請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81038完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李百祺(Pai-Chi Li) | |
| dc.contributor.author | Tzu-Ning Liao | en |
| dc.contributor.author | 廖梓甯 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:27:27Z | - |
| dc.date.available | 2022-02-21 | |
| dc.date.available | 2022-11-24T03:27:27Z | - |
| dc.date.copyright | 2022-02-21 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-02-09 | |
| dc.identifier.citation | [1] P. Darvin, S. M. Toor, V. S. Nair, and E. Elkord, 'Immune checkpoint inhibitors: recent progress and potential biomarkers,' Experimental molecular medicine, vol. 50, no. 12, pp. 1-11, 2018. [2] X. Ke and L. Shen, 'Molecular targeted therapy of cancer: The progress and future prospect,' Frontiers in Laboratory Medicine, vol. 1, no. 2, pp. 69-75, 2017. [3] T. Liu, Y. Wan, Y. Xiao, C. Xia, and G. Duan, 'Dual-target inhibitors based on HDACs: novel antitumor agents for cancer therapy,' Journal of medicinal chemistry, vol. 63, no. 17, pp. 8977-9002, 2020. [4] K. Hynynen, 'Ultrasound for drug and gene delivery to the brain,' Advanced drug delivery reviews, vol. 60, no. 10, pp. 1209-1217, 2008. [5] C. R. Mayer and R. Bekeredjian, 'Ultrasonic gene and drug delivery to the cardiovascular system,' Advanced drug delivery reviews, vol. 60, no. 10, pp. 1177-1192, 2008. [6] H. Liang, J. Tang, and M. Halliwell, 'Sonoporation, drug delivery, and gene therapy,' Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 224, no. 2, pp. 343-361, 2010. [7] R. K. Schlicher, H. Radhakrishna, T. P. Tolentino, R. P. Apkarian, V. Zarnitsyn, and M. R. Prausnitz, 'Mechanism of intracellular delivery by acoustic cavitation,' Ultrasound in medicine biology, vol. 32, no. 6, pp. 915-924, 2006. [8] Z. Fan, R. E. Kumon, J. Park, and C. Deng, 'Intracellular delivery and calcium transients generated in sonoporation facilitated by microbubbles,' Journal of Controlled Release, vol. 142, no. 1, pp. 31-39, 2010. [9] W. G. Pitt and G. Husseini, 'Ultrasound in drug and gene delivery,' 2008. [10] M. J. Blomley, J. C. Cooke, E. C. Unger, M. J. Monaghan, and D. O. Cosgrove, 'Microbubble contrast agents: a new era in ultrasound,' Bmj, vol. 322, no. 7296, pp. 1222-1225, 2001. [11] S. Sirsi and M. Borden, 'Microbubble compositions, properties and biomedical applications,' Bubble Science, Engineering Technology, vol. 1, no. 1-2, pp. 3-17, 2009. [12] M. Kinoshita, N. McDannold, F. A. Jolesz, and K. Hynynen, 'Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood–brain barrier disruption,' Proceedings of the National Academy of Sciences, vol. 103, no. 31, pp. 11719-11723, 2006. [13] S. M. Stieger et al., 'Enhancement of vascular permeability with low-frequency contrast-enhanced ultrasound in the chorioallantoic membrane model,' Radiology, vol. 243, no. 1, pp. 112-121, 2007. [14] R. Bekeredjian, S. Chen, P. A. Frenkel, P. A. Grayburn, and R. V. Shohet, 'Ultrasound-targeted microbubble destruction can repeatedly direct highly specific plasmid expression to the heart,' Circulation, vol. 108, no. 8, pp. 1022-1026, 2003. [15] S. R. Wilson and P. N. Burns, 'Microbubble-enhanced US in body imaging: what role?,' Radiology, vol. 257, no. 1, pp. 24-39, 2010. [16] L. Gerrit et al., 'Molecular imaging of inflammation and intraplaque vasa vasorum: a step forward to identification of vulnerable plaques?,' Journal of nuclear cardiology, vol. 17, no. 5, pp. 897-912, 2010. [17] N. Y. Rapoport, A. L. Efros, D. A. Christensen, A. M. Kennedy, and K.-H. Nam, 'Microbubble generation in phase-shift nanoemulsions used as anticancer drug carriers,' Bubble Science, Engineering Technology, vol. 1, no. 1-2, pp. 31-39, 2009. [18] S. K. Hobbs et al., 'Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment,' Proceedings of the National Academy of Sciences, vol. 95, no. 8, pp. 4607-4612, 1998. [19] N. Rapoport, 'Phase‐shift, stimuli‐responsive perfluorocarbon nanodroplets for drug delivery to cancer,' Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, vol. 4, no. 5, pp. 492-510, 2012. [20] Q.-L. Zhou, Z.-Y. Chen, Y.-X. Wang, F. Yang, Y. Lin, and Y.-Y. Liao, 'Ultrasound-mediated local drug and gene delivery using nanocarriers,' BioMed research international, vol. 2014, 2014. [21] O. D. Kripfgans, C. M. Orifici, P. L. Carson, K. A. Ives, O. P. Eldevik, and J. B. Fowlkes, 'Acoustic droplet vaporization for temporal and spatial control of tissue occlusion: a kidney study,' IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 52, no. 7, pp. 1101-1110, 2005. [22] C. C. Chen, P. S. Sheeran, S.-Y. Wu, O. O. Olumolade, P. A. Dayton, and E. E. Konofagou, 'Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets,' Journal of Controlled Release, vol. 172, no. 3, pp. 795-804, 2013. [23] L. C. Moyer, K. F. Timbie, P. S. Sheeran, R. J. Price, G. W. Miller, and P. A. Dayton, 'High-intensity focused ultrasound ablation enhancement in vivo via phase-shift nanodroplets compared to microbubbles,' Journal of therapeutic ultrasound, vol. 3, no. 1, pp. 1-9, 2015. [24] D. Gao et al., 'Ultrasound-triggered phase-transition cationic nanodroplets for enhanced gene delivery,' ACS applied materials interfaces, vol. 7, no. 24, pp. 13524-13537, 2015. [25] K. Wilson, K. Homan, and S. Emelianov, 'Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,' Nature communications, vol. 3, no. 1, pp. 1-10, 2012. [26] N. Reznik et al., 'The efficiency and stability of bubble formation by acoustic vaporization of submicron perfluorocarbon droplets,' Ultrasonics, vol. 53, no. 7, pp. 1368-1376, 2013. [27] W. G. Pitt, R. N. Singh, K. X. Perez, G. A. Husseini, and D. R. Jack, 'Phase transitions of perfluorocarbon nanoemulsion induced with ultrasound: a mathematical model,' Ultrasonics sonochemistry, vol. 21, no. 2, pp. 879-891, 2014. [28] J. Yu, X. Chen, F. S. Villanueva, and K. Kim, 'Vaporization and recondensation dynamics of indocyanine green-loaded perfluoropentane droplets irradiated by a short pulse laser,' Applied Physics Letters, vol. 109, no. 24, p. 243701, 2016. [29] D. S. Li, O. D. Kripfgans, M. L. Fabiilli, J. Brian Fowlkes, and J. L. Bull, 'Initial nucleation site formation due to acoustic droplet vaporization,' Applied physics letters, vol. 104, no. 6, p. 063703, 2014. [30] J. D. Dove, P. A. Mountford, T. W. Murray, and M. A. Borden, 'Engineering optically triggered droplets for photoacoustic imaging and therapy,' Biomedical optics express, vol. 5, no. 12, pp. 4417-4427, 2014. [31] E. Strohm, M. Rui, I. Gorelikov, N. Matsuura, and M. Kolios, 'Vaporization of perfluorocarbon droplets using optical irradiation,' Biomedical Optics Express, vol. 2, no. 6, pp. 1432-1442, 2011. [32] W.-W. Liu, S.-H. Huang, and P.-C. Li, 'Synchronized optical and acoustic droplet vaporization for effective Sonoporation,' Pharmaceutics, vol. 11, no. 6, p. 279, 2019. [33] J. Turánek et al., 'Lipid-based nanoparticles and microbubbles–multifunctional lipid-based biocompatible particles for in vivo imaging and theranostics,' Advances in Bioengineering, pp. 79-116, 2015. [34] D. F. Gaitan, L. A. Crum, C. C. Church, and R. A. Roy, 'Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble,' The Journal of the Acoustical Society of America, vol. 91, no. 6, pp. 3166-3183, 1992. [35] S. P. Wrenn et al., 'Bursting bubbles and bilayers,' Theranostics, vol. 2, no. 12, p. 1140, 2012. [36] C.-D. Ohl et al., 'Sonoporation from jetting cavitation bubbles,' Biophysical journal, vol. 91, no. 11, pp. 4285-4295, 2006. [37] J. H. Hwang, J. Tu, A. A. Brayman, T. J. Matula, and L. A. Crum, 'Correlation between inertial cavitation dose and endothelial cell damage in vivo,' Ultrasound in medicine biology, vol. 32, no. 10, pp. 1611-1619, 2006. [38] R. Asami and K. Kawabata, 'Repeatable vaporization of optically vaporizable perfluorocarbon droplets for photoacoustic contrast enhanced imaging,' in 2012 IEEE international ultrasonics symposium, 2012: IEEE, pp. 1200-1203. [39] A. Van Namen, S. Jandhyala, T. Jordan, and G. Luke, 'Repeated Acoustic Vaporization of Perfluorohexane Nanodroplets for Contrast-Enhanced Ultrasound Imaging,' arXiv preprint arXiv:2103.15895, 2021. [40] 葛竑志, '基於金奈米液滴汽化之聲穿孔效應研究,' 臺灣大學生醫電子與資訊學研究所學位論文, pp. 1-69, 2019. [41] M. Guédra and F. Coulouvrat, 'A model for acoustic vaporization of encapsulated droplets,' The Journal of the Acoustical Society of America, vol. 138, no. 6, pp. 3656-3667, 2015. [42] L. Hoff, P. C. Sontum, and J. M. Hovem, 'Oscillations of polymeric microbubbles: Effect of the encapsulating shell,' The Journal of the Acoustical Society of America, vol. 107, no. 4, pp. 2272-2280, 2000. [43] L. B. Allen and J. L. Kassner Jr, 'The nucleation of water vapor in the absence of particulate matter and ions,' Journal of Colloid and Interface Science, vol. 30, no. 1, pp. 81-93, 1969. [44] T. Ye and J. L. Bull, 'Direct numerical simulations of micro-bubble expansion in gas embolotherapy,' Journal of biomechanical engineering, vol. 126, no. 6, pp. 745-759, 2004. [45] A. Qamar, Z. Z. Wong, J. B. Fowlkes, and J. L. Bull, 'Dynamics of acoustic droplet vaporization in gas embolotherapy,' Applied physics letters, vol. 96, no. 14, p. 143702, 2010. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2862051/pdf/APPLAB-000096-143702_1.pdf. [46] O. Shpak et al., 'Ultrafast dynamics of the acoustic vaporization of phase-change microdroplets,' The Journal of the Acoustical Society of America, vol. 134, no. 2, pp. 1610-1621, 2013. [Online]. Available: https://asa.scitation.org/doi/10.1121/1.4812882. [47] Y. Hao and A. Prosperetti, 'The dynamics of vapor bubbles in acoustic pressure fields,' Physics of Fluids, vol. 11, no. 8, pp. 2008-2019, 1999. [48] A. A. Doinikov, P. S. Sheeran, A. Bouakaz, and P. A. Dayton, 'Vaporization dynamics of volatile perfluorocarbon droplets: a theoretical model and in vitro validation,' Medical physics, vol. 41, no. 10, p. 102901, 2014. [49] J. Osborn, M. S. Anderson, M. Beddingfield, L. G. Zhang, and K. Sarkar, 'Acoustic Droplet Vaporization of Perfluorocarbon Droplets in 3D-Printable Gelatin Methacrylate Scaffolds,' Ultrasound in Medicine Biology, vol. 47, no. 11, pp. 3263-3274, 2021. [50] T. Lacour, M. Guédra, T. Valier-Brasier, and F. Coulouvrat, 'A model for acoustic vaporization dynamics of a bubble/droplet system encapsulated within a hyperelastic shell,' The Journal of the Acoustical Society of America, vol. 143, no. 1, pp. 23-37, 2018. [51] A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, 'Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging,' ACS nano, vol. 8, no. 1, pp. 250-259, 2014. [52] W.-W. Liu et al., 'Nanodroplet-vaporization-assisted sonoporation for highly effective delivery of photothermal treatment,' Scientific reports, vol. 6, no. 1, pp. 1-14, 2016. [53] E. M. Strohm, M. Rui, M. C. Kolios, I. Gorelikov, and N. Matsuura, 'Optical droplet vaporization (ODV): Photoacoustic characterization of perfluorocarbon droplets,' in 2010 IEEE international ultrasonics symposium, 2010: IEEE, pp. 495-498. [54] B. Krasovitski, H. Kislev, and E. Kimmel, 'Modeling photothermal and acoustical induced microbubble generation and growth,' Ultrasonics, vol. 47, no. 1-4, pp. 90-101, 2007. [55] C. H. Farny, T. Wu, R. G. Holt, T. W. Murray, and R. A. Roy, 'Nucleating cavitation from laser-illuminated nano-particles,' Acoustics Research Letters Online, vol. 6, no. 3, pp. 138-143, 2005. [56] P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, 'Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,' The journal of physical chemistry B, vol. 110, no. 14, pp. 7238-7248, 2006. [57] M. N. Berberan-Santos, E. N. Bodunov, and L. Pogliani, 'The van der Waals equation: analytical and approximate solutions,' Journal of mathematical chemistry, vol. 43, no. 4, pp. 1437-1457, 2008. [58] A. A. Doinikov and A. Bouakaz, 'Review of shell models for contrast agent microbubbles,' IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 58, no. 5, pp. 981-993, 2011. [59] J. B. Keller and I. I. Kolodner, 'Damping of underwater explosion bubble oscillations,' Journal of applied physics, vol. 27, no. 10, pp. 1152-1161, 1956. [60] J. B. Keller and M. Miksis, 'Bubble oscillations of large amplitude,' The Journal of the Acoustical Society of America, vol. 68, no. 2, pp. 628-633, 1980. [61] C. C. Church, 'The effects of an elastic solid surface layer on the radial pulsations of gas bubbles,' The Journal of the Acoustical Society of America, vol. 97, no. 3, pp. 1510-1521, 1995. [62] N. De Jong, R. Cornet, and C. d. Lancée, 'Higher harmonics of vibrating gas-filled microspheres. Part one: simulations,' Ultrasonics, vol. 32, no. 6, pp. 447-453, 1994. [63] N. De Jong, R. Cornet, and C. d. Lancée, 'Higher harmonics of vibrating gas-filled microspheres. Part two: Measurements,' Ultrasonics, vol. 32, no. 6, pp. 455-459, 1994. [64] B. Avvaru and A. B. Pandit, 'Oscillating bubble concentration and its size distribution using acoustic emission spectra,' Ultrasonics sonochemistry, vol. 16, no. 1, pp. 105-115, 2009. [65] T. Gehrke and H. M. Overhoff, 'Microbubble oscillation due to harmonic, pulsed and frequency modulated excitation with ultrasound,' in Bildverarbeitung für die Medizin 2008: Springer, 2008, pp. 67-71. [66] A. Bouakaz, S. Frigstad, F. J. Ten Cate, and N. de Jong, 'Super harmonic imaging: a new imaging technique for improved contrast detection,' Ultrasound in medicine biology, vol. 28, no. 1, pp. 59-68, 2002. [67] C.-Y. Lai, C.-H. Wu, C.-C. Chen, and P.-C. Li, 'Quantitative relations of acoustic inertial cavitation with sonoporation and cell viability,' Ultrasound in medicine biology, vol. 32, no. 12, pp. 1931-1941, 2006. [68] N. Aydin, S. Padayachee, and H. S. Markus, 'The use of the wavelet transform to describe embolic signals,' Ultrasound in medicine biology, vol. 25, no. 6, pp. 953-958, 1999. [69] K. Ferroudji, N. Benoudjit, M. Bahaz, and A. Bouakaz, 'Selection of a suitable mother wavelet for microemboli classification using SVM and RF signals,' in 2012 24th international conference on microelectronics (ICM), 2012: IEEE, pp. 1-4. [70] N. Aydin, F. Marvasti, and H. S. Markus, 'Embolic Doppler ultrasound signal detection using discrete wavelet transform,' IEEE Transactions on Information Technology in Biomedicine, vol. 8, no. 2, pp. 182-190, 2004. [71] K. Ferroudji, N. Benoudjit, and A. Bouakaz, 'An automated microemboli detection and classification system using backscatter RF signals and differential evolution,' Australasian physical engineering sciences in medicine, vol. 40, no. 1, pp. 85-99, 2017. [72] K. P. Murphy, 'Naive bayes classifiers,' University of British Columbia, vol. 18, no. 60, pp. 1-8, 2006. [73] C. J. Miles, C. R. Doering, and O. D. Kripfgans, 'Nucleation pressure threshold in acoustic droplet vaporization,' Journal of Applied Physics, vol. 120, no. 3, p. 034903, 2016. [74] A. Kabalnov et al., 'Dissolution of multicomponent microbubbles in the bloodstream: 2. Experiment,' Ultrasound in medicine biology, vol. 24, no. 5, pp. 751-760, 1998. [75] N. De Jong, M. Emmer, A. Van Wamel, and M. Versluis, 'Ultrasonic characterization of ultrasound contrast agents,' Medical biological engineering computing, vol. 47, no. 8, pp. 861-873, 2009. [76] G. Lajoinie, T. Segers, and M. Versluis, 'High-frequency acoustic droplet vaporization is initiated by resonance,' Physical review letters, vol. 126, no. 3, p. 034501, 2021. [77] S. Cleve, M. Guédra, C. Inserra, C. Mauger, and P. Blanc-Benon, 'Surface modes with controlled axisymmetry triggered by bubble coalescence in a high-amplitude acoustic field,' Physical Review E, vol. 98, no. 3, p. 033115, 2018. [78] N. Malik et al., 'Air embolism: diagnosis and management,' Future cardiology, vol. 13, no. 4, pp. 365-378, 2017. [79] Y. Liu, M. L. Calvisi, and Q. Wang, 'Shape oscillation and stability of an encapsulated microbubble translating in an acoustic wave,' The Journal of the Acoustical Society of America, vol. 144, no. 4, pp. 2189-2200, 2018. [80] E. M. Payne, S. J. Illesinghe, A. Ooi, and R. Manasseh, 'Symmetric mode resonance of bubbles attached to a rigid boundary,' The Journal of the Acoustical Society of America, vol. 118, no. 5, pp. 2841-2849, 2005. [81] M. Adama Maiga, O. Coutier-Delgosha, and D. Buisine, 'A new cavitation model based on bubble-bubble interactions,' Physics of Fluids, vol. 30, no. 12, p. 123301, 2018. [82] A. M. Ibrahim, J. I. Padovani, R. T. Howe, and Y. H. Anis, 'Modeling of Droplet Generation in a Microfluidic Flow-Focusing Junction for Droplet Size Control,' Micromachines, vol. 12, no. 6, p. 590, 2021. [83] M. Rhee, P. Liu, R. J. Meagher, Y. K. Light, and A. K. Singh, 'Versatile on-demand droplet generation for controlled encapsulation,' Biomicrofluidics, vol. 8, no. 3, p. 034112, 2014. [84] J. Xu, S. Li, G. Chen, and G. Luo, 'Formation of monodisperse microbubbles in a microfluidic device,' AIChE journal, vol. 52, no. 6, pp. 2254-2259, 2006. [85] T. D. Pham, 'Time–frequency time–space LSTM for robust classification of physiological signals,' Scientific reports, vol. 11, no. 1, pp. 1-11, 2021. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81038 | - |
| dc.description.abstract | 聲穿孔作用是指利用超音波與超音波對比劑的相互作用使細胞膜產生穿孔現象,已被廣泛研究於輸送藥物、蛋白質和基因。目前已知可引發聲穿孔作用的主要機制之一為慣性穴蝕效應,但慣性穴蝕效應引發時造成的微氣泡破裂,可能會帶來非必要性的細胞死亡,因此期望找到其他方法來引發聲穿孔作用。在我們過去以聲學激發液滴汽化同步光學激發液滴汽化為基礎的聲穿孔研究中,我們已展示液滴反覆汽化凝結的機制,可產生一定劑量的聲穿孔效應,此顯示重複性汽化可引發聲穿孔作用的潛在性。為了近一步瞭解重複性汽化的機制,適當的數值分析方法是必要的。本篇研究將結合流體力學及超音波原理,以數值分析方法建立液滴重複性汽化模型,並在模型中發現可重複性汽化較容易發生於聲壓小週期長的參數條件。此外,為改善傅立葉分析在判斷可重複性汽化發生率的限制,本研究亦採用有限基函式之小波轉換進行具有不同波形之訊號分析,發現當其在高頻區間的能量超過設定之閥值時,能有大於 90 %之正確率找出液滴相變之發生,並可加入每微秒之相變次數提高可重複性汽化之判別。此外,我們也發現小波轉換於低頻高頻間的能量比值可為另一個判定汽化及穴蝕效應的方法。最後,以機器學習進行自動化分析時,發現傅立葉轉換在汽化及慣性穴蝕效應的分析上仍為較佳的指標,而小波轉換則可協助分析重複性汽化之發生機率及次數,因此未來可結合小波與傅立葉轉換用於汽化、重複性汽化與穴蝕效應之分析,協助臨床上更有效率的制定治療策略。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:27:27Z (GMT). No. of bitstreams: 1 U0001-0202202200351500.pdf: 17544955 bytes, checksum: 9bafbd3a0e2ded94a9e50faef96929c0 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 i 中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 viii 表目錄 xiv Chapter 1 緒論 1 1.1 聲穿孔作用與癌症腫瘤治療 1 1.2 微米氣泡與奈米液滴 2 1.2.1 微米氣泡 2 1.2.2 奈米液滴 4 1.3 液滴汽化 6 1.4 穴蝕效應 9 1.5 可重複性汽化效應 11 1.6 研究動機 13 Chapter 2 研究方法 14 2.1 模型架構 14 2.2 液滴汽化模型 14 2.2.1 聲學激發液滴汽化模型 16 2.2.2 光聲激發液滴汽化模型 19 2.2.3 光學激發液滴汽化模型 21 2.2.4 模擬中的液滴汽化及凝結定義 22 2.3 氣泡震盪模型 24 2.3.1 氣泡震盪模型簡介 24 2.3.2 模擬中的氣泡穴蝕效應定義 26 2.4 粒徑變化與分散壓力 27 2.4.1 粒徑變化轉換為壓力公式 27 2.4.2 壓力所代表的訊號含義 28 2.4.3 加入背景訊號 28 2.5 訊號分析 29 2.5.1 傅立葉轉換 29 2.5.2 小波分析—汽化與凝結效應 30 2.5.3 小波分析—汽化與慣性穴蝕效應 33 2.6 機器學習分類模型 36 2.6.1 分類器 36 2.6.2 訊號特徵模型 37 2.6.3 訊號模型 — 兩種訊號定義 39 Chapter 3 實驗結果 40 3.1 聲學激發液滴汽化模型 40 3.1.1 聲壓 40 3.1.2 液滴外徑 43 3.1.3 彈性模數 44 3.1.4 超音波週期數目 47 3.1.5 液滴氣態內徑 50 3.1.6 頻率 51 3.2 光聲激發液滴汽化模型 52 3.2.1 聲壓 52 3.2.2 液滴外徑 53 3.2.3 彈性模數 54 3.2.4 超音波週期數目 55 3.2.5 液滴氣態內徑 56 3.2.6 頻率 57 3.3 光學激發液滴汽化模型 58 3.4 液滴可重複性汽化效應與慣性穴蝕效應分析 59 3.4.1 傅立葉分析 59 3.4.2 小波分析-汽化與凝結效應 61 3.4.3 慣性穴蝕效應分析 65 3.5 機器學習之分類器結果 71 3.5.1 訊號特徵分類結果 71 3.5.2 傅立葉定義及小波定義分類結果 74 Chapter 4 討論 76 4.1 模擬總結 76 4.1.1 模擬中改變聲壓、頻率、激發週期對汽化與慣性穴蝕效應之影響 76 4.1.2 模擬中液滴外徑內徑及彈性模數對汽化與慣性穴蝕效應之影響 78 4.1.3 光學激發液滴汽化對於聲學激發液滴汽化之影響 79 4.2 實際實驗數據與模擬結果在分析後的誤差討論 81 4.2.1 實驗與模擬中的交互作用及形變 82 4.2.2 液滴氣態內核的起始位置及大小 84 4.3 模擬中的訊號分析 85 4.3.1 汽化效應分析 85 4.3.2 慣性穴蝕效應分析 86 4.4 分類器結果 88 4.4.1 訊號特徵分類結果於模擬與實驗的差異 88 4.4.2 傅立葉與小波轉換分類適用性 89 4.5 模型實用性討論 89 Chapter 5 結論 91 Chapter 6未來工作 93 6.1 液滴形變 93 6.2 液滴交互作用 93 6.3 以微流道系統製作粒徑大小一致的液滴 95 6.4 長短期記憶神經網絡學習模型 98 參考文獻 99 | |
| dc.language.iso | zh-TW | |
| dc.subject | 聲穿孔效應 | zh_TW |
| dc.subject | 氣泡震盪模型 | zh_TW |
| dc.subject | 液滴汽化模型 | zh_TW |
| dc.subject | 小波轉換 | zh_TW |
| dc.subject | 傅立葉轉換 | zh_TW |
| dc.subject | 汽化效應 | zh_TW |
| dc.subject | 穴蝕效應 | zh_TW |
| dc.subject | Bubble Oscillation Model | en |
| dc.subject | Fourier Transform | en |
| dc.subject | Wavelet Transform | en |
| dc.subject | Droplet Vaporization Model | en |
| dc.subject | Sonoporation | en |
| dc.subject | Cavitation | en |
| dc.subject | Vaporization | en |
| dc.title | 奈米液滴汽化與後續穴蝕效應之數值模擬 | zh_TW |
| dc.title | Numerical modeling of nanodroplet vaporization and concomitant cavitation | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝寶育(Chi-Lin Chen),廖愛禾(Li-Sheng Chen),沈哲州(Ming-Fang Yen),(Shin-Liang Pan) | |
| dc.subject.keyword | 聲穿孔效應,穴蝕效應,汽化效應,傅立葉轉換,小波轉換,液滴汽化模型,氣泡震盪模型, | zh_TW |
| dc.subject.keyword | Sonoporation,Cavitation,Vaporization,Fourier Transform,Wavelet Transform,Droplet Vaporization Model,Bubble Oscillation Model, | en |
| dc.relation.page | 109 | |
| dc.identifier.doi | 10.6342/NTU202200264 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-02-10 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0202202200351500.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 17.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
