Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81150
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor闕志達(Tzi-Dar Chiueh)
dc.contributor.authorZhi-Jing Linen
dc.contributor.author林芷敬zh_TW
dc.date.accessioned2022-11-24T03:33:07Z-
dc.date.available2021-09-17
dc.date.available2022-11-24T03:33:07Z-
dc.date.copyright2021-09-17
dc.date.issued2021
dc.date.submitted2021-09-14
dc.identifier.citation[1] Ericsson, Cellular networks for Massive IoT, Nov. 2020. Accessed on: July. 8, 2021. [Online] Available: https://www.ericsson.com/en/reports-and-papers/white-papers/cellular-networks-for-massive-iot--enabling-low-power-wide-area-applications [2] '5G: WHY DO WE NEED 5G?', European Telecommunications Standards Institute, 2020. Accessed on: July. 8, 2021. [Online] Available: https://www.etsi.org/technologies/5g [3] IC Insight, Automotive and IoT Will Drive IC Growth Through 2021, Dec. 2017. Accessed on: July. 8, 2021. [Online]. Available: http://www.icinsights.com/news/bulletins/Automotive-And-IoT-Will-Drive-IC-Growth-Through-2021/ [4] H. Nikopour and H. Baligh, 'Sparse code multiple access,' in Proc. PIMRC, 2013, pp. 332–336. [5] R. Hoshyar, F. P. Wathan, and R. Tafazolli, 'Novel low-density signature for synchronous CDMA systems over AWGN channel,' IEEE Trans. Signal Process., vol. 56, no. 4, pp. 1616–1626, Apr. 2008. [6] S. Zhang, X. Xu, L. Lu, Y. Wu, G. He, and Y. Chen, 'Sparse code multiple access: An energy efficient uplink approach for 5G wireless systems,' in Proc. IEEE GLOBECOM, Dec. 2014, pp. 4782–4787. [7] Y. Du, B. H. Dong, Z. Chen, J. Fang, and L. Yang, 'Shuffled multiuser detection schemes for uplink sparse code multiple access systems,' IEEE Commun. Lett., vol. 20, no. 6, pp. 1231-1234, Jun. 2016. [8] H. Mu, Z. Ma, M. Alhaji, P. Fan and D. Chen, 'A Fixed Low Complexity Message Pass Algorithm Detector for Up-Link SCMA System,' IEEE Wireless Communications Letters, vol. 4, no. 6, pp. 585-588, Dec. 2015. [9] '5G mMTC: Challenges and Solutions', Profit from IoT, Sep. 2019. Accessed on: July. 8, 2021. [Online]. Available: https://iot.electronicsforu.com/content/tech-trends/5g-mmtc-challenges-and-solutions/ [10] H. Mu, Y. Tang, L. Li, Z. Ma, P. Fan and W. Xu, 'Polar coded iterative multiuser detection for sparse code multiple access system,' in China Communications, vol. 15, no. 11, pp. 51-61, Nov. 2018 [11] 3GPP TSG RAN WG1, R1-1611398 UL grant-free transmission for URLLC, CATT. [12] C. Husmann, C. Jayawardena, A. Maaref, P. Xiao and K. Nikitopoulos, 'Low-Complexity SCMA Detection for Unsupervised User Access,' in IEEE Communications Letters, vol. 25, no. 3, pp. 1019-1023, March 2021 [13] R. Hoshyar, F. P. Wathan, and R. Tafazolli, 'Novel low-density signature for synchronous cdma systems over awgn channel,' Signal Processing, IEEE Transactions on, vol. 56, no. 4, pp. 1616–1626, 2008 [14] R. Hoshyar, R. Razavi, and M. Al-Imari, 'Lds-ofdm an efficient multiple access technique,' in Vehicular Technology Conference (VTC 2010-Spring), 2010 IEEE 71st. IEEE, 2010, pp. 1–5. [15] H. Nikopour and H. Baligh, 'Sparse code multiple access,' in Proc. of PIMRC, 2013, pp. 332–336. [16] M. Taherzadeh, H. Nikopour, A. Bayesteh, and H. Baligh, “Scma codebook design,' in Vehicular Technology Conference (VTC Fall), 2014 IEEE 80th. IEEE, 2014, pp. 1–5 [17] C. Bockelmann et al., 'Massive machine-type communications in 5G: Physical and MAC-layer solutions,' IEEE Commun. Mag., vol. 54, no. 9, pp. 59–65, Sep. 2016. [18] Moniem-tech, Sparse Code Multiple Access [SCMA] for 5G New Radio [NR], Dec. 2018. Accessed on: July. 8, 2021. [Online]. Available: https://moniem-tech.com/2018/12/28/scma-for-5g-new-radio/ [19] M. Taherzadeh, H. Nikopour, A. Bayesteh, and H. Baligh, 'SCMA codebook design,' in Proc. IEEE 80th VTC, Sep. 14–17, 2014, pp. 1–5. [20] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, 'Factor graphs and the sum-product algorithm,' IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 498–519, Feb. 2001. [21] W. B. Ameur, P. Mary, M. Dumay, J. -F. Hélard and J. Schwoerer, 'Performance study of MPA, Log-MPA and MAX-Log-MPA for an uplink SCMA scenario,' 2019 26th International Conference on Telecommunications (ICT), 2019, pp. 411-416 [22] M. Moltafet, N. M. Yamchi, M. R. Javan and P. Azmi, 'Comparison Study Between PD-NOMA and SCMA,' in IEEE Transactions on Vehicular Technology, vol. 67, no. 2, pp. 1830-1834, Feb. 2018 [23] J.C. Lai, 'Design and Implementation of an Over-The-Air SCMA-Based Receiver for 5G NR Machine Type Communications', M.S. thesis, National Taiwan University, Taipei, Taiwan, January, 2020. [24] H.Y. Lan, 'Low Complexity Multi-User Detector Design for Sparse Code Multiple Access in 5G networks', M.S. thesis, National Taiwan University, Taipei, Taiwan, November 2017. [25] H. Mu, Z. Ma, M. Alhaji, P. Fan and D. Chen, 'A Fixed Low Complexity Message Pass Algorithm Detector for Up-Link SCMA System,' IEEE Wireless Communications Letters, vol. 4, no. 6, pp. 585-588, Dec. 2015. [26] X. Y. Ma, L. Yang, Z. Chen, Y. Siu, 'Low Complexity Detection Based on Dynamic Factor Graph for SCMA Systems,' IEEE Commun. Lett., Sep. 2017. [27] L. Wei, B. Huang and J. Zheng, 'Low-Complexity Detectors for Uplink SCMA: Symbol Flipping and Dynamic Partial Marginalization-Based MPA,' in Proc. of 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, 2018, pp. 1-5. [28] 3GPP TR38.901, Study on channel model for frequencies from 0.5 to 100 GHz. Dec. 2017. [29] F. Wei and W. Chen, 'A Low Complexity SCMA Decoder Based on List Sphere Decoding,' 2016 IEEE Global Communications Conference (GLOBECOM), 2016, pp. 1-6 [30] Y. Du, B. H. Dong, Z. Chen, J. Fang, and L. Yang, 'Shuffled multiuser detection schemes for uplink sparse code multiple access systems,' IEEE Commun. Lett., vol. 20, no. 6, pp. 1231-1234, Jun. 2016. [31] H. Mu, Z. Ma, M. Alhaji, P. Fan and D. Chen, 'A Fixed Low Complexity Message Pass Algorithm Detector for Up-Link SCMA System,' IEEE Wireless Communications Letters, vol. 4, no. 6, pp. 585-588, Dec. 2015. [32] X. Ma, L. Yang, Z. Chen and Y. Siu, 'Low Complexity Detection Based on Dynamic Factor Graph for SCMA Systems,' IEEE Communications Letters, vol. 21, no. 12, pp. 2666-2669, Dec. 2017. [33] Y. Wu, J. Dai, K. Niu, C. Dong and X. Bian, 'Hardware Design and Implementation of Sparse Code Multiple Access,' 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, ON, Canada, 2017, pp. 1-6, [34] J. Liu, G. Wu, S. Li and O. Tirkkonen, 'On Fixed-Point Implementation of Log-MPA for SCMA Signals,' in IEEE Wireless Communications Letters, vol. 5, no. 3, pp. 324-327, June 2016 [35] C. Zhang et al., 'Efficient Sparse Code Multiple Access Decoder Based on Deterministic Message Passing Algorithm,' in IEEE Transactions on Vehicular Technology, vol. 69, no. 4, pp. 3562-3574, April 2020 [36] K. Han, J. Hu, J. Chen and H. Lu, 'A Low Complexity Sparse Code Multiple Access Detector Based on Stochastic Computing,' in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 2, pp. 769-782, Feb. 2018 [37] W. -C. Sun, Y. -C. Su, Y. -L. Ueng and C. -H. Yang, 'An LDPC-Coded SCMA Receiver With Multi-User Iterative Detection and Decoding,' in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 9, pp. 3571-3584, Sept. 2019 [38] X. Pang, W. Song, Y. Shen, X. You and C. Zhang, 'Efficient Row-Layered Decoder for Sparse Code Multiple Access,' in IEEE Transactions on Circuits and Systems I: Regular Papers, June. 2021 [39] L. Lu, Y. Chen, W. Guo, H. Yang, Y. Wu and S. Xing, 'Prototype for 5G new air interface technology SCMA and performance evaluation,' in China Communications, vol. 12, no. Supplement, pp. 38-48, December 2015 [40] P. B. Denyer and D. Renshaw, VLSI Signal Processing: A Bit-Serial Approach. Boston, MA: Addison-Wesley, 1985. [41] N. Gupta, Clock Gating Integrated Cell, VLSI SoC Design: Concepts, Perspective Implementation, Aug. 2012. Accessed on: July. 8, 2021. [Online]. Available: http://vlsi-soc.blogspot.com/2012/08/clock-gating-integrated-cell.html.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81150-
dc.description.abstract在大規模機器通訊(mMTC)場景中,有限的頻譜與低延遲、低成本的需求為一大技術瓶頸,非正交多工存取(NOMA)成為5G的一項關鍵技術。其中稀疏碼多工存取(SCMA)即為一個近年備受關注的候選方案,其具有低傳輸延遲和高頻譜效率的優點。稀疏碼多工存取(SCMA)能根據情境使用不同的碼簿與過載因子,但系統的過載因子上升的同時會使運算複雜度快速上升,這使得一般的解碼架構難以同時支援多種過載因子的解碼,而不符合實際需求。本論文主要研究一共有兩大主軸,分別為演算法的改良與解碼器硬體的實現。 演算法方面,我們提出一種根據個別通道的事後機率來提前刪除碼簿組合的方法,得以從第一次迭代前便降低複雜度,並且透過固定的刪減機制來降低運算的額外成本,包含運算量與記憶體的使用。 而硬體設計方面,我們選用了性能較好且較為通用的架構來設計對應的解碼器電路,其中包含了多種早停算法以及多種過載率的支援。針對多模式的支援使用了一些硬體覆用的技巧,在最高的過載模式下,運算電路的資源使用相比傳統架構減少了近65%,並且整合後的解碼器比多個單模式解碼器減少了約52%的總面積。即使在單一模式下的各項硬體性能與其他文獻相比仍不遜色,顯示本設計達成了單一模式下的性能改善與多模式的整合。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:33:07Z (GMT). No. of bitstreams: 1
U0001-0708202101513200.pdf: 7311843 bytes, checksum: 298f7d1fa61ab1d933b3bcc89e484fe3 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"致謝 i 摘要 iii Abstract iv 目錄 vi 圖目錄 ix 表目錄 xii 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 4 1.3 研究現況 6 1.4 論文架構 7 第二章 5G通訊型態與稀疏碼多工存取介紹 8 2.1 高可靠與低延遲通訊(Ultra-Reliable and Low-Latency Communications) 9 2.2 大規模機器型態通訊 (Massive Machine Type Communications) 11 2.3 稀疏碼多工存取(Sparse code multiple access)系統介紹 12 2.3.1 低密度簽記(Low Denisty Signature, LDS)系統 12 2.3.2 稀疏碼多工存取系統與編碼流程 14 2.3.3 稀疏碼多工存取之接收機偵測 16 2.3.4 訊息傳遞演算法 (Message Passing Algorithm) 20 第三章 基於訊息傳遞之低複雜度算法設計與分析 25 3.1 基於排程改良之算法 25 3.1.1 S-MPA 25 3.1.2 模擬與分析 27 3.2 基於部分早停之算法 30 3.2.1. PM-MPA 30 3.2.2. DFG-MPA 32 3.2.3. CCR-MPA 33 3.2.4. LLRES-MPA 34 3.3 本論文提出的基於部分早停的低複雜度算法 35 3.3.1 基於列表預先刪減的訊息傳遞演算法 35 3.3.2 模擬結果與分析 39 3.4 不同算法之性能比較與分析 42 第四章 多模式解碼器之硬體實現 45 4.1 解碼器規格說明 46 4.2 解碼器架構介紹 48 4.3 多模式兼容之部分平行解碼排程 51 4.3.1 部分平行策略之節點更新分析 51 4.3.2 基於延遲序列訊息傳遞算法之管線化排程 54 4.4 各單元之電路介紹 57 4.4.1 近似之距離計算單元 57 4.4.2 部分共用之多維度訊息更新單元 60 4.4.3 LLR計算與早停機制控制單元 69 4.4.4 暫存器配置 72 4.4.5 對數機率訊息之等比例縮減 73 4.5 電路特點與比較 75 第五章 晶片實現 84 5.1 晶片設計流程 84 5.2 晶片布局與電源完整性分析 86 5.3 合成結果分析 88 5.4 晶片量測考量 89 5.5 晶片量測結果 90 5.6 晶片性能比較 93 第六章 結論與展望 96 參考文獻 97"
dc.language.isozh-TW
dc.subject過載因子zh_TW
dc.subject非正交多工存取zh_TW
dc.subject稀疏碼多工存取zh_TW
dc.subject訊息傳遞演算法zh_TW
dc.subjectSparse Code Multiple Accessen
dc.subjectNon-Orthogonal Multiple Accessen
dc.subjectOverloading Factoren
dc.subjectMessage Passing Algorithmen
dc.title5G機器型態通訊下針對稀疏碼多工存取之訊息傳遞解碼器設計與晶片實現zh_TW
dc.titleDesign and Chip Implementation of Message Passing Based Decoder for Sparse Code Multiple Access in 5G Machine Type Communicationsen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡佩芸(Hsin-Tsai Liu),馬席彬(Chih-Yang Tseng),黃元豪
dc.subject.keyword非正交多工存取,稀疏碼多工存取,訊息傳遞演算法,過載因子,zh_TW
dc.subject.keywordNon-Orthogonal Multiple Access,Sparse Code Multiple Access,Message Passing Algorithm,Overloading Factor,en
dc.relation.page102
dc.identifier.doi10.6342/NTU202102168
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-09-14
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-0708202101513200.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
7.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved