Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81126
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭景暉(Jiiang-Huei Jeng),張曉華(Hsiao-Hua Chang)
dc.contributor.authorYi-Chi Chaoen
dc.contributor.author趙依祈zh_TW
dc.date.accessioned2022-11-24T03:31:55Z-
dc.date.available2021-08-18
dc.date.available2022-11-24T03:31:55Z-
dc.date.copyright2021-08-18
dc.date.issued2021
dc.date.submitted2021-08-11
dc.identifier.citationAbout, I., D. Laurent-Maquin, U. Lendahl and T. A. Mitsiadis (2000). Nestin expression in embryonic and adult human teeth under normal and pathological conditions. The American journal of pathology 157(1): 287-295. Allan, E., N. Gough, T. Gelehrter, R. Zeheb and T. Martin (1990). Transforming growth factor β and leukemia inhibitory factor increase mRNA and protein for plasminogen activator inhibitor-1 in osteoblasts. Calcium regulation and bone metabolism 10. Allan, E. H. and T. J. Martin (1995). The plasminogen activator inhibitor system in bone cell function. Clinical orthopaedics and related research(313): 54-63. Allan, E. H., R. Zeheb, T. D. Gelehrter, J. H. Heaton, S. Fukumoto, J. A. Yee and T. J. Martin (1991). Transforming growth factor beta inhibits plasminogen activator (PA) activity and stimulates production of urokinase‐type PA, PA inhibitor‐1 mRNA, and protein in rat osteoblast‐like cells. Journal of cellular physiology 149(1): 34-43. Axelrad, T. W. and T. A. Einhorn (2009). Bone morphogenetic proteins in orthopaedic surgery. Cytokine growth factor reviews 20(5-6): 481-488. Baksh, D., L. Song and R. S. Tuan (2004). Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. Journal of cellular and molecular medicine 8(3): 301-316. Beederman, M., J. D. Lamplot, G. Nan, J. Wang, X. Liu, L. Yin, R. Li, W. Shui, H. Zhang and S. H. Kim (2013). BMP signaling in mesenchymal stem cell differentiation and bone formation. Journal of biomedical science and engineering 6(8A): 32. Carreira, A. C., G. G. Alves, W. F. Zambuzzi, M. C. Sogayar and J. M. Granjeiro (2014). Bone morphogenetic proteins: structure, biological function and therapeutic applications. Archives of biochemistry and biophysics 561: 64-73. Chang, M. C., H. H. Chang, P. S. Lin, Y. A. Huang, C. P. Chan, Y. L. Tsai, S. Y. Lee, P. Y. Jeng, H. Y. Kuo and S. Y. Yeung (2018). Effects of TGF‐β1 on plasminogen activation in human dental pulp cells: Role of ALK5/Smad2, TAK1 and MEK/ERK signalling. Journal of tissue engineering and regenerative medicine 12(4): 854-863. Chang, S.-W., S.-Y. Lee, K.-Y. Kum and E.-C. Kim (2014). Effects of ProRoot MTA, Bioaggregate, and Micromega MTA on odontoblastic differentiation in human dental pulp cells. Journal of endodontics 40(1): 113-118. Chang, Y. C., C. H. Tsai, Y. L. Lai, C. C. Yu, W. Y. Chi, J. J. Li and W. W. Chang (2014).Arecoline‐induced myofibroblast transdifferentiation from human buccal mucosal fibroblasts is mediated by ZEB 1. Journal of cellular and molecular medicine18(4): 698-708. Chaussain-Miller, C., F. Fioretti, M. Goldberg and S. Menashi (2006). The role of matrix metalloproteinases (MMPs) in human caries. Journal of dental research 85(1): 22-32. Chenard, K. E., C. M. Teven, T.-C. He and R. R. Reid (2012). Bone morphogenetic proteins in craniofacial surgery: current techniques, clinical experiences, and the future of personalized stem cell therapy. Journal of Biomedicine and Biotechnology 2012. Cho, Y. A., K. Noh, S. S. Jue, S. Y. Lee and E. C. Kim (2015). Melatonin promotes hepatic differentiation of human dental pulp stem cells: clinical implications for the prevention of liver fibrosis. Journal of pineal research 58(1): 127-135. Choi, H., Y.-H. Ahn, T.-H. Kim, C.-H. Bae, J.-C. Lee, H.-K. You and E.-S. Cho (2016). TGF-β signaling regulates cementum formation through Osterix expression. Scientific reports 6(1): 1-11. Choi, S., J. Yu, A. Park, M. J. Dubon, J. Do, Y. Kim, D. Nam, J. Noh and K.-S. Park (2019). BMP-4 enhances epithelial mesenchymal transition and cancer stem cell properties of breast cancer cells via Notch signaling. Scientific reports 9(1): 1-14. Choi, Y. H., Y. Han, S. W. Jin, G. H. Lee, G. S. Kim, D. Y. Lee, Y. C. Chung, K. Y. Lee and H. G. Jeong (2018). Pseudoshikonin I enhances osteoblast differentiation by stimulating Runx2 and Osterix. Journal of cellular biochemistry 119(1): 748-757. Chrepa, V., B. Pitcher, M. A. Henry and A. Diogenes (2017). Survival of the apical papilla and its resident stem cells in a case of advanced pulpal necrosis and apical periodontitis. Journal of endodontics 43(4): 561-567. Dassule, H. R., P. Lewis, M. Bei, R. Maas and A. P. McMahon (2000). Sonic hedgehog regulates growth and morphogenesis of the tooth. Development 127(22): 4775- 4785. De Caestecker, M. (2004). The transforming growth factor-β superfamily of receptors. Cytokine growth factor reviews 15(1): 1-11. Deng, H., R. Makizumi, T. Ravikumar, H. Dong, W. Yang and W.-L. Yang (2007). Bone morphogenetic protein-4 is overexpressed in colonic adenocarcinomas and promotes migration and invasion of HCT116 cells. Experimental cell research 313(5): 1033-1044. Deng, Z.-L., K. A. Sharff, N. Tang, W.-X. Song, J. Luo, X. Luo, J. Chen, E. Bennett, R. Reid and D. Manning (2008). Regulation of osteogenic differentiation during skeletal development. Front Biosci 13(1): 2001-2021. Diamond, M. E., L. Sun, A. J. Ottaviano, M. J. Joseph and H. G. Munshi (2008). Differential growth factor regulation of N-cadherin expression and motility in normal and malignant oral epithelium. Journal of cell science 121(13): 2197-2207. Dziubinska, P., M. Jaskólska, P. Przyborowska and Z. Adamiak (2013). Stem cells in dentistry-review of literature. Polish journal of veterinary sciences 16(1). Feng, X. y., Y. m. Zhao, W. j. Wang and L. h. Ge (2013). Msx1 regulates proliferation and differentiation of mouse dental mesenchymal cells in culture. European journal of oral sciences 121(5): 412-420. Fiedler, J., G. Röderer, K. P. Günther and R. E. Brenner (2002). BMP‐2, BMP‐4, and PDGF‐bb stimulate chemotactic migration of primary human mesenchymal progenitor cells. Journal of cellular biochemistry 87(3): 305-312. Frank, A. L. (1966). Therapy for the divergent pulpless tooth by continued apical formation. The Journal of the American Dental Association 72(1): 87-93. Guérette, D., P. A. Khan, P. E. Savard and M. Vincent (2007). Molecular evolution of type VI intermediate filament proteins. BMC evolutionary biology 7(1): 1-10. Hall, M.-C., D. A. Young, J. G. Waters, A. D. Rowan, A. Chantry, D. R. Edwards and I. M. Clark (2003). The comparative role of activator protein 1 and Smad factors in the regulation of Timp-1 and MMP-1 gene expression by transforming growth factor-β1. Journal of Biological Chemistry 278(12): 10304-10313. Han, Y., D. H. Cho, D. J. Chung and K. Y. Lee (2016). Osterix plays a critical role in BMP4-induced promoter activity of connexin43. Biochemical and biophysical research communications 478(2): 683-688. Harrison, C. A., S. L. Al-Musawi and K. L. Walton (2011). Prodomains regulate the synthesis, extracellular localisation and activity of TGF-β superfamily ligands. Growth factors 29(5): 174-186. Heithersay, G. S. (1975). Calcium hydroxide in the treatment of pulpless teeth with associated pathology. International endodontic journal 8(2): 74-93. Heldin, C.-H., K. Miyazono and P. Ten Dijke (1997). TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 390(6659): 465-471. Heymann, R., I. About, U. Lendahl, J.-C. Franquin, B. Öbrink and T. A. Mitsiadis (2002). E-and N-cadherin distribution in developing and functional human teeth under normal and pathological conditions. The American journal of pathology 160(6): 2123-2133. Horbelt, D., A. Denkis and P. Knaus (2012). A portrait of Transforming Growth Factor β superfamily signalling: Background matters. The international journal of biochemistry cell biology 44(3): 469-474. Huang, G. T.-J., W. Sonoyama, Y. Liu, H. Liu, S. Wang and S. Shi (2008). The hidden treasure in apical papilla: the potential role in pulp/dentin regeneration and bioroot engineering. Journal of endodontics 34(6): 645-651. Hyder, C. L., G. Lazaro, J. W. Pylvänäinen, M. W. Roberts, S. M. Qvarnström and J. E. Eriksson (2014). Nestin regulates prostate cancer cell invasion by influencing the localisation and functions of FAK and integrins. Journal of cell science 127(10): 2161-2173. Iwaya, S. i., M. Ikawa and M. Kubota (2001). Revascularization of an immature permanent tooth with apical periodontitis and sinus tract. Dental Traumatology 17(4): 185-187. Jiang, N., J. Zhou, M. Chen, M. D. Schiff, C. H. Lee, K. Kong, M. C. Embree, Y. Zhou and J. J. Mao (2014). Postnatal epithelium and mesenchyme stem/progenitor cells in bioengineered amelogenesis and dentinogenesis. Biomaterials 35(7): 2172- 2180. Jin, B. and P.-H. Choung (2016). Recombinant human plasminogen activator inhibitor-1 accelerates odontoblastic differentiation of human stem cells from apical papilla. Tissue Engineering Part A 22(9-10): 721-732. Jin, H., H.-W. Choung, K.-T. Lim, B. Jin, C. Jin, J.-H. Chung and P.-H. Choung (2015). Recombinant human plasminogen activator inhibitor-1 promotes cementogenic differentiation of human periodontal ligament stem cells. Tissue Engineering Part A 21(23-24): 2817-2828. Kemoun, P., S. Laurencin-Dalicieux, J. Rue, F. Vaysse, A. Romeas, H. Arzate, F. Conte- Auriol, J. Farges, J. Salles and G. Brunel (2007). Localization of STRO-1, BMP- 2/-3/-7, BMP receptors and phosphorylated Smad-1 during the formation of mouse periodontium. Tissue and Cell 39(4): 257-266. Laflamme, C. and M. Rouabhia (2008). Effect of BMP-2 and BMP-7 homodimers and a mixture of BMP-2/BMP-7 homodimers on osteoblast adhesion and growth following culture on a collagen scaffold. Biomedical Materials 3(1): 015008. Laugel-Haushalter, V., M. Paschaki, C. Thibault-Carpentier, D. Dembelé, P. Dollé and A. Bloch-Zupan (2013). Molars and incisors: show your microarray IDs. BMC research notes 6(1): 1-15. Lee, Y. P. and D. G. Choi (2020). MMP s, TIMP s and BMP‐4 in medial rectus muscle obtained from intermittent exotropia patients and their clinical correlations. Acta ophthalmologica 98(1): e107-e112. Lendahl, U., L. B. Zimmerman and R. D. McKay (1990). CNS stem cells express a new class of intermediate filament protein. Cell 60(4): 585-595. Li, J., X. Huang, X. Xu, J. Mayo, P. Bringas, R. Jiang, S. Wang and Y. Chai (2011). SMAD4-mediated WNT signaling controls the fate of cranial neural crest cells during tooth morphogenesis. Development 138(10): 1977-1989. Li, L., M. Lin, Y. Wang, P. Cserjesi, Z. Chen and Y. Chen (2011). BmprIa is required in mesenchymal tissue and has limited redundant function with BmprIb in tooth and palate development. Developmental biology 349(2): 451-461. Li, L., Y. Wang, M. Lin, G. Yuan, G. Yang, Y. Zheng and Y. Chen (2013). Augmented BMPRIA-mediated BMP signaling in cranial neural crest lineage leads to cleft palate formation and delayed tooth differentiation. PloS one 8(6): e66107. Li, W. J., K. G. Danielson, P. G. Alexander and R. S. Tuan (2003). Biological response of chondrocytes cultured in three‐dimensional nanofibrous poly (ε‐caprolactone) scaffolds. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 67(4): 1105-1114. Liu, Q., L. Cen, S. Yin, L. Chen, G. Liu, J. Chang and L. Cui (2008). A comparative study of proliferation and osteogenic differentiation of adipose-derived stem cells on akermanite and β-TCP ceramics. Biomaterials 29(36): 4792-4799. Luu, H. H., W. X. Song, X. Luo, D. Manning, J. Luo, Z. L. Deng, K. A. Sharff, A. G. Montag, R. C. Haydon and T. C. He (2007). Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. Journal of Orthopaedic Research 25(5): 665-677. Mahmood, N., C. Mihalcioiu and S. A. Rabbani (2018). Multifaceted role of the urokinase-type plasminogen activator (uPA) and its receptor (uPAR): diagnostic, prognostic, and therapeutic applications. Frontiers in oncology 8: 24. Marie, P. J. (2002). Role of N‐cadherin in bone formation. Journal of cellular physiology 190(3): 297-305. Mazaheri, Z., M. Movahedin, F. Rahbarizadeh and S. Amanpour (2011). Different doses of bone morphogenetic protein 4 promote the expression of early germ cell- specific gene in bone marrow mesenchymal stem cells. In Vitro Cellular Developmental Biology-Animal 47(8): 521-525. Méndez-Ferrer, S., T. V. Michurina, F. Ferraro, A. R. Mazloom, B. D. MacArthur, S. A. Lira, D. T. Scadden, A. Ma’ayan, G. N. Enikolopov and P. S. Frenette (2010). Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. nature 466(7308): 829-834. Mitsiadis, T. A. and D. Graf (2009). Cell fate determination during tooth development and regeneration. Birth Defects Research Part C: Embryo Today: Reviews 87(3): 199-211. Mulloy, B. and C. C. Rider (2015). The bone morphogenetic proteins and their antagonists. Vitamins Hormones 99: 63-90. Murray, P. E., F. Garcia-Godoy and K. M. Hargreaves (2007). Regenerative endodontics: a review of current status and a call for action. Journal of endodontics 33(4): 377- 390. Nakashima, M. (1994). Induction of dentin formation on canine amputated pulp by recombinant human bone morphogenetic proteins (BMP)-2 and-4. Journal of Dental Research 73(9): 1515-1522. Nakashima, M. and K. Iohara (2014). Pulp Regeneration by Harnessing Dental Pulp Stem Cells. New Trends in Tissue Engineering and Regenerative Medicine: Official Book of the Japanese Society for Regenerative Medicine: 37. Nakashima, M., H. Nagasawa, Y. Yamada and A. H. Reddi (1994). Regulatory role of transforming growth factor-β, bone morphogenetic protein-2, and protein-4 on gene expression of extracellular matrix proteins and differentiation of dental pulp cells. Developmental biology 162(1): 18-28. Nascimento, M. A. B., C. F. W. Nonaka, C. A. G. Barboza, R. de Almeida Freitas, L. P. Pinto and L. B. de Souza (2017). Immunoexpression of BMP-2 and BMP-4 and their receptors, BMPR-IA and BMPR-II, in ameloblastomas and adenomatoid odontogenic tumors. Archives of oral biology 73: 223-229. Nordstrom, S., S. Carleton, W. Carson, M. Eren, C. Phillips and D. Vaughan (2007). Transgenic over-expression of plasminogen activator inhibitor-1 results in age- dependent and gender-specific increases in bone strength and mineralization. Bone 41(6): 995-1004. Palosaari, H., C. J. Pennington, M. Larmas, D. R. Edwards, L. Tjäderhane and T. Salo (2003). Expression profile of matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs in mature human odontoblasts and pulp tissue. European journal of oral sciences 111(2): 117-127. Peterson, J. R., O. Eboda, S. Agarwal, K. Ranganathan, S. R. Buchman, M. Lee, S. C. Wang, Y. Mishina and B. Levi (2014). Targeting of ALK2, a receptor for bone morphogenetic proteins, using the Cre/lox system to enhance osseous regeneration by adipose‐derived stem cells. Stem cells translational medicine 3(11): 1375-1380. Plesner, T., N. Behrendt and M. Ploug (1997). Structure, function and expression on blood and bone marrow cells of the urokinase‐type plasminogen activator receptor, uPAR. Stem Cells 15(6): 398-408. Postigo, A. A. (2003). Opposing functions of ZEB proteins in the regulation of the TGFβ/BMP signaling pathway. The EMBO journal 22(10): 2443-2452. Qin, W., F. Yang, R. Deng, D. Li, Z. Song, Y. Tian, R. Wang, J. Ling and Z. Lin (2012). Smad 1/5 is involved in bone morphogenetic protein-2–induced odontoblastic differentiation in human dental pulp cells. Journal of Endodontics 38(1): 66-71. Rafter, M. (2005). Apexification: a review. Dental Traumatology 21(1): 1-8. Rahman, M. S., N. Akhtar, H. M. Jamil, R. S. Banik and S. M. Asaduzzaman (2015). TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone research 3(1): 1-20. Ruparel, N. B., F. B. Teixeira, C. C. Ferraz and A. Diogenes (2012). Direct effect of intracanal medicaments on survival of stem cells of the apical papilla. Journal of endodontics 38(10): 1372-1375. Santibáñez, J. F., M. Iglesias, P. Frontelo, J. Martínez and M. Quintanilla (2000). Involvement of the Ras/MAPK signaling pathway in the modulation of urokinase production and cellular invasiveness by transforming growth factor-β1 in transformed keratinocytes. Biochemical and biophysical research communications 273(2): 521-527. Scarfì, S. (2016). Use of bone morphogenetic proteins in mesenchymal stem cell stimulation of cartilage and bone repair. World journal of stem cells 8(1): 1. Smith, P. and J. Martínez (2006). Differential uPA expression by TGF-β1 in gingival fibroblasts. Journal of dental research 85(2): 150-155. Sonoyama, W., Y. Liu, D. Fang, T. Yamaza, B.-M. Seo, C. Zhang, H. Liu, S. Gronthos, C.-Y. Wang and S. Shi (2006). Mesenchymal stem cell-mediated functional tooth regeneration in swine. PloS one 1(1): e79. Sonoyama, W., Y. Liu, T. Yamaza, R. S. Tuan, S. Wang, S. Shi and G. T.-J. Huang (2008). Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. Journal of endodontics 34(2): 166-171. Su, H.-T., C.-C. Weng, P.-J. Hsiao, L.-H. Chen, T.-L. Kuo, Y.-W. Chen, K.-K. Kuo and K.-H. Cheng (2013). Stem cell marker nestin is critical for TGF-β1-mediated tumor progression in pancreatic cancer. Molecular Cancer Research 11(7): 768- 779. Su, X., M. Yu, G. Qiu, Y. Zheng, Y. Chen, R. Wen, G. Fu, W. Zhu, J. Chen and N. Wu(2016). Evaluation of nestin or osterix promoter-driven cre/loxp system in studying the biological functions of murine osteoblastic cells. American journal of translational research 8(3): 1447. Sun, N., T. Jiang, C. Wu, H. Sun, Q. Zhou and L. Lu (2018). Expression and influence of BMP‐4 in human dental pulp cells cultured in vitro. Experimental and therapeutic medicine 16(6): 5112-5116. Taguchi, Y., M. Yamamoto, T. Yamate, S.-C. Lin, H. Mocharla, P. DeTogni, N. Nakayama, B. Boyce, E. Abe and S. Manolagas (1998). Interleukin-6-type cytokines stimulate mesenchymal progenitor differentiation toward the osteoblastic lineage. Proceedings of the Association of American Physicians 110(6): 559-574. Terling, C., A. Rass, T. A. Mitsiadis, K. Fried, U. Lendahl and J. Wroblewski (2004). Expression of the intermediate filament nestin during rodent tooth development. International Journal of Developmental Biology 39(6): 947-956. Tompkins, K. (2006). Molecular mechanisms of cytodifferentiation in mammalian tooth development. Connective tissue research 47(3): 111-118. Torres, C., J. Alves, G. Silva, V. Goes, L. Nakao and A. Goes (2008). Role of BMP-4 during tooth development in a model with complete dentition. archives of oral biology 53(1): 2-8. Toyono, T., M. Nakashima, S. Kuhara and A. Akamine (1997). Expression of TGF-β superfamily receptors in dental pulp. Journal of dental research 76(9): 1555-1560. Urist, M. R. (1965). Bone: formation by autoinduction. Science 150(3698): 893-899. Vassalli, J.-D., A. Sappino and D. Belin (1991). The plasminogen activator/plasmin system. The Journal of clinical investigation 88(4): 1067-1072. Wang, R. N., J. Green, Z. Wang, Y. Deng, M. Qiao, M. Peabody, Q. Zhang, J. Ye, Z. Yan and S. Denduluri (2014). Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes diseases 1(1): 87-105. Wang, Y., H. He, Z. Cao, Y. Fang, M. Du and Z. Liu (2017). Regulatory effects of bone morphogenetic protein‐4 on tumour necrosis factor‐α‐suppressed Runx2 and osteoprotegerin expression in cementoblasts. Cell proliferation 50(4): e12344. Wang, Y., C. C. Ho, E. Bang, C. A. Rejon, V. Libasci, P. Pertchenko, T. E. Hébert and D. J. Bernard (2014). Bone morphogenetic protein 2 stimulates noncanonical SMAD2/3 signaling via the BMP type 1A receptor in gonadotrope-like cells: implications for FSH synthesis. Endocrinology 155(5): 1970-1981. Wei, X., J. Ling, L. Wu, L. Liu and Y. Xiao (2007). Expression of mineralization markers in dental pulp cells. Journal of endodontics 33(6): 703-708. Xiao, Y., Y. Lin, Y. Cui, Q. Zhang, F. Pei, H. Zuo, H. Liu and Z. Chen (2021). Zeb1 Promotes Odontoblast Differentiation in a Stage-Dependent Manner. Journal of Dental Research 100(6): 648-657. Xu, L., F. Meng, M. Ni, Y. Lee and G. Li (2013). N-cadherin regulates osteogenesis and migration of bone marrow-derived mesenchymal stem cells. Molecular biology reports 40(3): 2533-2539. Yagi, K., K. Tsuji, A. Nifuji, K. Shinomiya, K. Nakashima, B. DeCrombrugghe and M. Noda (2003). Bone morphogenetic protein‐2 enhances osterix gene expression in chondrocytes. Journal of cellular biochemistry 88(6): 1077-1083. Yamaguchi, K., K. Shirakabe, H. Shibuya, K. Irie, I. Oishi, N. Ueno, T. Taniguchi, E. Nishida and K. Matsumoto (1995). Identification of a member of the MAPKKK family as a potential mediator of TGF-β signal transduction. Science 270(5244): 2008-2011. Yang, G., X. Li, G. Yuan, P. Liu and M. Fan (2014). The effects of osterix on the proliferation and odontoblastic differentiation of human dental papilla cells. Journal of endodontics 40(11): 1771-1777. Yang, G., G. Yuan, W. Ye, K. W. Cho and Y. Chen (2014). An atypical canonical bone morphogenetic protein (BMP) signaling pathway regulates Msh homeobox 1 (Msx1) expression during odontogenesis. Journal of Biological Chemistry 289(45): 31492-31502. Zhang, F., J. Song, H. Zhang, E. Huang, D. Song, V. Tollemar, J. Wang, J. Wang, M. Mohammed and Q. Wei (2016). Wnt and BMP signaling crosstalk in regulating dental stem cells: implications in dental tissue engineering. Genes diseases 3(4): 263-276. Zhou, X., Z. Zhang, J. Q. Feng, V. M. Dusevich, K. Sinha, H. Zhang, B. G. Darnay and B. de Crombrugghe (2010). Multiple functions of Osterix are required for bone growth and homeostasis in postnatal mice. Proceedings of the National Academy of Sciences 107(29): 12919-12924.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81126-
dc.description.abstract"實驗目的 人類牙根尖幹細胞 (SCAPs) 具有高度增殖活性及成骨、成牙本質細胞的能力,可應用於牙髓與其他組織再生和組織工程的研究,而生長因子-骨成形蛋白-4 (Bone morphogeneticprotein-4) 更是促進牙齒及成骨再生成功的關鍵。因此,本研究旨在 通過相關標誌物的表現,探討骨成形蛋白-4 誘導人類牙根尖幹細胞之成骨及齒源 性分化所扮演的角色、作用和潛在的機制,並藉由加入抑制劑來進一步觀察骨成形 蛋白-4 於信號通路中所涉及受體的激活和表達。 實驗方法 使用 0, 10, 25, 50, 100, 200 ng/ml 的骨成形蛋白-4 於人類牙根尖幹細胞預處理24 小時,並以細胞存活率分析 (MTT assay)、定時定量聚合酶鏈反應 (Real time PCR)、西方墨點法 (Western Blot) 及免疫螢光法 (Immunofluorescence) 來檢測巢 蛋白 (Nestin)、Osterix、N-鈣黏著蛋白 (N-Cadherin)、鹼性磷酸酶 (ALP)、ZEB-1、 金屬蛋白酶組織抑制劑 (TIMP-1)、纖溶酶原激活系統 (Plasminogen Activator system) 的表現。接著進一步觀察 p-Smad1/5/8 抑制劑 (LDN193189) 和 p- Smad2/3 抑制劑 (SB431542) 於人類牙根尖幹細胞,經骨成形蛋白-4 誘導後可能參 與調控細胞的 Smad 訊息傳遞路徑。 實驗結果 人類牙根尖幹細胞經過骨成形蛋白-4 預處理 24 小時後,巢蛋白、Osterix、N-鈣黏著蛋白、鹼性磷酸酶、ZEB-1、金屬蛋白酶組織抑製劑、PAI-1、uPAR 的 mRNA、 蛋白和免疫螢光的表現量增加,反之 uPA 表現量則降低。加入抑制劑 LDN193189 及 SB431542 後經 24 小時,除了鹼性磷酸酶和 ZEB-1 外,其他相關標誌物在骨成 形蛋白-4 所誘導之 Smad 依賴性傳導路徑皆受到抑制。 結論 人類牙根尖乳頭幹細胞是獨特的後天幹細胞族群,作為組織再生工程重要的幹細胞來源,配合骨成形蛋白-4 生長因子的誘導,能通過 Smad 依賴性信號通路的調控,在人類牙根尖乳頭幹細胞的成骨、分化、礦化以及胞外基質的形成與轉換中 發揮重要作用,這些結果對於未來牙髓再生的影響與機制,以及牙科組織工程臨床 的應用都是不可或缺。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:31:55Z (GMT). No. of bitstreams: 1
U0001-1108202100342400.pdf: 8343686 bytes, checksum: d018897d35c19bf31f6585a448e64bc3 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"口試委員審定書 ............................................................................................................... i 中文摘要 .......................................................................................................................... ii Abstract .......................................................................................................................... iv 目錄 ................................................................................................................................. vi 第一章、文獻探討 .......................................................................................................... 1 1.1 再生牙髓病學 ..................................................................................................................1 1.2 人類牙根尖幹細胞 ..........................................................................................................2 1.3 骨成形蛋白 (Bone Morphogenetic Proteins, BMPs)...................................................4 1.3.1 骨成形蛋白家族 (BMP family) ...............................................................................................4 1.3.2 骨成形蛋白受體及信號通路.....................................................................................................4 1.3.3 牙齒幹細胞中骨成形蛋白的信號傳導機制 ............................................................................6 1.3.4 骨成形蛋白-4 在牙科組織工程扮演的角色 ............................................................................8 1.4 成骨和齒源性分化相關標的.............................................................................................9 1.4.1 巢蛋白 (Nestin) .........................................................................................................................9 1.4.2 Osterix (Sp7)............................................................................................................................10 1.4.3 N-鈣黏著蛋白 (N-Cadherin)................................................................................................11 1.4.4鹼性磷酸酶 (Alkalinephosphatase,ALP)............................................................................12 1.4.5 Zinc Finger E-Box Binding Homeobox-1 (ZEB-1)...............................................................12 1.4.6 金屬蛋白酶組織抑製劑 (Tissue inhibitors of metalloproteinases-1, TIMP-1 ) ................13 1.4.7 纖溶酶原激活劑 (Plasminogen Activator, PA) 系統 ..........................................................14 第二章、實驗目的與假說 ............................................................................................ 18 第三章、實驗材料與方法 ............................................................................................ 20 3.1 實驗材料.........................................................................................................................20 3.1.1 RT-PCR 試劑...........................................................................................................................20 3.1.2 蛋白質印跡試劑 (Western blotting reagents)......................................................................21 3.2 人類牙根尖幹細胞培養.................................................................................................21 3.3 定時定量聚合酶鏈反應 (Real-time Quantitative Polymerase Chain Reaction) .......22 3.4 西方墨點法(Westernblot)..............................................................................................25 3.5 免疫螢光染色觀察 (Immunofluorescence staining)....................................................28 3.6 細胞存活率分析 (MTT assay) (3-(4, 5-Dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide) ..............................................................................................30 3.7 統計分析............................................................................................................................31 第四章、實驗結果 ........................................................................................................ 32 4.1 骨成形蛋白-4 對細胞存活率的影響- MTT assay.........................................................32 4.2 不同濃度之骨成形蛋白-4對人類根尖乳頭細胞的影響..............................................32 第五章、討論 ................................................................................................................ 39 5.1 骨成形蛋白-4對人類根尖乳頭細胞存活率的影響......................................................39 5.3 骨成形蛋白-4對人類根尖乳頭細胞之胞外基質的形成和轉換的影響......................44 第六章、結論 ................................................................................................................ 47 參考書目 ........................................................................................................................ 49 附圖 ................................................................................................................................ 58 附表 ................................................................................................................................ 84"
dc.language.isozh-TW
dc.subject齒源性分化zh_TW
dc.subject人類牙根尖幹細胞zh_TW
dc.subject骨成形蛋白-4zh_TW
dc.subjectSmad依賴性傳導路徑zh_TW
dc.subjectSCAPsen
dc.subjectOdontogenic Differentiationen
dc.subjectSmad-dependent signaling pathwaysen
dc.subjectBMP-4en
dc.titleSMAD訊息傳導路徑對於BMP-4誘導人類牙根尖幹細胞之成骨及齒源性分化的角色zh_TW
dc.titleRole of Smad-Dependent Pathways on the BMP-4 induced Osteo/Odontogenic Differentiation of Stem Cell from Apical Papillaen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張美姬(Hsin-Tsai Liu),李勝揚(Chih-Yang Tseng),余承佳
dc.subject.keyword人類牙根尖幹細胞,骨成形蛋白-4,Smad依賴性傳導路徑,齒源性分化,zh_TW
dc.subject.keywordSCAPs,BMP-4,Smad-dependent signaling pathways,Odontogenic Differentiation,en
dc.relation.page87
dc.identifier.doi10.6342/NTU202102258
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-08-12
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-1108202100342400.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
8.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved