請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81143完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許秉寧(Ping-Ning Hsu) | |
| dc.contributor.author | Hua-Yi Lee | en |
| dc.contributor.author | 李華翊 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:32:46Z | - |
| dc.date.available | 2021-08-31 | |
| dc.date.available | 2022-11-24T03:32:46Z | - |
| dc.date.copyright | 2021-08-31 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-10 | |
| dc.identifier.citation | Alvarez, E., Berg, P.A., Bianchi, F.B., Bianchi, L., Burroughs, A.K., Cancado, E.L., Chapman, R.W., Cooksley, W.G.E., Czaja, A.J., Desmet, V.J., et al. (1999). International Autoimmune Hepatitis Group Report: review of criteria for diagnosis of autoimmune hepatitis. J Hepatol 31, 929-938. Arshad, M.I., Piquet-Pellorce, C., L'Helgoualc'h, A., Rauch, M., Patrat-Delon, S., Ezan, F., Lucas-Clerc, C., Nabti, S., Lehuen, A., Cubero, F.J., et al. (2012). TRAIL But Not FasL and TNF alpha, Regulates IL-33 Expression in Murine Hepatocytes During Acute Hepatitis. Hepatology 56, 2353-2362. Bach, E.A., Aguet, M., and Schreiber, R.D. (1997). The IFN gamma receptor: A paradigm for cytokine receptor signaling. Annu Rev Immunol 15, 563- . Bartsch L.M., Damasio MPS., Subudhi S., Drescher H.K.. Tissue-Resident Memory T Cells in the Liver-Unique Characteristics of Local Specialists. (2020). Cells 9(11):2457. Bazan, J.F. (1990). Structural design and molecular evoluiton of a cytokine receptor superfamily. Proc Natl Acad Sci U S A 87, 6934-6938. Beraza, N., Malato, Y., Sander, L.E., Al-Masaoudi, M., Freimuth, J., Riethmacher, D., Gores, G.J., Roskams, T., Liedtke, C., and Trautwein, C. (2009). Hepatocyte-specific NEMO deletion promotes NK/NKT cell- and TRAIL-dependent liver damage. J Exp Med 206, 1727-1737. Bowen, D.G., Warren, A., Davis, T., Hoffmann, M.W., McCaughan, G.W., Fazekas de St Groth, B., and Bertolino, P. (2002). Cytokine-dependent bystander hepatitis due to intrahepatic murine CD8(+) T-cell activation by bone marrow-derived cells. Gastroenterology 123, 1252-1264. Bukowski, J.F., Woda, B.A., Habu, S., Okumura, K., and Welsh, R.M. (1983). Natural-killer cell enhances virus synthesis and virus-induced hepatitis invivo. J Immunol 131, 1531-1538. Constant, S.L., and Bottomly, K. (1997). Induction of TH1 and TH2 CD4+ T cell responses: The alternative approaches. Annu Rev Immunol 15, 297-322. Czaja, A.J., and Manns, M.P. (2010). Advances in the Diagnosis, Pathogenesis, and Management of Autoimmune Hepatitis. Gastroenterology 139, 58-U101. Darnell, J.E., Kerr, I.M., and Stark, G.R. (1994). JAK-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415-1421. Doherty, D.G., Norris, S., Madrigal-Estebas, L., McEntee, G., Traynor, O., Hegarty, J.E., and O'Farrelly, C. (1999). The human liver contains multiple populations of NK cells, T cells, and CD3(+)CD56(+) natural T cells with distinct cytotoxic activities and Th1, Th2, and Th0 cytokine secretion patterns. J Immunol 163, 2314-2321. Donaldson, P.T., Doherty, D.G., Hayllar, K.M., McFarlane, I.G., Johnson, P.J., and Williams, R. (1991). Susceptibility to autoimmune chronic acctive hepatitis – human -leukocyte antigens-DR4 and antigen-A1-B8-DR3 are independent risk-factors. Hepatology 13, 701-706. Dusseaux, M., Martin, E., Serriari, N., Peguillet, I., Premel, V., Louis, D., Milder, M., Le Bourhis, L., Soudais, C., Treiner, E., et al. (2011). Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161(hi) IL-17-secreting T cells. Blood 117, 1250-1259. Elsegood, C.L., Chan, C.W., Degli-Esposti, M.A., Wikstrom, M.E., Domenichini, A., Lazarus, K., van Rooijen, N., Ganss, R., Olynyk, J.K., and Yeoh, G.C.T. (2015). Kupffer cell-monocyte communication is essential for initiating murine liver progenitor cell-mediated liver regeneration. Hepatology 62, 1272-1284. Fernandez-Ruiz, D., Ng, W.Y., Holz, L.E., Ma, J.Z., Zaid, A., Wong, Y.C., Lau, L.S., Mollard, V., Cozijnsen, A., Collins, N., et al. (2016). Liver-Resident Memory CD8(+) T Cells Form a Front-Line Defense against Malaria Liver-Stage Infection. Immunity 45, 889-902. Finck, R., Simonds, E.F., Jager, A., Krishnaswamy, S., Sachs, K., Fantl, W., Pe'er, D., Nolan, G.P. and Bendall, S.C. (2013), Normalization of mass cytometry data with bead standards. Cytometry, 83A: 483-494. Gabrilovich, D.I., and Nagaraj, S. (2009). Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9, 162-174. Gomez-Santos, L., Luka, Z., Wagner, C., Fernandez-Alvarez, S., Lu, S.C., Mato, J.M., Martinez-Chantar, M.L., and Beraza, N. (2012). Inhibition of natural killer cells protects the liver against acute injury in the absence of glycine N-methyltransferase. Hepatology 56, 747-759. Gossard, A.A., and Lindor, K.D. (2012). Autoimmune hepatitis: a review. J Gastroenterol 47, 498-503. Gove, M.E., Rhodes, D.H., Pini, M., van Baal, J.W., Sennello, J.A., Fayad, R., Cabay, R.J., Myers, M.G., and Fantuzzi, G. (2009). Role of leptin receptor-induced STAT3 signaling in modulation of intestinal and hepatic inflammation in mice. J Leukoc Biol 85, 491-496. Gregory, S.H., Sagnimeni, A.J., and Wing, E.J. (1996). Bacteria in the bloodstream are trapped in the liver and killed by immigrating neutrophils. J Immunol 157, 2514-2520. Groribaek, L., Vilstrup, H., and Jepsen, P. (2014). Autoimmune hepatitis in Denmark: Incidence, prevalence, prognosis, and causes of death. A nationwide registry-based cohort study. J Hepatol 60, 612-617. Guidotti, L.G., Ando, K., Hobbs, M.V., Ishikawa, T., Runkel, L., Schreiber, R.D., and Chisari, F.V. (1994). Cytotoxic T-lymphocytes inhibit hepatitis-B virus gene-expression by a noncytolytic mechanism in transgenic mice. Proc Natl Acad Sci U S A 91, 3764-3768. Habu, Y., Uchida, T., Inui, T., Nakashima, H., Fukasawa, M., and Seki, S. (2004). Enhancement of the synthetic ligand-mediated function of liver NK1.1Ag(+) T cells in mice by interleukin-12 pretreatment. Immunology 113, 35-43. Han, G., Chen, S.‐Y., Gonzalez, V.D., Zunder, E.R., Fantl, W.J. and Nolan, G.P. (2017), Atomic mass tag of bismuth‐209 for increasing the immunoassay multiplexing capacity of mass cytometry. Cytometry, 91: 1150-1163. Hatada, S., Ohta, T., Shiratsuchi, Y., Hatano, M., and Kobayashi, Y. (2005). A novel accessory role of neutrophils in concanavalin A-induced hepatitis. Cell Immunol 233, 23-29. Heymann, F., Hamesch, K., Weiskirchen, R., and Tacke, F. (2015). The concanavalin A model of acute hepatitis in mice. Lab Anim 49, 12-20. Holz L.E., Prier J.E., Freestone D., Steiner T.M., English K., Johnson D.N., Mollard V., Cozijnsen A., Davey G.M., Godfrey D.I., et al. (2018). CD8+ T Cell Activation Leads to Constitutive Formation of Liver Tissue-Resident Memory T Cells that Seed a Large and Flexible Niche in the Liver. Cell Rep. 25 (1):68-79. e4. Homberg, J.C., Abuaf, N., Bernard, O., Islam, S., Alvarez, F., Khalil, S.H., Poupon, R., Darnis, F., Levy, V.G., Grippon, P., et al. (1987). Chronic active hepatitis associated with antiliver kidney microsome antibody type-1 - A 2nd type of autoimmune hepatitis. Hepatology 7, 1333-1339. Johnson, P.J., McFarlane, I.G., Alvarez, F., Bianchi, F.B., Bianchi, L., Burroughs, A., Chapman, R.W., Czaja, A.J., Desmet, V., Eddleston, A., et al. (1993). Meeting Report - international-autoimmune-hepatitis-group. Hepatology 18, 998-1005. Kamizono, S., Duncan, G.S., Seidel, M.G., Morimoto, A., Hamada, K., Grosveld, G., Akashi, K., Lind, E.F., Haight, J.P., Ohashi, P.S., et al. (2009). Nfil3/E4bp4 is required for the development and maturation of NK cells in vivo. J Exp Med 206, 2977-2986. Kano, A., Watanabe, Y., Takeda, N., Aizawa, S., and Akaike, T. (1997). Analysis of IFN-gamma-induced cell cycle arrest and cell death in hepatocytes. J Biochem (Tokyo) 121, 677-683. Kenna, T., Golden-Mason, L., Norris, S., Hegarty, J.E., O'Farrelly, C., and Doherty, D.G. (2004). Distinct subpopulations of gamma delta T cells are present in normal and tumor-bearing human liver. Clin Immunol 113, 56-63. Kenna, T., Mason, L.G., Porcelli, S.A., Koezuka, Y., Hegarty, J.E., O'Farrelly, C., and Doherty, D.G. (2003). NKT cells from normal and tumor-bearing human livers are phenotypically and functionally distinct from murine NKT cells. J Immunol 171, 1775-1779. Knolle, P.A., Gerken, G., Loser, E., Dienes, H.P., Gantner, F., Tiegs, G., zumBuschenfelde, K.H.M., and Lohse, A.W. (1996). Role of sinusoidal endothelial cells of the liver in concanavalin A-induced hepatic injury in mice. Hepatology 24, 824-829. Kosaka, A., Wakita, D., Matsubara, N., Togashi, Y., Nishimura, S., Kitamura, H., Nishimura, T.. (2007). AsialoGM1+ CD8+ central memory-type T cells in unimmunized mice as novel immunomodulator of IFN-gamma-dependent type 1 immunity. Int Immunol 19, 249–256. Krawitt, E.L. (2008). Clinical features and management of autoimmune hepatitis. World J Gastroenterol 14, 3301-3305. Kunstle, G., Hentze, H., Germann, P.G., Tiegs, G., Meergans, T., and Wendel, A. (1999). Concanavalin A hepatotoxicity in mice: Tumor necrosis factor-mediated organ failure independent of caspase-3-like protease activation. Hepatology 30, 1241-1251. Kusters, S., Gantner, F., Kunstle, G., and Tiegs, G. (1996). Interferon gamma plays a critical role in T cell-dependent liver injury in mice initiated by concanavalin A. Gastroenterology 111, 462-471. Lv, K., Zhang, Y.Y., Zhang, M.Y., Zhong, M., and Suo, Q.F. (2012). Galectin-9 Ameliorates Con A-Induced Hepatitis by Inducing CD4(+)CD25(low/int) Effector T-Cell Apoptosis and Increasing Regulatory T Cell Number. PLoS One 7, 11. Mack, C.L., Adams, D., Assis, D.N., Kerkar, N., Manns, M.P., Mayo, M.J., Vierling, J.M., Alsawas, M., Murad, M.H., and Czaja, A.J. (2020). Diagnosis and Management of Autoimmune Hepatitis in Adults and Children: 2019 Practice Guidance and Guidelines From the American Association for the Study of Liver Diseases. Hepatology 72, 671-722. Mackay L.K., Minnich M., Kragten N.A., Liao Y., Nota B., Seillet C., Zaid A., Man K., Preston S., Freestone D., Braun A., Wynne-Jones E., Behr F.M., Stark R., Pellicci D.G., Godfrey D.I., Belz G.T., Pellegrini M., Gebhardt T., Busslinger M., Shi W., Carbone F.R., van Lier R.A., Kallies A., van Gisbergen K.P. (2016). Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science 352, 459-463. McNamara, H.A., Cai, Y., Wagle, M.V., Sontani, Y., Roots, C.M., Miosge, L.A., O'Connor, J.H., Sutton, H.J., Ganusov, V.V., Heath, W.R., et al. (2017). Up-regulation of LFA-1 allows liver-resident memory T cells to patrol and remain in the hepatic sinusoids. Sci Immunol 2, 10. Miller, M.L., Sun, Y.L., and Fu, Y.X. (2009). Cutting Edge: B and T Lymphocyte Attenuator Signaling on NKT Cells Inhibits Cytokine Release and Tissue Injury in Early Immune Responses. J Immunol 183, 32-36. Mizuhara, H., Oneill, E., Seki, N., Ogawa, T., Kusunoki, C., Otsuka, K., Satoh, S., Niwa, M., Senoh, H., and Fujiwara, H. (1994). T-cell activation-associated hepatic-injury - mediation by timor necrosis factors and protection by interleukin-6. J Exp Med 179, 1529-1537. Morita, M., Watanabe, Y., and Akaike, T. (1995). Protective Effect of hepatocyte groeth-factor on interferron-gamma-induced cytotoxicity in mice hepatocytes. Hepatology 21, 1585-1593. Nagata, T., McKinley, L., Peschon, J.J., Alcorn, J.F., Aujla, S.J., and Kolls, J.K. (2008). Requirement of IL-17RA in Con A Induced Hepatitis and Negative Regulation of IL-17 Production in Mouse T Cells. J Immunol 181, 7473-7479. Norris, S., Collins, C., Doherty, D.G., Smith, F., McEntee, G., Traynor, O., Nolan, N., Hegarty, J., and O'Farrelly, C. (1998). Resident human hepatic lymphocytes are phenotypically different from circulating lymphocytes. J Hepatol 28, 84-90. Ogasawara, J., Watanabefukunaga, R., Adachi, M., Matsuzawa, A., Kasugai, T., Kitamura, Y., Itoh, N., Suda, T., and Nagata, S. (1993). lethal effect of the anti-fas antibody in mice. Nature 364, 806-809. Oyaizu, N., McCloskey, T.W., Than, S., Hu, R., Kalyanaraman, V.S., and Pahwa, S. (1994). Cross-linking of CD4 molecules up-regulated FAS antigen expression in lymphocytes by inducing interferon-gamma and tumor-necrosis-factor-alpha secretion. Blood 84, 2622-2631. Sass, G., Heinlein, S., Agli, A., Bang, R., Schumann, J., and Tiegs, G. (2002). Cytokine expression in three mouse models of experimental hepatitis. Cytokine 19, 115-120. Schenkel, J.M., and Masopust, D. (2014). Tissue-Resident Memory T Cells. Immunity 41, 886-897. Schenkel, J.M., Fraser, K.A., Vezys, V., and Masopust, D. (2013) Sensing and alarm function of resident memory CD8⁺ T cells. Nat Immunol 14, 509-13. Seino, K.I., Kayagaki, N., Takeda, K., Fukao, K., Okumura, K., and Yagita, H. (1997). Contribution of Fas ligand to T cell-mediated hepatic injury in mice. Gastroenterology 113, 1315-1322. Slifka, M. K., Pagarigan, R. R. and Whitton, J. L. (2000). NK markers are expressed on a high percentage of virus-specific CD8+ and CD4+ T cells. J. Immunol. 164, 2009–2015. Stark, R. et al. (2018). TRM maintenance is regulated by tissue damage via P2RX7. Sci. Immunol. 3, eaau1022 Strettell, M.D.J., Donaldson, P.T., Thomson, L.J., Santrach, P.J., Moore, S.B., Czaja, A.J., and Williams, R. (1997). Allelic basis for HLA-encoded susceptibility to type 1 autoimmune hepatitis. Gastroenterology 112, 2028-2035. Su, G.L., Klein, R.D., Aminlari, A., Zhang, H.Y., Steinstraesser, L., Alarcon, W.H., Remick, D.G., and Wang, S.C. (2000). Kupffer cell activation by lipopolysaccharide in rats: Role for lipopolysaccharide binding protein and toll-like receptor 4. Hepatology 31, 932-936. Sung, C.C., Horng, J.H., Siao, S.H., Chyuan, I.T., Tsai, H.F., Chen, P.J., and Hsu, P.N. (2021) Asialo GM1-positive liver-resident CD8 T cells that express CD44 and LFA-1 are essential for immune clearance of hepatitis B virus. Cell Mol Immunol 18, 1772-1782. Tagawa, Y., Sekikawa, K., and Iwakura, Y. (1997). Suppression of concanavalin A-induced hepatitis in IFN-gamma(-/-) mice, but not in TNF-alpha(-/-) mice - Role for IFN-gamma in activating apoptosis of hepatocytes. J Immunol 159, 1418-1428. Takahashi, K., Murakami, M., Kikuchi, H., Oshima, Y., and Kubohara, Y. (2011). Derivatives of Dictyostelium differentiation-inducing factors promote mitogen-activated IL-2 production via AP-1 in Jurkat cells. Life Sci 88, 480-485. Takeda, K., Hayakawa, Y., Van Kaer, L., Matsuda, H., Yagita, H., and Okumura, K. (2000). Critical contribution of liver natural killer T cells to a murine model of hepatitis. Proc Natl Acad Sci U S A 97, 5498-5503. Thomson, A.W., and Knolle, P.A. (2010). Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol 10, 753-766. Thoreau, E., Petridou, B., Kelly, P.A., Djiane, J., and Mornon, J.P. (1991). Structural symmetry of the extracellular domain of the cytokine growth-hermone prolactin receptor family and interferon receptors revealed by hydrophobic cluster-analysis. FEBS Lett 282, 26-31. Tiegs, G., Hentschel, J., and Wendel, A. (1992). A T-cell-dependent experimental liver-injury in mice inducible by concanavalin-A. J Clin Invest 90, 196-203. Topham, D.J., and Reilly, E.C. (2018). Tissue-Resident Memory CD8(+) T Cells: From Phenotype to Function. Front Immunol 9, 10. Toyabe, S., Seki, S., Iiai, T., Takeda, K., Shirai, K., Watanabe, H., Hiraide, H., Uchiyama, M., and Abo, T. (1997). Requirement of IL-4 and liver NK1(+) T cells for concanavalin A-induced hepatic injury in mice. J Immunol 159, 1537-1542. Tsui, T.Y., Obed, A., Siu, Y.T., Yet, S.F., Prantl, L., Schlitt, H.J., and Fan, S.T. (2007). Carbon monoxide inhalation rescues mice from fulminant hepatitis through improving hepatic energy metabolism. Shock 27, 165-171. Varthaman, A., Khallou-Laschet, J., Clement, M., Fornasa, G., Kim, H.J., Gaston, A.T., Dussiot, M., Caligiuri, G., Herbelin, A., Kaveri, S., et al. (2010). Control of T Cell Reactivation by Regulatory Qa-1-Restricted CD8(+) T Cells. J Immunol 184, 6585-6591. Wang, H.X., Liu, M., Weng, S.Y., Li, J.J., Xie, C., He, H.L., Guan, W., Yuan, Y.S., and Gao, J. (2012). Immune mechanisms of Concanavalin A model of autoimmune hepatitis. World J Gastroenterol 18, 119-125. Wang, Y.N., and Zhang, C. (2019). The Roles of Liver-Resident Lymphocytes in Liver Diseases. Front Immunol 10, 13. You Z., Li Y., Wang Q., Zhao Z., Li Y., Qian Q., Li B., Zhang J., Huang B., Liang J., et al. (2021). The Clinical Significance of Hepatic CD69+ CD103+ CD8+Resident Memory T Cells in Autoimmune Hepatitis. Hepatology. Accepted Author Manuscript. Young, H.A. (1996). Regulation of interferon-gamma gene expression. J Interferon Cytokine Res 16, 563-568. Zhang, T., de Waard, A.A., Wuhrer, M., and Spaapen, R.M. (2019a). The Role of Glycosphingolipids in Immune Cell Functions. Front Immunol 10, 22. Zhang, Y., Qi, C., Li, L., Hua, S., Zheng, F., Gong, F., and Fang, M. (2019b). CD8(+) T cell/IL-33/ILC2 axis exacerbates the liver injury in Con A-induced hepatitis in T cell-transferred Rag2-deficient mice. Inflamm Res 68, 75-91. Zhu, R., Diem, S., Araujo, L.M., Aumeunier, A., Denizeau, J., Philadelphe, E., Damotte, D., Samson, M., Gourdy, P., Dy, M., et al. (2007). The pro-Th1 cytokine IL-12 enhances IL-4 production by invariant NKT cells: Relevance for T cell-mediated hepatitis. J Immunol 178, 5435-5442. Zunder E.R., Finck R., Behbehani G.K., Amir el-A.D., Krishnaswamy S., Gonzalez V.D., Lorang C.G., Bjornson Z., Spitzer M.H., Bodenmiller B., et al. (2015). Palladium-based mass tag cell barcoding with a doublet-filtering scheme and single-cell deconvolution algorithm. Nat Protoc. 10, 316–333. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81143 | - |
| dc.description.abstract | "組織駐留記憶性T細胞 (Tissue Resident Memory, TRM) 是一群近年才被分類出來的細胞次群,根據其容易停留於特定組織或器官中而非跟著血液流動循環的能力而得名。與循環血中的中央記憶性 (Central memory, TCM) 與效應記憶性 (Effector memory, TEM) T細胞在表徵上、轉錄體表現上甚至於功能上都非常不同。先前於本實驗室的研究中指出,在尚未敏化的小鼠肝臟中有一群高度表現無唾液酸神經節苷脂 (Asialo-GM1, ASGM1)的CD8 T細胞,此種CD8 T細胞的特性與其他文獻所記載之肝臟駐留記憶性細胞十分相似。此細胞次群對於慢性發炎的B型肝炎病毒轉染模式下的病毒清除扮演非常重要的角色;然而其對於肝臟內免疫反應所扮演之角色甚至在急性發炎的影響尚未明朗。於此論文中,我們利用刀豆蛋白A (Concanavalin A)所誘發的急性肝炎模型來進行探討,類比人體中由於病患本身過度活化的T細胞攻擊肝臟細胞而導致發炎及壞死,最終造成肝硬化的自體免疫性肝炎。當我們事先以抗無唾液酸神經節苷脂 (anti-ASGM1)之抗體對小鼠進行細胞消耗 (depletion) 後再注射刀豆蛋白A,可以觀察到肝炎的狀況無論在血清學或是解剖學的結果上皆受到明顯的抑制。為排除肝臟中另一會大量表現ASGM1的細胞族群,自然殺手細胞 (natural killer cell, NK cell),我們利用缺少先天性淋巴細胞的NFIL3-/-小鼠進行肝炎的誘發,發現其結果與野生型的小鼠相類似。接著,我們進一步分析此群CD8細胞的表徵,其表現了高量的已知是TRM 細胞的表面標誌 (surface marker),如CD69、CD44、LFA-1及CXCR3等,為進一步闡明此細胞次群的重要性,我們以另一種組織駐留表面標誌的抗體,anti-CXCR3的抗體對小鼠進行細胞消耗,亦可以觀察到小鼠的肝炎有明顯的改善,顯示應是這群會表現無唾液酸神經節苷脂的CD8 T細胞族群而非自然殺手細胞影響了肝炎的發展。於此肝炎模型下,目前已知是由干擾素γ (Interferon-γ)所介導之Th1反應為主,因此我們分析了有無事先進行anti-ASGM1的細胞消耗對於小鼠體內干擾素γ分泌量的影響,結果顯示,雖然血清中的干擾素γ含量沒有明顯差異,但是在進行血液灌流後的肝臟組織中,干擾素γ的含量在有事先進行細胞消耗的組別中有顯著性的降低;進一步進行質譜流式細胞術分析,我們發現小鼠體內的細胞內染亦可以觀察到肝臟中的T細胞主要於此肝炎模式下的早期(約刀豆蛋白A施打後四小時內)會有明顯的干擾素γ產生,其中又以此ASGM1陽性的CD8肝臟TRM細胞在刀豆蛋白A注射後一小時最為明顯,且事先以anti-ASGM1進行細胞消耗亦可觀察到產生干擾素γ的細胞次群明顯減少。將活化後的ASGM1陽性的CD8肝臟TRM細胞與未活化之免疫細胞共培養亦可促使其效應信息RNA (mRNA)被上調。過繼細胞實驗中,我們再次證明活化後的此群肝臟駐留記憶性細胞可促使肝指數顯著性上升。綜合上述,表現有ASGM1的CD8肝臟TRM細胞在刀豆蛋白A所引起之肝炎模式中應是早期干擾素γ的主要來源,並驅動後續的效應細胞的活化以導致肝炎的發生。除此之外,我們亦透過唾液酸酶處理及細胞過繼實驗證明ASGM1可能作為一重要之肝臟駐留性之指標。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:32:46Z (GMT). No. of bitstreams: 1 U0001-0908202110312300.pdf: 12981954 bytes, checksum: 25f26c7e458b0566cf573d164e584714 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 ii 誌謝 ii 中文摘要 iii Abstract v Contents vii List of Figures x Chapter 1 Introduction 1 1. Summary of Liver 1 1.1 Structure and physiological function of the liver 1 1.2 Immune response in the liver 1 2. Hepatitis 3 2.1 Autoimmune hepatitis (AIH) 3 3. Concanavalin A (ConA)-induced hepatitis model 4 3.1 Critical subsets of cells participated in ConA-induced hepatitis 5 3.1.1 T cells 5 3.1.2 NKT cells 6 3.1.3 Sinusoid endothelial cells (SECs) and Kupffer cells (KCs) 7 3.2 Crucial cytokines involved in ConA-induced hepatitis 7 3.2.1 Interferon-γ (IFN-γ) 8 4. Tissue resident memory (TRM) cells 9 4.1 Liver resident T cells 10 5. Rationale 12 Chapter 2 Materials and methods 14 1. Materials 14 1.1 Mice 14 1.2 Kits 14 1.3 Antibodies 15 1.4 Antibodies for CyTOF analysis 18 1.5 Chemicals and reagents 19 1.6 Buffer 22 1.7 Primer 23 2. Methods 24 2.1 Concanavalin A hepatitis model establishment 24 2.2 Depletion of intrahepatic lymphocytes (IHLs) in vivo 24 2.3 Assay for plasma transaminase activities 24 2.4 Histological examination 25 2.5 Isolation of murine and human lymphocytes 25 2.6 Culture of T cells 26 2.7 Transwell co-culture system 27 2.8 Flow cytometric analysis lymphocytes 27 2.8.1 Surface marker staining 27 2.8.2 Intracellular staining 28 2.9 Assay for cytokine levels determination 29 2.10 Single cell mass cytometry (CyTOF) 29 2.10 Quantitative PCR analysis 30 2.11 Adoptive transfer 31 2.12 Statistical analysis 31 Chapter 3 Results 33 1. Distinct ASGM1+ CD8+ T cells with liver TRM characteristics existed in the intrahepatic lymphocyte population 33 2. Anti-ASGM1 pre-treatment suppressed ConA-induced hepatitis 35 3. The suppression of ConA-induced hepatitis by anti-ASGM1 pre-treatment was not due to the depletion of NK cells 36 4. Depletion of liver TRM cells through anti-ASGM1 as well as anti-CXCR3 suppressed ConA-induced hepatitis 37 5. Anti-ASGM1 pre-treatment suppressed the liver level of IFN-γ and infiltration of lymphocytes from ConA-induced hepatitis 39 6. ASGM1+ CD8 liver TRM cells were activated in and early manner and produced IFN-γ under ConA administration 41 7. IFN-γ from ASGM1+ liver TRM cells in initial stage was critical in ConA-induced hepatitis 44 8. ASGM1+ CD8 Liver TRM cells were crucial in triggering hepatitis 46 9. ASGM1 was a crucial marker for liver residency 48 10. ASGM1 was expressed by human PBMCs 49 Chapter 4 Discussion 51 1. Contribution of this work 51 2. The effect of antibody depletion varied from the timing of the pre-treatment 52 3. The detailed mechanism of the interaction among ASGM1+ CD8 liver TRM cells and other intrahepatic lymphocytes should be further characterized 54 4. The TCR repertoire and detailed gene profiles of ASGM1+ CD8 liver TRM cells still remained unclear 56 5. Whether ASGM1 alone could serve as a liver homing and resident marker 58 Chapter 5 Figures 60 Chapter 6 Reference 91 | |
| dc.language.iso | en | |
| dc.subject | 質譜流式細胞術 | zh_TW |
| dc.subject | 自體免疫性肝炎 | zh_TW |
| dc.subject | 刀豆蛋白A | zh_TW |
| dc.subject | 無唾液酸神經節苷脂 | zh_TW |
| dc.subject | 組織駐留記憶性T細胞 | zh_TW |
| dc.subject | CD8 T細胞 | zh_TW |
| dc.subject | 干擾素γ | zh_TW |
| dc.subject | Mass Cytometry (CyTOF) | en |
| dc.subject | Autoimmune hepatitis | en |
| dc.subject | Concanavalin A | en |
| dc.subject | Asialo-GM1 | en |
| dc.subject | Tissue resident memory T cells | en |
| dc.subject | CD8 T cell | en |
| dc.subject | Interferon-γ | en |
| dc.title | 表現無唾液酸神經節苷脂之肝臟駐留CD8T細胞為刀豆蛋白A所誘導之小鼠急性肝炎模式下的重要引發者 | zh_TW |
| dc.title | Asialo-GM1+ Liver Resident CD8 T Cells Serve as A Crucial Initiator in Acute Hepatitis Model Induced by Concanavalin A | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊宏志(Hsin-Tsai Liu),朱清良(Chih-Yang Tseng) | |
| dc.subject.keyword | 自體免疫性肝炎,刀豆蛋白A,無唾液酸神經節苷脂,組織駐留記憶性T細胞,CD8 T細胞,干擾素γ,質譜流式細胞術, | zh_TW |
| dc.subject.keyword | Autoimmune hepatitis,Concanavalin A,Asialo-GM1,Tissue resident memory T cells,CD8 T cell,Interferon-γ,Mass Cytometry (CyTOF), | en |
| dc.relation.page | 99 | |
| dc.identifier.doi | 10.6342/NTU202102197 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-08-10 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 免疫學研究所 | zh_TW |
| 顯示於系所單位: | 免疫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0908202110312300.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 12.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
