Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81146Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 許秉寧(Pin-Ning Hsu) | |
| dc.contributor.author | Szu-Chieh Wang | en |
| dc.contributor.author | 王思傑 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:32:55Z | - |
| dc.date.available | 2021-08-18 | |
| dc.date.available | 2022-11-24T03:32:55Z | - |
| dc.date.copyright | 2021-08-18 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-09 | |
| dc.identifier.citation | Balagopalan, L., Kortum, R.L., Coussens, N.P., Barr, V.A., and Samelson, L.E. (2015). The Linker for Activation of T Cells (LAT) Signaling Hub: From Signaling Complexes to Microclusters. J Biol Chem 290, 26422-26429. Barreto, M., Ferreira, R.C., Lourenco, L., Moraes-Fontes, M.F., Santos, E., Alves, M., Carvalho, C., Martins, B., Andreia, R., Viana, J.F., et al. (2009). Low frequency of CD4(+)CD25(+) Treg in SLE patients: a heritable trait associated with CTLA4 and TGF gene variants. BMC Immunol 10, 14. Bonelli, M., Smolen, J.S., and Scheinecker, C. (2010). Treg and lupus. Ann Rheum Dis 69, 65-66. Chiang, G.G., and Sefton, B.M. (2001). Specific dephosphorylation of the Lck tyrosine protein kinase at Tyr-394 by the SHP-1 protein-tyrosine phosphatase. J Biol Chem 276, 23173-23178. Cho, S.H., Raybuck, A.L., Blagih, J., Kemboi, E., Haase, V.H., Jones, R.G., and Boothby, M.R. (2019). Hypoxia-inducible factors in CD4+ T cells promote metabolism, switch cytokine secretion, and T cell help in humoral immunity. Proceedings of the National Academy of Sciences 116, 8975-8984. Chyuan, I.T., Tsai, H.F., and Hsu, P.N. (2019). TRAIL suppresses gut inflammation and inhibits colitogenic T cell activation in experimental colitis via an apoptosis-independent pathway. Eur J Immunol 49, 1381-1382. Chyuan, I.T., Tsai, H.F., Liao, H.J., Wu, C.S., and Hsu, P.N. (2018a). An apoptosis-independent role of TRAIL in suppressing joint inflammation and inhibiting T-cell activation in inflammatory arthritis. Cell Mol Immunol 15, 846-857. Chyuan, I.T., Tsai, H.F., Wu, C.S., Sung, C.C., and Hsu, P.N. (2018b). Trail-Mediated Suppression of T Cell Receptor Signaling Inhibits T Cell Activation and Inflammation in Experimental Autoimmune Encephalomyelitis. Front Immunol 9, 14. Comte, D., Karampetsou, M.P., Kis-Toth, K., Yoshida, N., Bradley, S.J., Kyttaris, V.C., and Tsokos, G.C. (2017). CD4+T Cells From Patients With Systemic Lupus Erythematosus Respond Poorly to Exogenous Interleukin-2. Arthritis Rheumatol 69, 808-813. Dai, H., He, F., Tsokos, G.C., and Kyttaris, V.C. (2017). IL-23 Limits the Production of IL-2 and Promotes Autoimmunity in Lupus. J Immunol 199, 903-910. Dai, H., and Kyttaris, V.C. (2016). Inhibition of IL-23/IL-23 Receptor signaling ameliorates disease in lupus-prone mice by decreasing the generation of DN T cells. J Immunol 196, 2. Dang, E.V., Barbi, J., Yang, H.Y., Jinasena, D., Yu, H., Zheng, Y., Bordman, Z., Fu, J., Kim, Y., Yen, H.R., et al. (2011). Control of T(H)17/T-reg Balance by Hypoxia-Inducible Factor 1. Cell 146, 772-784. Daniels, R.A., Turley, H., Kimberley, F.C., Liu, X.S., Mongkolsapaya, J., Ch'en, P., Xu, X.N., Jin, B.Q., Pezzella, F., and Screaton, G.R. (2005). Expression of TRAIL and TRAIL receptors in normal and malignant tissues. Cell Res 15, 430-438. de Miguel, D., Lemke, J., Anel, A., Walczak, H., and Martinez-Lostao, L. (2016). Onto better TRAILs for cancer treatment. Cell Death Differ 23, 733-747. Deng, W., Ren, Y.L., Feng, X.B., Yao, G.H., Chen, W.W., Sun, Y., Wang, H.J., Gao, X., and Sun, L.Y. (2014). Hypoxia Inducible Factor-1 Alpha Promotes Mesangial Cell Proliferation in Lupus Nephritis. Am J Nephrol 40, 507-515. Deocharan, B., Marambio, P., Edelman, M., and Putterman, C. (2003). Differential effects of interleukin-4 in peptide induced autoimmunity. Clin Immunol 108, 80-88. Di, X., Zhang, G.F., Zhang, Y.Q., Takeda, K., Rosado, L.A.R., and Zhang, B.L. (2013). Accumulation of autophagosomes in breast cancer cells induces TRAIL resistance through downregulation of surface expression of death receptors 4 and 5. Oncotarget 4, 1349-1364. Dolff, S., Bijl, M., Huitema, M.G., Limburg, P.C., Kallenberg, C.G.M., and Abdulahad, W.H. (2011). Disturbed Th1, Th2, Th17 and T-reg balance in patients with systemic lupus erythematosus. Clin Immunol 141, 197-204. Domeier, P.P., Chodisetti, S.B., Soni, C., Schell, S.L., Elias, M.J., Wong, E.B., Cooper, T.K., Kitamura, D., and Rahman, Z.S.M. (2016). IFN-gamma receptor and STAT1 signaling in B cells are central to spontaneous germinal center formation and autoimmunity. J Exp Med 213, 715-732. Falschlehner, C., Emmerich, C.H., Gerlach, B., and Walczak, H. (2007). TRAIL signalling: Decisions between life and death. Int J Biochem Cell Biol 39, 1462-1475. Fernandez, D.R., Telarico, T., Bonilla, E., Li, Q., Banerjee, S., Middleton, F.A., Phillips, P.E., Crow, M.K., Oess, S., Muller-Esterl, W., et al. (2009). Activation of Mammalian Target of Rapamycin Controls the Loss of TCR zeta in Lupus T Cells through HRES-1/Rab4-Regulated Lysosomal Degradation. J Immunol 182, 2063-2073. Godsell, J., Rudloff, I., Kandane-Rathnayake, R., Hoi, A., Nold, M.F., Morand, E.F., and Harris, J. (2016). Clinical associations of IL-10 and IL-37 in systemic lupus erythematosus. Sci Rep 6, 10. Horejsi, V., Zhang, W.G., and Schraven, B. (2004). Transmembrane adaptor proteins: Organizers of immunoreceptor signalling. Nat Rev Immunol 4, 603-616. Hsu, H.C., Yang, P., Wang, J., Wu, Q., Myers, R., Chen, J., Yi, J., Guentert, T., Tousson, A., Stanus, A.L., et al. (2008). Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat Immunol 9, 166-175. Hu, H.B., Wang, H., Xiao, Y.C., Jin, J., Chang, J.H., Zou, Q., Xie, X.P., Cheng, X.H., and Sun, S.C. (2016). Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J Exp Med 213, 399-414. Huppa, J.B., and Davis, M.M. (2003). T-cell-antigen recognition and the immunological synapse. Nat Rev Immunol 3, 973-983. Johnstone, R.W., Frew, A.J., and Smyth, M.J. (2008). The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nature Reviews Cancer 8, 782-798. Katz, Z.B., Novotna, L., Blount, A., and Lillemeier, B.F. (2017). A cycle of Zap70 kinase activation and release from the TCR amplifies and disperses antigenic stimuli. Nat Immunol 18, 86-95. Kennedy, W.P., Maciuca, R., Wolslegel, K., Tew, W., Abbas, A.R., Chaivorapol, C., Morimoto, A., McBride, J.M., Brunetta, P., Richardson, B.C., et al. (2015). Association of the interferon signature metric with serological disease manifestations but not global activity scores in multiple cohorts of patients with SLE. Lupus Sci Med 2, 11. Kono, M., Yoshida, N., Maeda, K., Skinner, N.E., Pan, W.L., Kyttaris, V.C., Tsokos, M.G., and Tsokos, G.C. (2018). Pyruvate dehydrogenase phosphatase catalytic subunit 2 limits Th17 differentiation. Proc Natl Acad Sci U S A 115, 9288-9293. Lehnert, C., Weiswange, M., Jeremias, I., Bayer, C., Grunert, M., Debatin, K.M., and Strauss, G. (2014). TRAIL-Receptor Costimulation Inhibits Proximal TCR Signaling and Suppresses Human T Cell Activation and Proliferation. J Immunol 193, 4021-4031. Lemke, J., von Karstedt, S., Zinngrebe, J., and Walczak, H. (2014). Getting TRAIL back on track for cancer therapy. Cell Death Differ 21, 1350-1364. Lub-de Hooge, M.N., de Vries, E.G.E., de Jong, S., and Bijl, M. (2005). Soluble TRAIL concentrations are raised in patients with systemic lupus erythematosus. Ann Rheum Dis 64, 854-858. Mackay, F., Woodcock, S.A., Lawton, P., Ambrose, C., Baetscher, M., Schneider, P., Tschopp, J., and Browning, J.L. (1999). Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med 190, 1697-1710. Merino, D., Khaw, S.L., Glaser, S.P., Anderson, D.J., Belmont, L.D., Wong, C.H., Yue, P., Robati, M., Phipson, B., Fairlie, W.D., et al. (2012). Bcl-2, Bcl-x(L), and Bcl-w are not equivalent targets of ABT-737 and navitoclax (ABT-263) in lymphoid and leukemic cells. Blood 119, 5807-5816. Mikhailik, A., Ford, B., Keller, J., Chen, Y.T., Nassar, N., and Carpino, N. (2007). A phosphatase activity of Sts-1 contributes to the suppression of TCR signaling. Mol Cell 27, 486-497. Moulton, V.R., and Tsokos, G.C. (2015). T cell signaling abnormalities contribute to aberrant immune cell function and autoimmunity. J Clin Invest 125, 2220-2227. O'Leary, L., van der Sloot, A.M., Reis, C.R., Deegan, S., Ryan, A.E., Dhami, S.P.S., Murillo, L.S., Cool, R.H., de Sampaio, P.C., Thompson, K., et al. (2016). Decoy receptors block TRAIL sensitivity at a supracellular level: the role of stromal cells in controlling tumour TRAIL sensitivity. Oncogene 35, 1261-1270. Ouyang, W.J., Rutz, S., Crellin, N.K., Valdez, P.A., and Hymowitz, S.G. (2011). Regulation and Functions of the IL-10 Family of Cytokines in Inflammation and Disease. In Annual Review of Immunology, Vol 29, W.E. Paul, D.R. Littman, and W.M. Yokoyama, eds. (Palo Alto: Annual Reviews), pp. 71-109. Peng, H., Wang, W., Zhou, M., Li, R., Pan, H.F., and Ye, D.Q. (2013). Role of interleukin-10 and interleukin-10 receptor in systemic lupus erythematosus. Clin Rheumatol 32, 1255-1266. Petri, M., Fu, W., Ranger, A., Allaire, N., Cullen, P., Magder, L.S., and Zhang, Y.J. (2019). Association between changes in gene signatures expression and disease activity among patients with systemic lupus erythematosus. BMC Med Genomics 12, 9. Petri, M., Stohl, W., Chatham, W., McCune, W.J., Chevrier, M., Ryel, J., Recta, V., Zhong, J., and Freimuth, W. (2008). Association of plasma B lymphocyte stimulator levels and disease activity in systemic lupus erythematosus. Arthritis Rheum 58, 2453-2459. Philipsen, L., Reddycherla, A.V., Hartig, R., Gumz, J., Kastle, M., Kritikos, A., Poltorak, M.P., Prokazov, Y., Turbin, E., Weber, A., et al. (2017). De novo phosphorylation and conformational opening of the tyrosine kinase Lck act in concert to initiate T cell receptor signaling. Sci Signal 10, 14. Rosenzwajg, M., Lorenzon, R., Cacoub, P., Pham, H.P., Pitoiset, F., El Soufi, K., Ribet, C., Bernard, C., Aractingi, S., Banneville, B., et al. (2019). Immunological and clinical effects of low-dose interleukin-2 across 11 autoimmune diseases in a single, open clinical trial. Ann Rheum Dis 78, 209-217. Rossy, J., Owen, D.M., Williamson, D.J., Yang, Z.M., and Gaus, K. (2013). Conformational states of the kinase Lck regulate clustering in early T cell signaling. Nat Immunol 14, 82-89. Salazar-Camarena, D.C., Ortiz-Lazareno, P.C., Cruz, A., Oregon-Romero, E., Machado-Contreras, J.R., Munoz-Valle, J.F., Orozco-Lopez, M., Marin-Rosales, M., and Palafox-Sanchez, C.A. (2016). Association of BAFF, APRIL serum levels, BAFF-R, TACI and BCMA expression on peripheral B-cell subsets with clinical manifestations in systemic lupus erythematosus. Lupus 25, 582-592. San Luis, B., Sondgeroth, B., Nassar, N., and Carpino, N. (2011). Sts-2 Is a Phosphatase That Negatively Regulates Zeta-associated Protein (ZAP)-70 and T Cell Receptor Signaling Pathways. J Biol Chem 286, 12. Semenza, G.L. (2003). Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3, 721-732. Shah, K., Lee, W.W., Lee, S.H., Kim, S.H., Kang, S.W., Craft, J., and Kang, I. (2010). Dysregulated balance of Th17 and Th1 cells in systemic lupus erythematosus. Arthritis Res Ther 12, 10. Shi, L.Z., Wang, R.N., Huang, G.H., Vogel, P., Neale, G., Green, D.R., and Chi, H.B. (2011). HIF1 alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of T(H)17 and T-reg cells. J Exp Med 208, 1367-1376. Sjolin-Goodfellow, H., Frushicheva, M.P., Ji, Q.Q., Cheng, D.A., Kadlecek, T.A., Cantor, A.J., Kuriyan, J., Chakraborty, A.K., Salomon, A.R., and Weiss, A. (2015). The catalytic activity of the kinase ZAP-70 mediates basal signaling and negative feedback of the T cell receptor pathway. Sci Signal 8, 13. Song, K.M., Chen, Y.G., Goke, R., Wilmen, A., Seidel, C., Goke, A., Hilliard, B., and Chen, Y.H. (2000). Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an inhibitor of autoimmune inflammation and cell cycle progression. J Exp Med 191, 1095-1103. Stirnweiss, A., Hartig, R., Gieseler, S., Lindquist, J.A., Reichardt, P., Philipsen, L., Simeoni, L., Poltorak, M., Merten, C., Zuschratter, W., et al. (2013). T Cell Activation Results in Conformational Changes in the Src Family Kinase Lck to Induce Its Activation. Sci Signal 6, 11. Stuckey, D.W., and Shah, K. (2013). TRAIL on trial: preclinical advances in cancer therapy. Trends Mol Med 19, 685-694. Tanaka, T. (2016). Expanding roles of the hypoxia-response network in chronic kidney disease. Clin Exp Nephrol 20, 835-844. Tao, J.H., Cheng, M., Tang, J.P., Liu, Q., Pan, F., and Li, X.P. 2017). Foxp3, Regulatory T Cell, and Autoimmune Diseases. Inflammation 40, 328-339. Tektonidou, M.G., Lewandowski, L.B., Hu, J.X., Dasgupta, A., and Ward, M.M. (2017). Survival in adults and children with systemic lupus erythematosus: a systematic review and Bayesian meta-analysis of studies from 1950 to 2016. Ann Rheum Dis 76, 2009-2016. Tenbrock, K., Juang, Y.T., Kyttaris, V.C., and Tsokos, G.C. (2007). Altered signal transduction in SLE T cells. Rheumatology 46, 1525-1530. van Vollenhoven, R.F., Petri, M.A., Cervera, R., Roth, D.A., Ji, B.N., Kleoudis, C.S., Zhong, Z.J., and Freimuth, W. (2012). Belimumab in the treatment of systemic lupus erythematosus: high disease activity predictors of response. Ann Rheum Dis 71, 1343-1349. von Spee-Mayer, C., Siegert, E., Abdirama, D., Rose, A., Klaus, A., Alexander, T., Enghard, P., Sawitzki, B., Hiepe, F., Radbruch, A., et al. (2016). Low-dose interleukin-2 selectively corrects regulatory T cell defects in patients with systemic lupus erythematosus. Ann Rheum Dis 75, 1407-1415. Wang, S.H., Cao, Z.Y., Wolf, J.M., Van Antwerp, M., and Baker, J.R. (2005). Death ligand tumor necrosis factor-related apoptosis-inducing ligand inhibits experimental autoimmune thyroiditis. Endocrinology 146, 4721-4726. Wang, X.T., Wong, K., Ouyang, W.J., and Rutz, S. (2019). Targeting IL-10 Family Cytokines for the Treatment of Human Diseases. Cold Spring Harbor Perspect Biol 11, 30. Wiley, S.R., Schooley, K., Smolak, P.J., Din, W.S., Huang, C.P., Nicholl, J.K., Sutherland, G.R., Smith, T.D., Rauch, C., Smith, C.A., et al. (1995). Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3, 673-682. Wong, S.H.M., Kong, W.Y., Fang, C.M., Loh, H.S., Chuah, L.H., Abdullah, S., and Ngai, S.C. (2019). The TRAIL to cancer therapy: Hindrances and potential solutions. Crit Rev Oncol/Hematol 143, 81-94. Yang, J., Chu, Y.W., Yang, X., Gao, D., Zhu, L.B., Yang, X.R., Wan, L.L., and Li, M. (2009). Th17 and Natural Treg Cell Population Dynamics in Systemic Lupus Erythematosus. Arthritis Rheum 60, 1472-1483. Yen, E.Y., Shaheen, M., Woo, J.M.P., Mercer, N., Li, N., McCurdy, D.K., Karlamangla, A., and Singh, R.R. (2017). 46-Year Trends in Systemic Lupus Erythematosus Mortality in the United States, 1968 to 2013 A Nationwide Population-Based Study. Ann Intern Med 167, 777-+. Yin, Y.M., Choi, S.C., Xu, Z.W., Perry, D.J., Seay, H., Croker, B.P., Sobel, E.S., Brusko, T.M., and Morel, L. (2015). Normalization of CD4(+) T cell metabolism reverses lupus. Sci Transl Med 7, 12. Yu, H.H., Liu, P.H., Lin, Y.C., Chen, W.J., Lee, J.H., Wang, L.C., Yang, Y.H., and Chiang, B.L. (2010). Interleukin 4 and STAT6 gene polymorphisms are associated with systemic lupus erythematosus in Chinese patients. Lupus 19, 1219-1228. Zhang, J., Jacobi, A.M., Wang, T., Berlin, R., Volpe, B.T., and Diamond, B. (2009). Polyreactive autoantibodies in systemic lupus erythematosus have pathogenic potential. J Autoimmun 33, 270-274. Zhao, X.F., Pan, H.F., Yuan, H., Zhang, W.H., Li, X.P., Wang, G.H., Wu, G.C., Su, H., Pan, F.M., Li, W.X., et al. (2010). Increased serum interleukin 17 in patients with systemic lupus erythematosus. Mol Biol Rep 37, 81-85. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81146 | - |
| dc.description.abstract | "腫瘤壞死因子相關凋亡誘導配體在過往的認知中主要是被認為可以引起細胞凋亡,然而在我們實驗室過去所做的研究中證明TRAIL在許多小鼠自體免疫疾病模型中可以透過非自然凋亡的途徑來大幅減少疾病活性和發炎,並且是藉由抑制T細胞啟動以及活性所導致。在研究中指出TRAIL以及TRAIL受體的交互作用可以抑制T細胞受體訊息傳遞相關分子磷酸化,並且防止這些分子進入脂筏當中來抑制T細胞活化。 在我的研究中發現TRAIL除了可以抑制ZAP70等訊息傳遞分子磷酸化之外,還可以抑制更上游分子包括Lck,CD3ζ磷酸化。因此我們進一步利用免疫沉澱法發現TRAIL受體和SHP-1之間有所交互作用,並且在TRAIL刺激下能促使SHP-1鄰酸化,而在TRAIL-R去除的小鼠當中也可觀察到磷酸化的SHP-1明顯減少的現象,因此推測TRAIL可能是透過SHP-1來抑制整個T細胞受體訊息傳遞相關分子的磷酸化。為了證明這件事,我們利用了過氧酸鹽以及SHP-1 siRNA的實驗來驗證TRAIL所引發的抑制效果的確是透過SHP-1這種磷酸酶,結果證實在TRAIL和過氧酸鹽共同刺激下或是在SHP-1 siRNA的處理下的確能夠有效地抑制TRAIL 所引發的抑制效果,因此,藉由這些實驗我們證實了TRAIL確實是透過SHP-1來抑制整個T細胞受體訊息傳遞分子磷酸化的過程。 此外,在我們實驗室之前轉錄體分析(transcriptome analysis)發現TRAIL除了直接抑制T細胞受體(TCR)訊息傳導之外,也可以藉由抑制T細胞免疫代謝的方式來調控T細胞的功能。因此我們挑選了全身性紅斑狼瘡(SLE)作為我們主要的研究對象。SLE是一種全身性多器官的自體免疫疾病,致病機轉主要是由於患者體內產生出自體抗體以及具有自我反應性的T細胞。其中,T細胞是導致SLE疾病中組織炎症的主因,並且也有研究指出免疫細胞代謝能力和其細胞的功能有直接的關聯性,在先前的研究指出在腎小管浸潤T細胞中會高量表現HIF-1α,並且HIF-1α的表現量會直接影響到T細胞糖解作用的效率以及T細胞的活性。 我第二部分的實驗可以分為幾個點進行探討。第一,TRAIL在SLE患者中的表現量高低以及和HIF-1α表現量之間的關聯性。第二,可溶性TRAIL和SLE病人的臨床病徵、活性變化的關聯性。第三,在體外試驗的情況下觀察TRAIL是否能抑制SLE病人T細胞分泌細胞激素的能力,作為未來臨床治療SLE的潛在藥物之一。首先,我們先利用大數據GEO分析SLE病人以及健康人T細胞內TRAIL,TRAIL受體,HIF-1α和GLU1以及RORC的基因表現量,數據顯示TRAIL和TRAIL受體在SLE病人的輔助型T細胞內基因表現量較低而其他代謝相關基因表現量則是較高,接著我們分析實際收到的病人中相關基因以及蛋白質表現量, 結果顯示無論在基因或是蛋白質表現上皆與GEO數據一致,TRAIL和TRAIL受體在SLE病人的輔助型T細胞內表現量較低而其他代謝相關蛋白質表現量則是較高。接著我們進一步分析病人血漿中可溶性TRAIL和臨床表徵的關聯性,我們發現可溶性TRAIL在SLE病人中表現量較低,其中在疾病活性較高的病人中又比活性低的病人來的更低,並且TRAIL和其他臨床表徵中如P/C ratio及全身性紅斑性狼瘡疾病活動性指數等具有顯著的負相關。再者,我們藉由CD3/28刺激3天後分析SLE病人輔助型T細胞的反應性,發現無論是TRAIL,TRAIL受體,以及其他代謝相關基因都有顯著上升的趨勢,表示SLE的輔助型T細胞具有較強的反應性。最後,我們在體外將TRAIL和SLE病人輔助型T細胞共同培養,發現TRAIL可以有效的降低SLE病人輔助型T細胞代謝相關蛋白質的表現,並且能有效地抑制介白素-17和干擾素γ蛋白質表現。總結而言,TRAIL在SLE病人中表現量較低並且其表現量和許多臨床表徵具有負向相關,同時TRAIL能夠有效抑制SLE病人促發炎細胞素的產生,因此在未來的確具有作為治療SLE疾病藥物的潛力。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:32:55Z (GMT). No. of bitstreams: 1 U0001-0808202113490400.pdf: 3253903 bytes, checksum: 64f756cc619c06738c9629c54e9fae04 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "致謝 i 中文摘要 ii Abstract iv Contents vii List of Figures x Chapter 1 Introduction 1 1. TRAIL 1 1.1 TRAIL and its receptors 1 1.2 TRAIL and apoptosis 2 1.3 TRAIL and apoptosis independent pathway 3 2. TCR signaling in T cell activation 4 2.1 TCR signaling response 4 2.2 Regulation of Lck tyrosine kinase 5 2.3 Regulation of ZAP-70 tyrosine kinase 5 3. Systemic lupus erythematosus (SLE) 6 4. T cell and B cell in SLE pathogenesis 7 4.1 T cell 7 4.1.1 Th1 in SLE 7 4.1.2 Th2 in SLE 8 4.1.3 Th17 in SLE 9 4.1.4 Treg in SLE 10 4.2 B cell 10 5. T cell metabolism in SLE patient 11 Chapter 2 Materials and Methods: 14 1. Materials 14 1.1 Primer 14 1.2 Antibodies 15 1.3 Kits 17 1.4 Transfection Reagent 18 1.5 Chemicals and reagents 18 1.6 Buffer 19 1.7 Recombinant protein 21 Methods 22 2.1 Western blot 22 2.2 Co-immunoprecipitation (Co-IP) 22 2.3 siRNA transfection 23 2.4 Subject 23 2.5 Isolation of human and mouse T cells 24 2.6 Human and mouse T cell culture 24 2.7 Enzyme-linked immunosorbent assay 25 2.8 Quantitative PCR analysis 25 2.9 Analysis cell death by flow cytometry 26 2.10 Carboxyfluorescein succinimidyle ester (CFSE) staining 26 2.11 Surface marker staining 27 2.12 Intracellular staining 27 2.13 Gene Expression Omnibus (GEO) data analysis 28 2.14 Statistical analysis 28 Chapter 3 Results 29 1. TRAIL suppressed T cell activity by inhibit TCR signaling molecules phosphorylation in an apoptosis-independent manner. 29 2. TRAIL-R was associated with SHP-1 and TRAIL alone stimulation could induce phosphorylated SHP-1 expression. 30 3. TRAIL/TRAIL-R interaction could promote phosphorylated SHP-1 expression in WT mice and this phenomenon was abolished in TRAIL-R KO mice. 30 4. Pervanadate treatment can reverse the inhibition effect of TRAIL in TCR signaling in EL4 cells 31 5. siRNA knock down SHP-1 reversed the inhibition effect of TRAIL in TCR signaling 32 6. GEO database analyzed gene expression between SLE patient and healthy individual 32 7. TRAIL and DR5 were downregulated and GLU-1, HIF-1α were upregulated in mRNA and protein expression in HC and SLE CD4+ T cells 33 8. The correlation between TRAIL and clinical manifestations of SLE 34 9. The responsiveness of CD4+ T cell were higher in SLE patient compared to healthy individual after CD3/28 stimulation for 3 days 35 10. TRAIL treatment normalized HIF-1α, GLU1, RORγt and pro-inflammatory cytokine IL-17 and IFN-γ production ability in SLE patient. 36 Chapter 4 Discussion 37 1. The mechanism of TRAIL/TRAIL-R inhibited T cell activation and metabolism 37 2. Whether the location of TRAIL-R was close enough to affect TCR synapse. 37 3. Whether there were functional differences between TRAIL induced phosphorylated SHP-1 and CD3/28 signaling induced phosphorylated SHP-1. 38 4. The concerns of TRAIL for clinical therapy 38 5. The difference between previous report of the amount of TRAIL in SLE patients. 40 Chapter 5 Figure 42 Chapter 6 References 67" | |
| dc.language.iso | en | |
| dc.subject | 腫瘤壞死因子相關凋亡誘導配體(TRAIL) | zh_TW |
| dc.subject | T細胞活化 | zh_TW |
| dc.subject | T細胞受體訊息傳遞分子 | zh_TW |
| dc.subject | 磷酸酶 | zh_TW |
| dc.subject | 全身性紅斑狼瘡(SLE) | zh_TW |
| dc.subject | Th17及IL17 | zh_TW |
| dc.subject | 免疫細胞代謝 | zh_TW |
| dc.subject | 缺氧誘導因子1α(HIF-1α) | zh_TW |
| dc.subject | immune metabolism | en |
| dc.subject | TNF-related apoptosis-inducing ligand (TRAIL) | en |
| dc.subject | Hypoxia induce factor1α(HIF-1α) | en |
| dc.subject | TCR signaling | en |
| dc.subject | SHP-1 | en |
| dc.subject | Systemic lupus erythematosus (SLE) | en |
| dc.subject | Th17 and Interleukin17 | en |
| dc.title | TRAIL透過SHP-1抑制近端TCR訊息傳遞分子磷酸化來調控T細胞活化 | zh_TW |
| dc.title | TRAIL inhibits T cell activation by suppressing phosphorylation of proximal TCR signaling through SHP-1 | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 朱清良(Hsin-Tsai Liu),楊皇煜(Chih-Yang Tseng),吳建陞 | |
| dc.subject.keyword | T細胞活化,T細胞受體訊息傳遞分子,磷酸酶,全身性紅斑狼瘡(SLE),Th17及IL17,免疫細胞代謝,缺氧誘導因子1α(HIF-1α),腫瘤壞死因子相關凋亡誘導配體(TRAIL), | zh_TW |
| dc.subject.keyword | TCR signaling,SHP-1,Systemic lupus erythematosus (SLE),Th17 and Interleukin17,immune metabolism,Hypoxia induce factor1α(HIF-1α),TNF-related apoptosis-inducing ligand (TRAIL), | en |
| dc.relation.page | 78 | |
| dc.identifier.doi | 10.6342/NTU202102185 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-08-10 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 免疫學研究所 | zh_TW |
| Appears in Collections: | 免疫學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-0808202113490400.pdf Access limited in NTU ip range | 3.18 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
