Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81060
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾雪峰(Snow H. Tseng)
dc.contributor.authorFang-Yuan Huangen
dc.contributor.author黃芳源zh_TW
dc.date.accessioned2022-11-24T03:28:34Z-
dc.date.available2022-02-28
dc.date.available2022-11-24T03:28:34Z-
dc.date.copyright2021-11-11
dc.date.issued2021
dc.date.submitted2021-08-23
dc.identifier.citation[1] M. Titford, 'The long history of hematoxylin,' Biotechnic Histochemistry, vol. 80, no. 2, pp. 73-78, 2005/01/01 2005. [2] R. W. Dapson and R. W. Horobin, 'Dyes from a twenty-first century perspective,' Biotechnic Histochemistry, vol. 84, no. 4, pp. 135-137, 2009/01/01 2009. [3] C. Smith, 'Our debt to the logwood tree: the history of hematoxylin,' (in eng), MLO Med Lab Obs, vol. 38, no. 5, pp. 18, 20-2, May 2006. [4] J. Rosai, 'Why microscopy will remain a cornerstone of surgical pathology,' Laboratory Investigation, vol. 87, no. 5, pp. 403-408, 2007/05/01 2007. [5] J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, 'Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,' Neoplasia, vol. 2, no. 1-2, pp. 9-25, Jan-Apr 2000. [6] I. Goodfellow et al., 'Generative adversarial nets,' Advances in neural information processing systems, vol. 27, 2014. [7] M. T. Shaban, C. Baur, N. Navab, and S. Albarqouni, 'Staingan: Stain Style Transfer for Digital Histological Images,' in 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), 8-11 April 2019 2019, pp. 953-956. [8] Z. Xu, C. F. Moro, B. Bozóky, and Q. Zhang, 'GAN-based virtual re-staining: a promising solution for whole slide image analysis,' arXiv preprint arXiv:1901.04059, 2019. [9] Y. Rivenson, T. Liu, Z. Wei, Y. Zhang, K. de Haan, and A. Ozcan, 'PhaseStain: the digital staining of label-free quantitative phase microscopy images using deep learning,' Light: Science Applications, vol. 8, no. 1, pp. 1-11, 2019. [10] J.-Y. Zhu, T. Park, P. Isola, and A. Efros, Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. 2017, pp. 2242-2251. [11] C. Chia-Kai et al., 'Segmentation of nucleus and cytoplasm of a single cell in three-dimensional tomogram using optical coherence tomography,' Journal of Biomedical Optics, vol. 22, no. 3, pp. 1-12, 3/1 2017. [12] W. Zhang, 'Shift-invariant pattern recognition neural network and its optical architecture,' in Proceedings of annual conference of the Japan Society of Applied Physics, 1988. [13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, 'Imagenet classification with deep convolutional neural networks,' Advances in neural information processing systems, vol. 25, pp. 1097-1105, 2012. [14] K. Simonyan and A. Zisserman, 'Very deep convolutional networks for large-scale image recognition,' arXiv preprint arXiv:1409.1556, 2014. [15] K. He, X. Zhang, S. Ren, and J. Sun, 'Deep residual learning for image recognition,' in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770-778. [16] L. Alzubaidi et al., 'Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions,' Journal of big Data, vol. 8, no. 1, pp. 1-74, 2021. [17] D. Ciresan, A. Giusti, L. Gambardella, and J. Schmidhuber, 'Deep neural networks segment neuronal membranes in electron microscopy images,' Advances in neural information processing systems, vol. 25, pp. 2843-2851, 2012. [18] J. Long, E. Shelhamer, and T. Darrell, 'Fully convolutional networks for semantic segmentation,' in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 7-12 June 2015 2015, pp. 3431-3440. [19] O. Ronneberger, P. Fischer, and T. Brox, 'U-Net: Convolutional Networks for Biomedical Image Segmentation,' in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Cham, N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, Eds., 2015// 2015: Springer International Publishing, pp. 234-241. [20] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, 'Image-to-image translation with conditional adversarial networks,' in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1125-1134. [21] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros, 'Context encoders: Feature learning by inpainting,' in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2536-2544. [22] S. Nowozin, B. Cseke, and R. Tomioka, 'f-gan: Training generative neural samplers using variational divergence minimization,' in Proceedings of the 30th International Conference on Neural Information Processing Systems, 2016, pp. 271-279. [23] 'Skin - Skin is the human body's largest organ.' (2017, JANUARY 18). [Online]. Available: https://www.nationalgeographic.com/science/article/skin-1 [24] C. McDonald. 'The skin is a very important (and our largest) organ: what does it do?' (2018, March 19). [Online]. Available: https://theconversation.com/the-skin-is-a-very-important-and-our-largest-organ-what-does-it-do-91515 [25] 'What is a Skin Cycle and why it is important? .' [Online]. Available: https://www.medifine.co.uk/what-is-a-skin-cycle/ [26] E. N. M. e. al., Human Anatomy Physiology. 2006, pp. 152-170. [27] 'The Skin - What is Skin?'. [Online]. Available: https://courses.lumenlearning.com/boundless-ap/chapter/the-skin/ [28] S. D. White and J. A. Yager, 'Resident Dendritic Cells in the Epidermis: Langerhans Cells, Merkel Cells and Melanocytes,' Veterinary Dermatology, vol. 6, no. 1, pp. 1-8, 1995. [29] 'Structure and Function of Skin.' [Online]. Available: https://courses.lumenlearning.com/wmopen-biology2/chapter/structure-and-function-of-skin/ [30] 'cells and layers of the epidermis.' [Online]. Available: https://www.earthslab.com/physiology/cells-layers-epidermis/ [31] S. Cindy and R. Geoffrey. 'H E Staining Overview: A Guide to Best Practices.' [Online]. Available: https://www.leicabiosystems.com/knowledge-pathway/he-staining-overview-a-guide-to-best-practices/ [32] 'Langerhans cells.' [Online]. Available: https://basicmedicalkey.com/skin-5/ [33] M. Jerad Gardner. 'Lentiginous nevus. Melanocytes (grey, not pigmented) vs basal keratinocytes (brown melanin) '. [Online]. Available: https://twitter.com/JMGardnerMD/status/883502151393300483 [34] P. Hrynchak and T. Simpson, 'Optical coherence tomography: an introduction to the technique and its use,' Optom Vis Sci, vol. 77, no. 7, pp. 347-56, Jul 2000. [35] D. P. Popescu et al., 'Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,' Biophys Rev, vol. 3, no. 3, p. 155, Sep 2011. [36] E. Ulmer, 'The Evolution of Optical Coherence Tomography,' May 22 2019. [37] Z. Hamdoon, W. Jerjes, T. Upile, and C. Hopper, 'Optical coherence tomography-guided photodynamic therapy for skin cancer: case study,' Photodiagnosis Photodyn Ther, vol. 8, no. 1, pp. 49-52, Mar 2011. [38] A. F. Fercher, 'Optical coherence tomography - development, principles, applications,' Z Med Phys, vol. 20, no. 4, pp. 251-76, 2010. [39] C. C. Tsai et al., 'Full-depth epidermis tomography using a Mirau-based full-field optical coherence tomography,' Biomed Opt Express, vol. 5, no. 9, pp. 3001-10, Sep 1 2014. [40] E. Dalimier and D. Salomon, 'Full-field optical coherence tomography: a new technology for 3D high-resolution skin imaging,' Dermatology, vol. 224, no. 1, pp. 84-92, 2012. [41] C. You, 'Analysis of Image and Spectrum Properties on Skin Cells by Mirau-based Full-field Optical Coherence Tomography Combined with Near-infrared Raman Spectroscopy,' 2018. [42] S.-T. Tsai, C.-C. Chan, H. H. Chen, J.-W. Tjiu, and S.-L. Huang, 'Segmentation based OCT Image to H E-like Image Conversion,' in Microscopy Histopathology and Analytics, 2020: Optical Society of America, p. MM3A. 5. [43] C. Tomasi and R. Manduchi, 'Bilateral filtering for gray and color images,' in Sixth international conference on computer vision (IEEE Cat. No. 98CH36271), 1998: IEEE, pp. 839-846. [44] K. Deb and S. Gupta, 'Understanding knee points in bicriteria problems and their implications as preferred solution principles,' Engineering optimization, vol. 43, no. 11, pp. 1175-1204, 2011. [45] F. Pérez-García, R. Sparks, and S. Ourselin, 'TorchIO: A Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning,' Computer Methods and Programs in Biomedicine, vol. 208, p. 106236, 2021/09/01/ 2021. [46] X. Ding, X. Zhang, N. Ma, J. Han, G. Ding, and J. Sun, 'Repvgg: Making vgg-style convnets great again,' in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 13733-13742. [47] I. Loshchilov and F. Hutter, 'Decoupled weight decay regularization,' arXiv preprint arXiv:1711.05101, 2017. [48] Q. Xie, M.-T. Luong, E. Hovy, and Q. V. Le, 'Self-training with noisy student improves imagenet classification,' in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 10687-10698. [49] M. R. Gdula et al., 'Remodeling of three-dimensional organization of the nucleus during terminal keratinocyte differentiation in the epidermis,' Journal of Investigative Dermatology, vol. 133, no. 9, pp. 2191-2201, 2013. [50] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, 'Focal loss for dense object detection,' in Proceedings of the IEEE international conference on computer vision, 2017, pp. 2980-2988. [51] N. Kumar, R. Verma, S. Sharma, S. Bhargava, A. Vahadane, and A. Sethi, 'A dataset and a technique for generalized nuclear segmentation for computational pathology,' IEEE transactions on medical imaging, vol. 36, no. 7, pp. 1550-1560, 2017. [52] S.-T. Tsai, 'Conversion between in vivo human skin tomographic images and H E stained-like images via generative adversarial network,' 2019. [53] C. Chu, A. Zhmoginov, and M. Sandler, 'Cyclegan, a master of steganography,' arXiv preprint arXiv:1712.02950, 2017.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81060-
dc.description.abstract皮膚的層次以及細胞核的影像分割無論在診斷還是電腦分析,都是病理學上重要的資訊及任務。本論文中,我們設計了一個可以從人類皮膚的三維光學同調斷層掃描(OCT)中獲取細胞核體機率分佈的架構,再利用得來的細胞核資訊,進一步訓練出分割細胞核的模型,以用來輔助影像轉換,該影像轉換建立在循環生成對抗網路並能將人類皮膚的光學同調斷層掃描影像轉換成蘇木精與伊紅(H E)染色。在測試影像集上,角質層的下邊界與表皮層的下邊界於影像轉換前後的位置誤差分別為±0.73μm和±4.53μm,而在加入細胞核位置資訊後,細胞核於影像轉換前後的索倫森-骰子係數從0.536上升至0.586。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:28:34Z (GMT). No. of bitstreams: 1
U0001-2208202116475700.pdf: 22628225 bytes, checksum: ac3b71e252471db167b12a541debdfc1 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 I 誌謝 II 摘要 III ABSTRACT IV TABLE OF CONTENTS V TABLE OF FIGURES VII TABLE OF TABLES X CHAPETER 1. INTRODUCTION 1 1.1. RESEARCH MOTIVE 1 CHAPETER 2. BACKGROUND 3 2.1. CONVOLUTIONAL NEURAL NETWORK 3 2.1.1. CNN’s application in image classification 4 2.1.2. CNN’s application in image segmentation 5 2.1.3. GAN’s theory and application in image conversion 8 2.2. HUMAN SKIN AND ITS MEDICAL IMAGES 14 2.2.1. Human skin structure 14 2.2.2. Hematoxylin and eosin stain 20 2.2.3. Optical coherence tomography 24 2.3. CURRENT WORK REVIEW 27 CHAPETER 3. METHODS 30 3.1. RESEARCH DESIGN 30 3.1.1. Random rayburst sampling 30 3.1.2. Research framework 33 3.2. DATA COLLECTION AND TRAINING PROCEDURE 34 3.2.1. Nucleus classifier and semi-supervised learning 34 3.2.2. Nucleus segmenter and reconstruction of annotation 45 3.2.3. Nuclei-layers segmentation model 52 CHAPETER 4. RESULTS 65 4.1. COMPARISON BETWEEN 2D AND 3D IMAGE SEGMENTATION MODEL 65 4.2. OCT2HE MODEL AFTER ADDING NUCLEI INFORMATION 68 4.3. POST PROCESSING OF PSEUDO ANNOTATION OF NUCLEI 75 CHAPETER 5. CONCLUSIONS AND FUTURE WORK 78 5.1. CONCLUSIONS 78 5.2. FUTURE WORK 78 REFERENCE 80
dc.language.isoen
dc.subject細胞核分割zh_TW
dc.subject影像轉換zh_TW
dc.subject隨機射線取樣zh_TW
dc.subject光學同調斷層掃描zh_TW
dc.subject蘇木精與伊紅染色zh_TW
dc.subject生成對抗網路zh_TW
dc.subjecthematoxylin and eosin stainen
dc.subjectgenerative adversarial networken
dc.subjectrandom rayburst samplingen
dc.subjectimage conversionen
dc.subjectoptical coherence tomographyen
dc.subjectnuclei segmentationen
dc.title分割皮膚組織的光學同調斷層掃描影像以優化生醫影像轉換zh_TW
dc.titleSegmentation of in vivo OCT image of three-dimensional human skin structure to facilitate biomedical image conversionen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃升龍(Hsin-Tsai Liu),陳宏銘(Chih-Yang Tseng)
dc.subject.keyword細胞核分割,影像轉換,隨機射線取樣,光學同調斷層掃描,蘇木精與伊紅染色,生成對抗網路,zh_TW
dc.subject.keywordnuclei segmentation,image conversion,random rayburst sampling,optical coherence tomography,hematoxylin and eosin stain,generative adversarial network,en
dc.relation.page83
dc.identifier.doi10.6342/NTU202102590
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-08-24
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2208202116475700.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
22.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved