磷酸化的 CheB,但因不產生原先 HtrI、HtrII 去甲基化後的訊號,使得磷酸化的CheB所誘發的負回饋機制失效,菌體因此誤認為需要更多 CheB 被磷酸化,因此讓和 CheB競爭磷酸化的 CheY 無法有效的被磷酸化,進而導致 CheY 原本可以驅動避光或趨光行為的效用下降。二、被活化的HtrM,可能提高了與CheA或CheW的親和力,使得可以參與磷酸化CheY和CheB的CheA數量下降,導致CheY去驅動避光鞭毛轉動的效率下降,因而降低了避光或趨光的能力。以上兩個假設皆涉及 CheB 和其他蛋白質的交互作用。本研究成功獲得 CheB 的完整蛋白質結構,並冀望透過對 CheB 整體結構的瞭解,替未來 CheB 和其他蛋白質交互作用的研究,以及細菌趨光性泳動的機制探討,提供堅實的研究基礎。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:33:24Z (GMT). No. of bitstreams: 1 U0001-0608202112262600.pdf: 7211537 bytes, checksum: c560753d922a7cfa7461f07326761ccb (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 目錄 I 圖目錄 IV 表目錄 V 摘要 VI Abstract VIII 第一章 緒論 1 第一節 嗜鹽古生菌之介紹 1 第二節 微生物視紫質(Microbial Rhodopsin) 1 第三節 古生菌感覺型視紫質 3 第四節 傳導元的結構與特性 3 第五節 Two-component system 5 第六節 Che proteins 調控機制 7 第七節 嗜鹽古生菌Haloarcula marismortui 奇特的六感光視紫質系統 9 第八節 三顏色的感覺型視紫質系統及其 two-component system 的胺基酸序列之初步研究 12 第九節 機制假說 14 第十節 實驗設計及流程 15 第十一節 嗜鹽古生菌Haloarcula marismortui之CheB及嗜熱菌CheB之regulatory domain catalytic domain 16 第十二節 本論文目標:解出CheB整體結構 17 第二章材料與方法 20 第一節 生物試劑 20 2-1-1 菌種 20 2-1-2 質體 20 第二節 藥品 21 第三節 儀器設備 23 2-3-1 核酸電泳 23 2-3-2 蛋白質電泳及轉印 23 2-3-3 離心機 23 2-3-4 酸鹼度計 23 2-3-5 其他 23 第四節 實驗方法 24 2-4-1 生物資訊學分析 24 2-4-1.1 基因資料庫 24 2-4-1.2 蛋白質功能預測分析 24 2-4-1.3 蛋白質結構分析 24 2-4-2 DNA之建構與轉形 24 2-4-2.1 小量核酸萃取 24 2-4-2.2 聚合酶鏈鎖反應(PCR) 25 2-4-2.3 DNA膠體純化 25 2-4-2.4 限制酶裁切 25 2-4-2.5 DNA接合 25 2-4-2.6 大腸桿菌轉形 25 2-4-2.7 轉形菌株鑑定 26 2-4-2.8 建構重組蛋白質 26 2-4-3 重組蛋白質表現及純化 26 2-4-3.1 重組可溶蛋白質表現 26 2-4-3.2 重組可溶蛋白質純化 27 2-4-4 蛋白質定量及定性 27 2-4-4.1蛋白質定量 27 2-4-4.2蛋白質變性電泳 27 2-4-5 蛋白質結晶與X光繞射實驗 28 2-4-5.1 蛋白質點晶(hanging drop method) 28 2-4-5.2 蛋白質點晶(sitting drop method) 29 2-4-5.3 結晶結構(X光繞射實驗) 29 第三章 實驗結果 30 第一節 HmCheB初步分析 30 第二節 HmCheB重組蛋白質表現與純化 32 3-2-1 GST-HmCheB之序列 32 3-2-2 GST-HmCheB表現與純化(SDS-PAGE) 33 第三節 GST-HmCheB蛋白質結晶(sitting drop method) 34 第四節 GST-HmCheB蛋白質晶體X光繞射實驗 35 第五節 Rosetta計算理論蛋白質結構 36 第六節 GST-HmCheB結構決定分析和 refinement 迴圈策略 39 第四章 結論與討論 43 第一節 感覺型視紫質與傳導元之構形變化分析 43 第二節 HmHtrM序列分析 51 第三節 HmCheB功能區域分析 52 第四節 HmCheB與HmHtrM之HAMP domain分析 60 第五章 未來展望 63 第六章 參考文獻 65 | |
| dc.language.iso | zh-TW | |
| dc.subject | Che蛋白質 | zh_TW |
| dc.subject | 嗜鹽方形古菌 | zh_TW |
| dc.subject | 光趨性 | zh_TW |
| dc.subject | 雙元協同訊息傳遞系統 | zh_TW |
| dc.subject | Che proteins | en |
| dc.subject | Haloarcula marismortui | en |
| dc.subject | phototaxis | en |
| dc.subject | two-component system | en |
| dc.title | 對死海嗜鹽古菌雙元協同訊息傳遞系統中的CheB蛋白質之全結構解析與生理功能推測 | zh_TW |
| dc.title | Resolving The Whole Structure And Physiological Function Prediction Of A CheB Protein In The Two-Component System From Haloarcula marismortui | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.author-orcid | 0000-0003-4369-2871 | |
| dc.contributor.oralexamcommittee | 鄭貽生(Hsin-Tsai Liu),李昆達(Chih-Yang Tseng),吳亘承 | |
| dc.subject.keyword | 嗜鹽方形古菌,光趨性,雙元協同訊息傳遞系統,Che蛋白質, | zh_TW |
| dc.subject.keyword | Haloarcula marismortui,phototaxis,two-component system,Che proteins, | en |
| dc.relation.page | 76 | |
| dc.identifier.doi | 10.6342/NTU202102143 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-08-10 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科技學系 | zh_TW |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0608202112262600.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 7.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
