請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81071完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 顏鴻威(Hung-Wei Yen) | |
| dc.contributor.author | Yu-Cheng Su | en |
| dc.contributor.author | 蘇游程 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:29:06Z | - |
| dc.date.available | 2021-08-24 | |
| dc.date.available | 2022-11-24T03:29:06Z | - |
| dc.date.copyright | 2021-08-24 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-21 | |
| dc.identifier.citation | [1] J.R. Davis, Stainless steels, ASM international1994. [2] R. Craig, H. Slesnick, F. Peyton, Application of 17-7 precipitation-hardenable stainless steel in dentistry, Journal of dental research 44(3) (1965) 587-595. [3] B. Fakić, D. Ćubela, Review of the Development of Research in the Design of Semi Austenitic Stainless Steel 17-7PH, Journal of Trends in the Development of Machinery and Associated Technology 17(1) (2013) 57-60. [4] H. Liu, J. Liu, C. Luo, Z. Liu, Microstructure, crystallography of phase transformations and multiple precipitations in PH 15-7Mo stainless steel, Journal of Alloys and Compounds 672 (2016) 386-392. [5] W. Wang, W. Yan, Q. Duan, Y. Shan, Z. Zhang, K. Yang, Study on fatigue property of a new 2.8 GPa grade maraging steel, Materials Science and Engineering: A 527(13-14) (2010) 3057-3063. [6] Y. Li, W. Yan, J.D. Cotton, G.J. Ryan, Y. Shen, W. Wang, Y. Shan, K. Yang, A new 1.9 GPa maraging stainless steel strengthened by multiple precipitating species, Materials Design 82 (2015) 56-63. [7] M. Kapoor, D. Isheim, G. Ghosh, S. Vaynman, M.E. Fine, Y.-W. Chung, Aging characteristics and mechanical properties of 1600 MPa body-centered cubic Cu and B2-NiAl precipitation-strengthened ferritic steel, Acta materialia 73 (2014) 56-74. [8] H. Leitner, M. Schober, R. Schnitzer, Splitting phenomenon in the precipitation evolution in an Fe–Ni–Al–Ti–Cr stainless steel, Acta materialia 58(4) (2010) 1261-1269. [9] M.D. Mulholland, D.N. Seidman, Nanoscale co-precipitation and mechanical properties of a high-strength low-carbon steel, Acta Materialia 59(5) (2011) 1881-1897. [10] A.P. Mouritz, Introduction to aerospace materials, Elsevier2012. [11] J.-O. Nilsson, A.H. Stigenberg, P. Liu, Isothermal formation of quasicrystalline precipitates and their effect on strength in a 12Cr-9Ni-4Mo maraging stainless steel, Metallurgical and Materials Transactions A 25(10) (1994) 2225-2233. [12] Y.-U. Heo, M. Takeguchi, K. Furuya, H.-C. Lee, Transformation of DO24 η-Ni3Ti phase to face-centered cubic austenite during isothermal aging of an Fe–Ni–Ti alloy, Acta materialia 57(4) (2009) 1176-1187. [13] J.I. Suk, S.H. Hong, S.W. Nam, Crystallographic orientation relationships among η-Ni 3 Ti precipitate, reverted austenite, and martensitic matrix in Fe-10Cr-10Ni-2W maraging alloy, Metallurgical and Materials Transactions A 24(12) (1993) 2643-2652. [14] M. Niu, G. Zhou, W. Wang, M.B. Shahzad, Y. Shan, K. Yang, Precipitate evolution and strengthening behavior during aging process in a 2.5 GPa grade maraging steel, Acta Materialia 179 (2019) 296-307. [15] Y.W. Chai, K. Kato, C. Yabu, S. Ishikawa, Y. Kimura, Disconnections and Laves (C14) precipitation in high-Cr ferritic stainless steels, Acta Materialia 198 (2020) 230-241. [16] L. Sun, T. Simm, T. Martin, S. McAdam, D. Galvin, K. Perkins, P. Bagot, M. Moody, S. Ooi, P. Hill, A novel ultra-high strength maraging steel with balanced ductility and creep resistance achieved by nanoscale β-NiAl and Laves phase precipitates, Acta Materialia 149 (2018) 285-301. [17] S. Jiang, H. Wang, Y. Wu, X. Liu, H. Chen, M. Yao, B. Gault, D. Ponge, D. Raabe, A. Hirata, Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation, Nature 544(7651) (2017) 460-464. [18] C.-C. Hsieh, W. Wu, Overview of intermetallic sigma (?) phase precipitation in stainless steels, Isrn Metallurgy 2012 (2012). [19] T. Doi, M. Tanimura, Y. Koyama, Crystal-structure units of the R (Fe 3 Mo 2) phase in the Fe-Mo alloy system, Physical Review B 77(13) (2008) 134205. [20] L. Tarasenko, V. Titov, Intermetallic R-phase in maraging steels of the Fe-Cr-Ni-Co-Mo system, Metal science and heat treatment 48(7) (2006) 374-378. [21] A. Mouritz, 11-Steels for aircraft structures, Introd. Aerosp. Mater., Woodhead Publishing (2012) 232-50. [22] J. Tian, W. Wang, M. Babar Shahzad, W. Yan, Y. Shan, Z. Jiang, K. Yang, A new maraging stainless steel with excellent strength–toughness–corrosion synergy, Materials 10(11) (2017) 1293. [23] G. Speich, D. Dabkowski, L. Porter, Strength and toughness of Fe-10Ni alloys containing C, Cr, Mo, and Co, Metallurgical Transactions 4(1) (1973) 303-315. [24] D. Squires, F. Wilson, E. Wilson, The influence of Mo and Co on the embrittlement of an Fe-Ni-Mn alloy, Metallurgical Transactions 5(12) (1974) 2569-2578. [25] H. Kwon, J. Lee, K. Lee, C. Kim, H. Yang, Effect of alloying additions on secondary hardening behavior of mo-containing steels, Metallurgical and Materials Transactions A 28(3) (1997) 621-627. [26] J. Tian, W. Wang, L. Yin, W. Yan, Y. Shan, K. Yang, Three dimensional atom probe and first-principles studies on spinodal decomposition of Cr in a Co-alloyed maraging stainless steel, Scripta Materialia 121 (2016) 37-41. [27] A. Hultin-Stigenberg, PRECIPITATION HARDENABLE MARTENSITIC STAINLESS STEEL, European Patent Office EP 0 607 263 B1, 1999. [28] M. Andersson, K. Stiller, M. Hättestrand, Comparison of early stages of precipitation in Mo‐rich and Mo‐poor maraging stainless steels, Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films 39(2‐3) (2007) 195-200. [29] K.i. Shimizu, H. Okamoto, Transmission electron microscopy study of strengthening precipitates in 18% Ni maraging steel, Transactions of the Japan Institute of Metals 12(4) (1971) 273-279. [30] K.H. Lo, C.H. Shek, J. Lai, Recent developments in stainless steels, Materials Science and Engineering: R: Reports 65(4-6) (2009) 39-104. [31] S.H. Nedjad, M.N. Ahmadabadi, T. Furuhara, Correlation between the intergranular brittleness and precipitation reactions during isothermal aging of an Fe–Ni–Mn maraging steel, Materials Science and Engineering: A 490(1-2) (2008) 105-112. [32] P. Rivera-Díaz-del-Castillo, K. Hayashi, E. Galindo-Nava, Computational design of nanostructured steels employing irreversible thermodynamics, Materials Science and Technology 29(10) (2013) 1206-1211. [33] R.L. Fleischer, Substitutional solution hardening, Acta metallurgica 11(3) (1963) 203-209. [34] K. Jacob, D. Yadav, S. Dixit, A. Hohenwarter, B.N. Jaya, High pressure torsion processing of maraging steel 250: Microstructure and mechanical behaviour evolution, Materials Science and Engineering: A 802 (2020) 140665. [35] E. Galindo-Nava, P. Rivera-Díaz-del-Castillo, A model for the microstructure behaviour and strength evolution in lath martensite, Acta Materialia 98 (2015) 81-93. [36] Z. Zhang, D. Chen, Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength, Scripta Materialia 54(7) (2006) 1321-1326. [37] G. Olson, M. Cohen, A mechanism for the strain-induced nucleation of martensitic transformations, Journal of the Less Common Metals 28(1) (1972) 107-118. [38] D.P. Koistinen, A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels, acta metallurgica 7 (1959) 59-60. [39] C. Capdevila, C. FG, C.G. De Andrés, Determination of Ms temperature in steels: A Bayesian neural network model, ISIJ international 42(8) (2002) 894-902. [40] A. Aletdinov, S. Mironov, G. Korznikova, T. Konkova, R. Zaripova, M. Myshlyaev, S. Semiatin, Martensite-to-austenite reversion and recrystallization in cryogenically-rolled type 321 metastable austenitic steel, Metallurgical and Materials Transactions A 50(3) (2019) 1346-1357. [41] H.-S. Yang, H. Bhadeshia, Austenite grain size and the martensite-start temperature, Scripta materialia 60(7) (2009) 493-495. [42] S. Chatterjee, H.-S. Wang, J. Yang, H. Bhadeshia, Mechanical stabilisation of austenite, Materials Science and Technology 22(6) (2006) 641-644. [43] R. Blondé, E. Jimenez-Melero, L. Zhao, J. Wright, E. Brück, S. Van der Zwaag, N. Van Dijk, High-energy X-ray diffraction study on the temperature-dependent mechanical stability of retained austenite in low-alloyed TRIP steels, Acta Materialia 60(2) (2012) 565-577. [44] X. Xiong, B. Chen, M. Huang, J. Wang, L. Wang, The effect of morphology on the stability of retained austenite in a quenched and partitioned steel, Scripta Materialia 68(5) (2013) 321-324. [45] R. Armstrong, The influence of polycrystal grain size on several mechanical properties of materials, Metallurgical and Materials Transactions B 1(5) (1970) 1169-1176. [46] Z. Zhao, J. Liang, A. Zhao, J. Liang, D. Tang, Y. Gao, Effects of the austenitizing temperature on the mechanical properties of cold-rolled medium-Mn steel system, Journal of Alloys and Compounds 691 (2017) 51-59. [47] A. Das, S. Sivaprasad, M. Ghosh, P. Chakraborti, S. Tarafder, Morphologies and characteristics of deformation induced martensite during tensile deformation of 304 LN stainless steel, Materials Science and Engineering: A 486(1-2) (2008) 283-286. [48] A. Das, S. Sivaprasad, P. Chakraborti, S. Tarafder, Morphologies and characteristics of deformation induced martensite during low cycle fatigue behaviour of austenitic stainless steel, Materials Science and Engineering: A 528(27) (2011) 7909-7914. [49] N. Nakada, H. Ito, Y. Matsuoka, T. Tsuchiyama, S. Takaki, Deformation-induced martensitic transformation behavior in cold-rolled and cold-drawn type 316 stainless steels, Acta Materialia 58(3) (2010) 895-903. [50] G. Olson, M. Cohen, A general mechanism of martensitic nucleation: Part II. FCC→ BCC and other martensitic transformations, Metallurgical transactions A 7(12) (1976) 1905-1914. [51] F. Lecroisey, A. Pineau, Martensitic transformations induced by plastic deformation in the Fe-Ni-Cr-C system, Metallurgical and Materials Transactions B 3(2) (1972) 391-400. [52] L. Murr, K. Staudhammer, S. Hecker, Effects of strain state and strain rate on deformation-induced transformation in 304 stainless steel: Part II. Microstructural study, Metallurgical Transactions A 13(4) (1982) 627-635. [53] J. Talonen, H. Hänninen, Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels, Acta materialia 55(18) (2007) 6108-6118. [54] R. Misra, Z. Zhang, Z. Jia, P.V. Surya, M. Somani, L. Karjalainen, Nanomechanical insights into the deformation behavior of austenitic alloys with different stacking fault energies and austenitic stability, Materials Science and Engineering: A 528(22-23) (2011) 6958-6963. [55] J. Wang, M. Huang, X. Xi, C. Wang, W. Xu, Characteristics of nucleation and transformation sequence in deformation-induced martensitic transformation, Materials Characterization 163 (2020) 110234. [56] S. Takaki, K. Tomimura, S. Ueda, Effect of pre-cold-working on diffusional reversion of deformation induced martensite in metastable austenitic stainless steel, ISIJ international 34(6) (1994) 522-527. [57] K. Tomimura, S. Takaki, Y. Tokunaga, Reversion mechanism from deformation induced martensite to austenite in metastable austenitic stainless steels, ISIJ international 31(12) (1991) 1431-1437. [58] J. Cui, I.-S. Park, C.-Y. Kang, K. Miyahara, Degradation of impact toughness due to formation of R phase in high nitrogen 25Cr-7Ni-Mo duplex stainless steels, ISIJ international 41(2) (2001) 192-195. [59] C.-Y. Huang, H.-W. Yen, HRTEM investigations on nano precipitates in Custom 475 maraging stainless steel, Materials Characterization (2021) 111216. [60] K. Yamamoto, Y. Kimura, Y. Mishima, Precipitation of the icosahedral quasicrystalline phase, R-phase and Laves phase in ferritic alloys, Materials Transactions 45(2) (2004) 357-360. [61] R. Ayer, L. Bendel, V. Zackay, Metastable precipitate in a duplex martensite+, Metallurgical Transactions A 23(9) (1992) 2447-2453. [62] T. Ungár, I. Dragomir, Á. Révész, A. Borbély, The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice, Journal of applied crystallography 32(5) (1999) 992-1002. [63] M. Thuvander, M. Andersson, K. Stiller, Multiple Influences of Molybdenum on the Precipitation Process in a Martensitic PH Stainless Steel, Metals 9(10) (2019) 1118. [64] G. Olson, M. Cohen, Kinetics of strain-induced martensitic nucleation, Metallurgical transactions A 6(4) (1975) 791. [65] K. Sato, M. Ichinose, Y. Hirotsu, Y. Inoue, Effects of deformation induced phase transformation and twinning on the mechanical properties of austenitic Fe–Mn–Al alloys, ISIJ international 29(10) (1989) 868-877. [66] S. Morito, T. Ohba, T. Maki, Comparison of deformation structure of lath martensite in low carbon and ultra-low carbon steels, Materials Science Forum, Trans Tech Publ, 2007, pp. 933-938. [67] F. Ren, S. Zhao, W. Li, B. Tian, L. Yin, A.A. Volinsky, Theoretical explanation of Ag/Cu and Cu/Ni nanoscale multilayers softening, Materials letters 65(1) (2011) 119-121. [68] Y. Xiong, T. He, J. Wang, Y. Lu, L. Chen, F. Ren, Y. Liu, A.A. Volinsky, Cryorolling effect on microstructure and mechanical properties of Fe–25Cr–20Ni austenitic stainless steel, Materials Design 88 (2015) 398-405. [69] C. Zhang, C. Wang, S. Zhang, Y. Ding, Q. Ge, J. Su, Effect of aging temperature on the precipitation behavior and mechanical properties of Fe–Cr–Ni maraging stainless steel, Materials Science and Engineering: A 806 (2021) 140763. [70] S.-J. Kim, C. Wayman, Strengthening behaviour and embrittlement phenomena in Fe-Ni-Mn-(Ti) maraging alloys, Materials Science and Engineering: A 207(1) (1996) 22-29. [71] H. Leitner, M. Schober, R. Schnitzer, S. Zinner, Strengthening behavior of Fe–Cr–Ni–Al–(ti) maraging steels, Materials Science and Engineering: A 528(15) (2011) 5264-5270. [72] Y. Lian, J. Huang, J. Zhang, C. Zhang, W. Gao, C. Zhao, Effect of 0.2 and 0.5% Ti on the microstructure and mechanical properties of 13Cr supermartensitic stainless steel, Journal of Materials Engineering and Performance 24(11) (2015) 4253-4259. [73] M. Schober, R. Schnitzer, H. Leitner, Precipitation evolution in a Ti-free and Ti-containing stainless maraging steel, Ultramicroscopy 109(5) (2009) 553-562. [74] L. Qian, M. Li, Z. Zhou, H. Yang, X. Shi, Comparison of nano-indentation hardness to microhardness, Surface and Coatings Technology 195(2-3) (2005) 264-271. [75] R. Misra, S. Nayak, S. Mali, J. Shah, M. Somani, L. Karjalainen, On the significance of nature of strain-induced martensite on phase-reversion-induced nanograined/ultrafine-grained austenitic stainless steel, Metallurgical and Materials Transactions A 41(1) (2010) 3. [76] A. Weidner, A. Müller, A. Weiss, H. Biermann, Ultrafine grained high-alloyed austenitic TRIP steel, Materials Science and Engineering: A 571 (2013) 68-76. [77] C. Celada-Casero, B. Huang, M. Aranda, J.-R. Yang, D. San Martin, Mechanisms of ultrafine-grained austenite formation under different isochronal conditions in a cold-rolled metastable stainless steel, Materials Characterization 118 (2016) 129-141. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81071 | - |
| dc.description.abstract | 本研究設計了一款新型的麻時效不鏽鋼,其設計理念源自於介穩態沃斯田鐵、析出硬化型鋼與多重析出反應,不同於傳統的麻田散鐵透過快速冷卻而成,本研究中的麻田散鐵是透過變形而得,實驗結果發現,相變態能透過常溫軋延與低溫軋延達成,隨著軋延量上升或是軋延溫度下降,相變態的比例也隨之提高。透過穿透式電子顯微鏡的觀察,其顯微結構為條狀麻田散鐵,伴隨一部分未相變的沃斯田鐵,在沃斯田鐵中能觀察到變形雙晶與剪切帶的存在,而麻田散鐵從剪切帶的相交處生成。 時效過後,因為兩種界金屬析出物的強化效果,使本材料得到極高的強度,但延展性則在時效後變差,此兩種析出物分別為富鉻、鉬的R相與Ni3Ti η 相。同時,時效的過程中會伴隨沃斯田鐵比例上升,其上升的量與時效條件和起始的微結構有關,進而影響到材料的強度。 此外,本實驗也透過控制鎳元素的添加量,觀察鎳對顯微結構與機械性能的影響,實驗後發現,較低的鎳含量能使麻田散鐵相變態不論在常溫或低溫軋延皆更容易發生,一旦材料中的沃斯田鐵全都相變成麻田散鐵,後續的壓延將導致裂紋產生。但機械性能的部分並不隨鎳含量而有顯著的差異。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:29:06Z (GMT). No. of bitstreams: 1 U0001-2008202115231500.pdf: 11274075 bytes, checksum: 48f83b12ef44d02415cda7ae96e47f53 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員審定書 I 誌謝 II 摘要 III ABSTRACT IV CONTENTS V Figures Content VIII Tables Content XIV Chapter 1 Introduction 1 Chapter 2 Literature Review 2 2.1 Maraging Steels 2 2.1.1 Introduction to Maraging steels 2 2.1.2 Alloy Design of Maraging steel 4 2.1.3 Mechanical Property of Maraging steel 6 2.2 Martensitic Transformation 8 2.2.1 Introduction to Martensitic transformation 8 2.2.2 The relationship between Ms temperature and applied stress 9 2.2.3 Austenite Stability 11 2.3 Deformation Induced Martensite and Austenite Reversion 15 2.3.1 Deformation Induced Martensite 15 2.3.2 Austenite Reversion 19 2.4 Precipitate Behavior in Maraging Steels 20 2.4.1. R-Phase 20 2.4.2. η-Ni3Ti Phase 22 2.4.3. B2 NiAl Phase 23 2.4.4. Laves phase 24 Chapter 3 Experimental Procedures 25 3.1 Alloy design of Maraging steel 25 3.2 Experimental Process 28 3.3 Microstructure Characterization 29 3.3.1 Optical Microscopy (OM) 29 3.3.2 X-ray Diffraction (XRD) 29 3.3.3 Scanning Electron Microscopy (SEM) 30 3.3.4 Electron Probe Micro-Analyzer (EPMA) 30 3.3.5 Electron Backscattered Diffraction (EBSD) 30 3.3.6 Transmission Kikuchi Diffraction (TKD) 31 3.3.7 Transmission Electron Microscopy (TEM) 31 3.4 Mechanical Test 32 3.4.1 Vickers Hardness 32 3.4.2 Tensile Test 32 3.4.3 Nanoindentation 32 Chapter 4 Microstructure Evolution in Deformed Aged Process and Mechanical Properties 34 4.1 Experimental Results 34 4.1.1 Microstructure Control 34 4.1.2 Microstructure Evolution in Deformed Process 38 4.1.3 Nanostructure Evolution in Aged Process 44 4.1.4 Mechanical Properties 56 4.2 Discussion 63 4.2.1 Relationship between Processing and Microstructure 63 4.2.2 Relationship between Microstructure and Mechanical Properties 68 4.3 Summary 71 Chapter 5 Effect of Ni Content on Microstructure and Mechanical Properties 72 5.1 Experimental Result and Discussion 72 5.1.1 As Cast and Homogenized Microstructures 72 5.1.2 Microstructure Evolution in Deformed Aged Process 76 5.1.3 Mechanical Properties 81 5.2 Summary 88 Chapter 6 Conclusion 89 Chapter 7 Future work 90 Reference 92 | |
| dc.language.iso | en | |
| dc.subject | 共析出 | zh_TW |
| dc.subject | 冷軋 | zh_TW |
| dc.subject | 低溫軋延 | zh_TW |
| dc.subject | 不鏽鋼 | zh_TW |
| dc.subject | 麻時效鋼 | zh_TW |
| dc.subject | 麻田散鐵相變化 | zh_TW |
| dc.subject | stainless steel | en |
| dc.subject | cold rolling | en |
| dc.subject | co-precipitates | en |
| dc.subject | maraging steel | en |
| dc.subject | cryo-rolling | en |
| dc.subject | martensitic transformation | en |
| dc.title | 變形暨時效中熵麻時效不鏽鋼顯微結構與機械性能之研究 | zh_TW |
| dc.title | Study on Microstructure and Mechanical Properties in Deformed-and-Aged Medium-Entropy Maraging Stainless Steel | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王星豪(Hsin-Tsai Liu),陳志軒(Chih-Yang Tseng),陳世偉 | |
| dc.subject.keyword | 麻時效鋼,不鏽鋼,冷軋,低溫軋延,麻田散鐵相變化,共析出, | zh_TW |
| dc.subject.keyword | maraging steel,stainless steel,cold rolling,cryo-rolling,martensitic transformation,co-precipitates, | en |
| dc.relation.page | 100 | |
| dc.identifier.doi | 10.6342/NTU202102553 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-08-23 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2008202115231500.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 11.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
