請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81017完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳景然(Ching-Jan Chen) | |
| dc.contributor.author | Jing-Ye Jhu | en |
| dc.contributor.author | 朱勁燁 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:26:21Z | - |
| dc.date.available | 2021-09-11 | |
| dc.date.available | 2022-11-24T03:26:21Z | - |
| dc.date.copyright | 2021-09-11 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-31 | |
| dc.identifier.citation | [1] H. Xia, Z. Yang, F. Lin and J. Wang, 'Variable gain control of supercapacitor energy storage system of urban rail transit considering system parameters variation,' 2015 54th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), pp. 906-911, Jul. 2015. [2] O. Deblecker, A. Moretti and F. Vallee, 'Comparative Study of Soft-Switched Isolated DC-DC Converters for Auxiliary Railway Supply,' in IEEE Transactions on Power Electronics, vol. 23, no. 5, pp. 2218-2229, Sept. 2008. [3] Steve Taranovich, 'Electric rail traction systems need specialized power management', 29-Apr.-2018. [Online]. Available: https://www.edn.com/electric-rail-traction-systems-need-specialized-power-management/ [4] COIL TECHNOLOGY CORPORATION, 'Railway Power Standard Introduction', 08-Mar.-2019. [Online]. Available: https://www.powerctc.com/zh-hant/node/4276 [5] J. Deng, S. Li, S. Hu, C. Mi, and R. Ma, “Design methodology of LLC resonant converters for electric vehicle battery chargers,” IEEE Trans. Veh. Technol., vol. 63, no. 4, pp. 1581-1592, May 2014. [6] Y. Shen, W. Zhao, Z. Chen, and C. Ca, “Full-bridge LLC resonant converter with series-parallel connected transformers for electric vehicle on-board charger,” IEEE Access, vol. 6, pp. 13490–13500, Mar. 2018. [7] A. Amirahmadi, M. Domb, and E. Persson, “High power density high efficiency wide input voltage range LLC resonant converter utilizing E-mode GaN switches,” in Proc. IEEE Appl. Power Electron. Conf. Expo., pp. 350–354, Mar. 2017. [8] M. Joung, H. Kim, and J. Baek, “Dynamic analysis and optimal design of high efficiency full bridge LLC resonant converter for server power system,” in Proc. IEEE Appl. Power Electron. Conf. Expo., pp. 1292–1297, Feb. 2012. [9] B. C. Kim, Ki. B. Park, C. E. Kim, B. H. Lee, and G. W. Moon, “LLC resonant converter with adaptive link-voltage variation for a high-power-density adapter,” IEEE Trans. Power Electron., vol. 25, no. 9, pp. 2248–2252, Sept. 2010. [10] S. Hu, J. Deng, C. Mi, and M. Zhang, “LLC resonant converters for PHEV battery chargers,” in Proc. IEEE Appl. Power Electron. Conf. Expo., pp. 3051–3054, Mar. 2013. [11] H. Wu, T. Mu, and X. Gao, and Y. Xing, “A secondary-side phase-shift-controlled LLC resonant converter with reduced conduction loss at normal operation for hold-up time compensation application,” IEEE Trans. Power Electron., vol. 30, no. 10, pp. 5352–5357, Apr. 2015. [12] W. Inam, K. K. Afridi, and D. J. Perreault, “Variable frequency multiplier technique for high-efficiency conversion over a wide operating range,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 4, no. 2, pp. 335–343, Jun. 2016. [13] H. Haga and F. Kurokawa, “Modulation method of a full-bridge three-level LLC resonant converter for battery charger of electrical vehicles,” IEEE Trans. Power Electron., vol. 32, no. 4, pp. 2498–2507, Apr. 2017. [14] X. Sun, X. Li, Y. Shen, B. Wang, and X. Guo, “Dual-bridge LLC resonant converter with fixed-frequency PWM control for wide input applications,” IEEE Trans. Power Electron., vol. 32, no. 1, pp. 69–80, Jan. 2017. [15] T. Jiang, J. Zhang, X. Wu, K. Sheng, and Y. Wang, “A bidirectional three-level LLC resonant converter with PWAM control,” IEEE Trans. Power Electron., vol. 31, no. 3, pp. 2213–2225, Mar. 2016. [16] H. Wu, X. Zhan, and Y. Xing, “Interleaved LLC resonant converter with hybrid rectifier and variable-frequency plus phase-shift control for wide output voltage range applications,” IEEE Trans. Power Electron., vol. 32, no. 6, pp. 4246–4257, Jun. 2017. [17] H. Wang, Y. Chen, P. Fang, Y. F. Liu, J. Afsharian, and Z. Yang, “An LLC converter family with auxiliary switch for hold-up mode operation,” IEEE Trans. Power Electron., vol. 32, no. 6, pp. 4291–4306, Jun. 2017. [18] B. C. Kim, K. B. Park, and G. W. Moon, “Asymmetric PWM control scheme during hold-up time for LLC resonant converter,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 2992–2997, Jul. 2012. [19] Y. Jeong, J.-K. Kim, J.-B. Lee, and G.-W. Moon, “An asymmetric half-bridge resonant converter having a reduced conduction loss for DC/DC power applications with a wide range of low input voltage,” IEEE Trans. Power Electron., vol. 32, no. 10, pp. 7795–7804, Oct. 2017. [20] I. Lee and G. Moon, 'A New Asymmetrical Half-Bridge Converter With Zero DC-Offset Current in Transformer,' in IEEE Transactions on Power Electronics, vol. 28, no. 5, pp. 2297-2306, May 2013. [21] X. Sun, Y. Shen, Y. Zhu, and X. Guo, “Interleaved boost-integrated LLC resonant converter with fixed-frequency PWM control for renewable energy generation applications,” IEEE Trans. Power Electron., vol. 30, no. 8, pp. 4312–4326, Aug. 2015. [22] Pit-Leong Wong, F. C. Lee, Peng Xu and Kaiwei Yao, 'Critical inductance in voltage regulator modules,' IEEE Transactions on Power Electronics, vol. 17, no. 4, pp. 485-492, Jul. 2002. [23] C. Chang, E. Chang, C. Cheng, H. Cheng and S. Lin, 'Small Signal Modeling of LLC Resonant Converters Based on Extended Describing Function,' 2012 International Symposium on Computer, Consumer and Control, pp. 365-368, Jul. 2012. [24] J. Stahl, T. Hieke, C. Oeder and T. Duerbaum, 'Small signal analysis of the resonant LLC converter,' 2013 IEEE ECCE Asia Downunder, pp. 25-30, Aug. 2013. [25] Y. Murakami, T. Sato, K. Nishijima and T. Nabeshima, 'Small signal analysis of LLC current resonant converters using equivalent source model,' IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, pp. 1417-1422, Oct. 2016. [26] B. J. Patella, A. Prodic, A. Zirger and D. Maksimovic, 'High-frequency digital PWM controller IC for DC-DC converters,' in IEEE Transactions on Power Electronics, vol. 18, no. 1, pp. 438-446, Jan. 2003. [27] A. V. Peterchev, Jinwen Xiao and S. R. Sanders, 'Architecture and IC implementation of a digital VRM controller,' in IEEE Transactions on Power Electronics, vol. 18, no. 1, pp. 356-364, Jan. 2003. [28] (August 2, 2010) Xilinx, Spartan-6 Family Overview [29] Analog Devices, AD9226 datasheet | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81017 | - |
| dc.description.abstract | 本論文提出了單級交錯式升降壓-LLC諧振轉換器之電路架構,以實現鐵道應用中高達8倍於最小輸入電壓的寬輸入電壓範圍。在本論文中,針對所提出的轉換器進行了分析,包括電路動作原理、增益特性和可實現的輸入電壓範圍,亦計算了組件上的電壓和電流應力,以分析零電壓開關切換 (ZVS) 條件和主要的導通損失。為了開發合適的控制架構,通過將轉換器分成兩級來推導出小信號模型,並利用推導得到的小信號模型,提出了使用脈寬調變控制升降壓級和頻率調變控制 LLC 級的數位控制器架構以及控制器參數設計指南,數位控制器由現場可程式化邏輯閘陣列(FPGA)實現,並由協同模擬的結果驗證了控制器的效果。具有 20-160 V 輸入和 12 V/4 A 輸出之轉換器原型的實驗結果驗證了所提出的直流增益方程式的準確性,並實現了高達最小輸入電壓8倍的輸入電壓範圍,並在工作週期佔空比為0.5時獲得78.2%的最大效率。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:26:21Z (GMT). No. of bitstreams: 1 U0001-3008202117561200.pdf: 4887307 bytes, checksum: 13d3befa7084b4e705cb375d4d0c32b7 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | Table of Contents 口試委員會審定書…………………………………………………………………...i 致謝…………….…………………………...………………………………………...ii 摘要…………………………………………………………………………………..iii Abstract …………………………………………………………………………........iv Table of Contents……………………………………………………………...………v List of Figures…………………………………………………………………….viii List of Tables………………………………………………………………………..xiii Chapter 1. Introduction………………………………………………………...……..1 1.1 Research Background………………………………………………………...1 1.2 Research Motivation and Objective………………………………………….2 1.3 Prior Research and Existing Products………………………………………..3 1.4 Thesis Contribution…………………………………………………………..5 Chapter 2. Steady-state Analysis of Single-stage Interleaved Buck-Boost-LLC Resonant Converter………………………………………………………………6 2.1 Circuit Topology……………………………………………………………...6 2.2 Circuit Operation Principles……………………………………………….…7 2.3 Gain Analysis…………………………..……………………………………10 2.3.1 Buck-Boost Stage……………………..……………………………...10 2.3.2 LLC Stage………………………………………………………….…11 2.3.3 Overall Architecture……………………………………………….…14 2.4 Input Voltage Range Analysis…………………………………………...….14 2.5 Voltage and Current Stress Analysis……………………………………..…16 2.5.1 iLr and iLm…………………………………………………...…………16 2.5.2 iD ……………………………………………………………………..18 2.5.3 iCout……………………………………………………………………19 2.5.4 iLb……………………………………………………………………...19 2.5.5 iQ1-4……………………………………………………………………20 2.6 Zero-voltage Switching Condition of Switches………..……………………24 2.7 Power Loss Analysis………………………………………………………..29 2.8 Parameters Design Consideration…………………………………………...30 Chapter 3. Small-signal Model of Single-stage Interleaved Buck-Boost-LLC Resonant Converter……………………………………………………………..33 3.1 Buck-Boost Stage Cross-term Small-signal Analysis………..…………….33 3.2 Decoupled Buck-Boost Small-signal Model and Feedforward Compensation…………………………………………………………………...39 3.3 Buck-Boost Inductance Slew Rate Limitation………..…………………….41 3.4 LLC Stage Small-signal Model………..……………………………………43 Chapter 4. Controller Design………………………………………………………44 4.1 Proposed Controller Architecture………..…………………….……………44 4.2 Controller Parameters Design for Buck-Boost Stage………..……………45 4.3 Controller Parameters Design for LLC Stage……….………………………48 4.4 Indirect Digital Controller Design………..…………………………………48 4.5 Numerical Controller Parameter Design……………………………………49 Chapter 5. Digital Control Implementation with FPGA……..…………………….52 5.1 FPGA and ADC Boards……………………………………………………..52 5.2 Sampling Timing and Controller Computing Delay………………………..53 5.3 Controller Architecture and Module Description…………….……………..54 5.3.1 ADC Communication………………………………………………...56 5.3.2 PI Compensator for Buck-boost Stage………………………………..57 5.3.3 PI Compensator for LLC Stage………………………………………59 5.3.4 Feedforward Compensator……………………………………………61 5.3.5 High-resolution Digital Pulse-Width Modulator…………………….62 5.3.6 Adaptive Vbus Control……………………………………………….65 5.3.7 Soft Start and Shut Down…………………………………………….66 Chapter 6. Co-simulation………………………………………………………..…68 6.1 Co-simulation Environment…………………………………………………68 6.2 Co-simulation Results……………………………………………………….69 6.2.1 Steady-state Operation Waveforms….……………………………….69 6.2.2 Transient Waveforms….……………………………………..……….72 Chapter 7. Experiment Results………………………………………………………78 7.1 Experiment Setup…………………………………………………………....78 7.2 Experiment Results Verification…………………………………………….80 7.2.1 High-resolution PWM………………………………………………..80 7.2.2 Steady-state Operation………………………………………………..81 7.2.3 Zero-voltage Switching of the Switches……………………………...84 7.2.4 Efficiency Measurement……………………………………………...84 Chapter 8. Conclusions and Future Works…………………………………………..87 8.1 Conclusions………………………………………………………………….87 8.2 Future Works……………………………………………………..…………87 References…………………………………………………………………….…..…89 | |
| dc.language.iso | en | |
| dc.subject | 現場可程式邏輯閘陣列(FPAG) | zh_TW |
| dc.subject | 交錯升/降壓轉換器 | zh_TW |
| dc.subject | LLC諧振轉換器 | zh_TW |
| dc.subject | 寬輸入電壓範圍 | zh_TW |
| dc.subject | 數位控制 | zh_TW |
| dc.subject | wide input voltage range | en |
| dc.subject | FPGA | en |
| dc.subject | LLC resonant converter | en |
| dc.subject | interleaved-buck-boost converter | en |
| dc.subject | digital control | en |
| dc.title | 以FPGA實現數位控制之寬輸入電壓範圍單級交錯式升降壓-LLC諧振轉換器 | zh_TW |
| dc.title | Single-Stage Interleaved Buck-Boost-LLC Resonant Converter for Wide Input Voltage Range Applications with Digital Control using FPGA Implementation | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳耀銘(Hsin-Tsai Liu),陳一通(Chih-Yang Tseng),劉宇晨 | |
| dc.subject.keyword | 交錯升/降壓轉換器,LLC諧振轉換器,寬輸入電壓範圍,數位控制,現場可程式邏輯閘陣列(FPAG), | zh_TW |
| dc.subject.keyword | interleaved-buck-boost converter,LLC resonant converter,wide input voltage range,digital control,FPGA, | en |
| dc.relation.page | 90 | |
| dc.identifier.doi | 10.6342/NTU202102878 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-09-02 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-3008202117561200.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
