請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8099完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 闕蓓德(Pei-Te Chiueh) | |
| dc.contributor.author | Chia-Chun Lin | en |
| dc.contributor.author | 林佳君 | zh_TW |
| dc.date.accessioned | 2021-05-20T00:48:54Z | - |
| dc.date.available | 2023-07-31 | |
| dc.date.available | 2021-05-20T00:48:54Z | - |
| dc.date.copyright | 2020-09-29 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-09-28 | |
| dc.identifier.citation | Acreman, M., Dunbar, M., Hannaford, J., Mountford, O., Wood, P., Holmes, N., Cowx, I.A.N., Noble, R., Extence, C., Aldrick, J., King, J., Black, A. and Crookall, D. (2008) Developing environmental standards for abstractions from UK rivers to implement the EU Water Framework Directive / Développement de standards environnementaux sur les prélèvements d'eau en rivière au Royaume Uni pour la mise en œuvre de la directive cadre sur l'eau de l'Union Européenne. Hydrol Sci J 53(6), 1105-1120. Alcamo, J., DÖLl, P., Henrichs, T., Kaspar, F., Lehner, B., RÖSch, T. and Siebert, S. (2003) Development and testing of the WaterGAP 2 global model of water use and availability. Hydrol Sci J 48(3), 317-337. Aldaya, M.M., Chapagain, A.K., Hoekstra, A.Y. and Mekonnen, M.M. (2012) The water footprint assessment manual: Setting the global standard, Earthscan, London, UK. Bayer, P., Pfister, S. and Hellweg, S. (2009) Indirect water management: How we all can participate, IAHS-AISH Publication, 98-102. Berger, M. and Finkbeiner, M. (2013). Methodological challenges in volumetric and impact‐oriented water footprints. J Ind Ecol 17(1), 79-89. Berger, M., Van Der Ent, R., Eisner, S., Bach, V. and Finkbeiner, M. (2014) Water accounting and vulnerability evaluation (WAVE): Considering atmospheric evaporation recycling and the risk of freshwater depletion in water footprinting. Environ Sci Technol 48(8), 4521-4528. Boulay, A.M., Bare, J., Benini, L., Berger, M., Lathuillière, M.J., Manzardo, A., Margni, M., Motoshita, M., Núñez, M., Pastor, A.V., Ridoutt, B., Oki, T., Worbe, S. and Pfister, S. (2017) The WULCA consensus characterization model for water scarcity footprints: Assessing impacts of water consumption based on available water remaining (AWARE). Int J Life Cycle Assess 23(2), 368-378. Boulay, A.M., Bulle, C., Bayart, J.B., Deschenes, L. and Margni, M. (2011) Regional characterization of freshwater use in LCA: Modeling direct impacts on human health. Environ Sci Technol 45(20), 8948-8957. Bulle, C., Margni, M., Patouillard, L., Boulay, A.M., Bourgault, G., De Bruille, V., Cao, V., Hauschild, M., Henderson, A., Humbert, S., Kashef-Haghighi, S., Kounina, A., Laurent, A., Levasseur, A., Liard, G., Rosenbaum, R.K., Roy, P.O., Shaked, S., Fantke, P. and Jolliet, O. (2019) IMPACT World+: A globally regionalized life cycle impact assessment method. Int J Life Cycle Assess 24(9), 1653-1674. Chaudhary, A., Verones, F., de Baan, L. and Hellweg, S. (2015) Quantifying land use impacts on biodiversity: Combining species– Area models and vulnerability indicators. Environ Sci Technol 49(16), 9987-9995. de Haes, H.A.U., Jolliet, O., Finnveden, G., Hauschild, M., Krewitt, W. and Müller-Wenk, R. (1999) Best available practice regarding impact categories and category indicators in life cycle impact assessment. Int J Life Cycle Assess 4(2), 66. Duke, J. M. and Ehemann, R. (2004). An application of water scarcity pricing with varying threshold, elasticity, and deficit. J Soil Water Conserv 59(2), 59-65. Fantke, P., Jolliet, O., Evans, J.S., Apte, J.S., Cohen, A.J., Hänninen, O.O., Hurley, F., Jantunen, M.J., Jerrett, M., Levy, J.I., Loh, M.M., Marshall, J.D., Miller, B.G., Preiss, P., Spadaro, J.V., Tainio, M., Tuomisto, J.T., Weschler, C.J. and McKone, T.E. (2015) Health effects of fine particulate matter in life cycle impact assessment: Findings from the Basel Guidance Workshop. Int J Life Cycle Assess 20(2), 276-288. Frischknecht, R. and Büsser-Knöpfel, S. (2013) Swiss eco-factors 2013 according to the ecological scarcity method, Federal Office for the Environment, Bern. Goedkoop, M. and Spriensma, R. (2000) The Eco-indicator 99 – A damage oriented method for life cycle impact assessment. Methodology Report. Second edition 17-4-2000, PRé Consultants B.V., Amersfoort, The Netherlands. Hanafiah, M.M., Xenopoulos, M.A., Pfister, S., Leuven, R.S.E.W. and Huijbregts, M.A.J. (2011) Characterization factors for water consumption and greenhouse gas emissions based on freshwater fish species extinction. Environ Sci Technol 45(12), 5272-5278. Hauschild, M.Z. (2018) Introduction to LCA methodology. In Life cycle assessment- Theory and practice. Hauschild, M.Z., Rosenbaum, R.K. and Olsen, S.I. (eds), Springer. Hauschild, M.Z. and Huijbregts, M.A.J. (2015) Introducing life cycle impact assessment. In Life cycle impact assessment. Hauschild, M.Z. and Huijbregts, M.A.J. (eds), Springer. Hoekstra, A.Y. (2003) Virtual water trade: Proceedings of the International Expert Meeting on Virtual Water Trade. Hoekstra, A.Y. (ed), IHE Delft, The Netherlands. Hoekstra, A.Y., Mekonnen, M.M., Chapagain, A.K., Mathews, R.E. and Richter, B.D. (2012) Global monthly water scarcity: Blue water footprints versus blue water availability. PLoS ONE 7(2), e32688. Howard, G. and Bartram, J. (2003) Domestic water quantity, service level and health, World Health Organization. ISO14040 (2006) Environmental management - Life cycle assessment - Principles and framework, International Organization for Standardization. ISO14044 (2006) Environmental management - Life cycle assessment - Requirements and guidelines, International Organization for Standardization. IWA (2015) Statistics economics: Total charges for the capitals in 2015 for a consumption of 200 m³. Retrieved from http://waterstatistics.iwa-network.org/ graph/11. (August 5, 2020) IWA (2016) Statistics economics: Abstraction per capita. Retrieved from http://waterstatistics.iwa-network.org/graph/3. (August 5, 2020) Jolliet, O., Antón, A., Boulay, A.M., Cherubini, F., Fantke, P., Levasseur, A., McKone, T.E., Michelsen, O., Milà i Canals, L., Motoshita, M., Pfister, S., Verones, F., Vigon, B. and Frischknecht, R. (2018) Global guidance on environmental life cycle impact assessment indicators: Impacts of climate change, fine particulate matter formation, water consumption and land use. Int J Life Cycle Assess 23(11), 2189-2207. Kounina, A., Margni, M., Shaked, S., Bulle, C. and Jolliet, O. (2014) Spatial analysis of toxic emissions in LCA: A sub-continental nested USEtox model with freshwater archetypes. Environ Int 69, 67-89. McGlade, J., Werner, B., Young, M., Matlock, M., Jefferies, D., Sonnemann, G., Aldaya, M., Pfister, S., Berger, M., Farell, C., Hyde, K., Wackernagel, M., Hoekstra, A., Mathews, R., Liu, J., Ercin, E., Weber, J.L., Alfieri, A., Martinez-Lagunes, R., Edens, B., Schulte, P., von Wirén-Lehr, S. and Gee, D. (2012) Measuring water use in a green economy. A report of the working group on water efficiency to the International Resource Panel. UNEP. Motoshita, M. (2013) Quantification of stress arisen from freshwater consumption in the context of life cycle assessment. In Responses of Organisms to Water Stress. Akinci, S. (ed), InTech. Motoshita, M., Itsubo, N. and Inaba, A. (2010) Development of impact factors on damage to health by infectious diseases caused by domestic water scarcity. Int J Life Cycle Assess 16(1), 65-73. Motoshita, M., Ono, Y., Pfister, S., Boulay, A.M., Berger, M., Nansai, K., Tahara, K., Itsubo, N. and Inaba, A. (2018) Consistent characterisation factors at midpoint and endpoint relevant to agricultural water scarcity arising from freshwater consumption. Int J Life Cycle Assess 23(12), 2276-2287. Opher, T. and Friedler, E. (2016) Comparative LCA of decentralized wastewater treatment alternatives for non-potable urban reuse. J Environ Manage 182, 464-476. Owens, J.W. (2001) Water resources in life-cycle impact assessment: Considerations in choosing category indicators. J Ind Ecol 5(2), 37-54. Patouillard, L., Bulle, C., Querleu, C., Maxime, D., Osset, P. and Margni, M. (2018) Critical review and practical recommendations to integrate the spatial dimension into life cycle assessment. J Clean Prod 177, 398-412. Pfister, S., Boulay, A.M., Berger, M., Hadjikakou, M., Motoshita, M., Hess, T., Ridoutt, B., Weinzettel, J., Scherer, L., Doll, P., Manzardo, A., Nunez, M., Verones, F., Humbert, S., Buxmann, K., Harding, K., Benini, L., Oki, T., Finkbeiner, M. and Henderson, A. (2017) Understanding the LCA and ISO water footprint: A response to Hoekstra (2016) 'A critique on the water-scarcity weighted water footprint in LCA'. Ecol Indic 72, 352-359. Pfister, S. and Hellweg, S. (2009) The water 'shoesize' vs. footprint of bioenergy. Proc Natl Acad Sci USA 106(35), E93-E94. Pfister, S., Koehler, A. and Hellweg, S. (2009) Assessing the environmental impacts of freshwater consumption in LCA. Environ Sci Technol 43(11), 4098-4104. Pintilie, L., Torres, C. M., Teodosiu, C. and Castells, F. (2016) Urban wastewater reclamation for industrial reuse: An LCA case study. J Clean Prod 139, 1-14. Potting, J. and Hauschild, M. (2006) Spatial differentiation in life cycle impact assessment: A decade of method development to increase the environmental realism of LCIA. Int J Life Cycle Assess 11(S1), 11-13. Ridoutt, B.G., Pfister, S., Manzardo, A., Bare, J., Boulay, A.M., Cherubini, F., Fantke, P., Frischknecht, R., Hauschild, M., Henderson, A., Jolliet, O., Levasseur, A., Margni, M., McKone, T., Michelsen, O., Milà I Canals, L., Page, G., Pant, R., Raugei, M., Sala, S. and Verones, F. (2016) Area of concern: A new paradigm in life cycle assessment for the development of footprint metrics. Int J Life Cycle Assess, 21(2), 276-280. Rogers, P., Bhatia, R. and Huber, A. (1998) Water as a social and economic good: How to put the principle into practice. Global Water Partnership/Swedish International Development Cooperation Agency, Stockholm, Sweden. Rogers, P., De Silva, R. and Bhatia, R. (2002) Water is an economic good: How to use prices to promote equity, efficiency, and sustainability. Water policy 4(1), 1-17. Rosenbaum, R.K., Hauschild, M.Z., Boulay, A.M., Fantke, P., Laurent, A., Núñez, M. and Vieira, M. (2018) Life cycle impact assessment. In Life cycle assessment- Theory and practice. Hauschild, M.Z., Rosenbaum, R.K. and Olsen, S.I. (eds), Springer. Smakhtin, V., Revenga, C. and Döll, P. (2004) Taking into account environmental water requirements in global-scale water resources assessments. Comprehensive Assessment Research Report 2. Colombo, Sri Lanka: Comprehensive Assessment Secretariat. UNESCO (2003) Water for people - Water for life. The United Nations World Water Development Report, UNESCO and Berghahn Books, Paris. van Zelm, R., Schipper, A.M., Rombouts, M., Snepvangers, J. and Huijbregts, M.A.J. (2011) Implementing groundwater extraction in life cycle impact assessment: Characterization factors based on plant species richness for the Netherlands. Environ Sci Technol 45(2), 629-635. Verones, F., Bare, J., Bulle, C., Frischknecht, R., Hauschild, M., Hellweg, S., Henderson, A., Jolliet, O., Laurent, A., Liao, X., Lindner, J. P., de Souza, D. M., Michelsen, O., Patouillard, L., Pfister, S., Posthuma, L., Prado. V., Ridoutt, B., Rosenbaum, R. K., Sala, S., Ugaya, C., Vieira, M. and Fantke, P. (2017). LCIA framework and cross-cutting issues guidance within the UNEP-SETAC Life Cycle Initiative. J Clean Prod 161, 957-967. Yang, Y. and Heijungs, R. (2016) A generalized computational structure for regional life-cycle assessment. Int. J. Life Cycle Assess. 22(2), 213-221. Yao, P. H., Shyu, G. S., Cheng, B. Y., Cheng, Y. H., and Chang, T. K. (2013) The water footprints of rice in Taiwan. J Taiwan Agric Eng 59 (3), 1-12. Young, R.A. and Loomis, J.B. (2014) Determining the economic value of water- Concepts and methods (2nd Edition), Resources for the Future Press. Yuan, M. H., Lo, S. L. and Chiueh, P. T. (2019). Embedding scarcity in urban water tariffs: mapping supply and demand in North Taiwan. Environ Earth Sci 78(10), 325. 中華經濟研究院 (1991) 台灣地區工業用水需求分析及其經濟價值分析,計畫編號:80:070082,經濟部水資源統一規劃委員會。 內政部戶政司 (2010) 人口統計資料─鄉鎮戶數及人口數,https://www.ris.gov.tw/app /portal/346。 內政部國土測繪中心 (2010) 國土利用現況調查成果資訊專區,https://www.nlsc.gov.tw/LUI/Home/Content_Home.aspx。 內政部營建署 (2013) 公共污水處理廠放流水回收再利用示範推動方案 (核定本)。臺北市。 水利地理資訊服務平臺 (2008) 河川流域範圍圖,https://gic.wra.gov.tw/Gis/gic /API/Google/Index.aspx。(截取日期:2016/7/31) 台灣自來水公司 (2018) 台灣自來水公司供水轄區資訊,https://www.water.gov.tw/ch/OpenData?nodeId=3395。(截取日期:2019/4/22) 台灣自來水公司 (2020) 收費標準,https://www4.water.gov.tw/18_newpage/newpage_D.asp。(截取日期:2020/8/25) 再生水經營業收取再生水費計算公式準則 (2016/8/9)。 地理資訊圖資雲服務平臺 (2019) 鄉鎮區界線,https://www.tgos.tw/TGOS /Web/TGOS_Home.aspx。(截取日期:2019/4/8) 行政院主計總處 (2015) 100年產業關聯表編製報告,https://www.dgbas.gov.tw/ct.asp?xItem=37004 ctNode=3106 mp=1。(截取日期:2019/3/30) 行政院農委會 (2003) 臺灣灌溉史,https://doie.coa.gov.tw/history_detail.php?tid=2 cid=8。(截取日期:2020/8/17) 行政院環保署 (2020) 水質保護網,https://water.epa.gov.tw/Page3_1.aspx。(截取日期:2020/8/25) 利秀蘭 (2015) 限水對國內經濟之影響-以資源利用模型評析,經濟研究,第16期,第107~124頁。 吳瑞賢、毛振泰及黃一凡 (2015) 合理水價機制之實務分析與決策影響。國土及公共治理季刊,第三卷,第2期,第63~74頁。 事業及污水下水道系統水污染防治費收費辦法 (2018/12/26 )。 林佳玉 (2014) 淡水資源耗用與使用的生命週期衝擊評估方法建立,國立臺灣大學環境工程學研究所碩士論文。 社會經濟資料服務平臺 (2017) 民國106年6月二級布區人口統計。內政部統計處,臺北市。 財團法人中技社 (2018) 台灣推動再生水利用所面臨的新挑戰及因應策略。臺北市。 淡江大學水資源管理與政策研究中心 (2011) 自來水事業處永續經營之水價策略規劃研究 (1/2),計畫編號:MOEAWRA0990428,經濟部水利署,臺中市。 淡江大學水資源管理與政策研究中心 (2012) 全臺河川水系地面水可用水量計算資訊系統建置計畫 (1/3),計畫編號:MOEAWRA1010383,經濟部水利署,臺中市。 經濟部水利署 (2012) 台灣地區民國100年各標的用水量統計報告, http://wuss.wra.gov.tw/annuals.aspx。(截取日期:2019/5/1) 經濟部水利署 (2013) 民國 101 年一般水權登記引用水量-地面水,經濟部水利署,臺北市。 經濟部水利署 (2016) 民國 105年6月23日「再生水資源發展條例授權子法訂定說明會 (南區)」會議紀錄。http://www.tami.org.tw/sp1/bulletin/government/government_1050623-3.pdf。(截取日期:2020年8月5日) 經濟部水利署 (2017a) 河川概況,https://www.wrap.gov.tw/pro12.aspx?type=0201000000。(截取日期:2019/5/20) 經濟部水利署 (2017b) 耗水費徵收辦法草案,http://www.dafa.org.tw/proimages/161206/%E8%80%97%E6%B0%B4%E8%B2%BB%E5%BE%B5%E6%94%B6%E8%BE%A6%E6%B3%95(%E8%8D%89%E6%A1%88).pdf。(截取日期:2020/8/25) 農田水利入口網 (2019) 灌溉系統,https://doie.coa.gov.tw/orgs.php。(截取日期:2019/5/20) 臺北自來水事業處 (2018) 民國106年統計年報,臺北自來水事業處,臺北市。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8099 | - |
| dc.description.abstract | 生命週期評估可系統性地量化人為活動對環境的影響。此評估架構內的水資源耗用衝擊評估,係為量化由水資源取用導致的供水不足,進而造成的環境影響。現有水資源耗用衝擊特徵模式及特徵因子的建置,未考量資源取用區與資源需求區相異之特性;且水資源供給短缺的影響對象之不均質分布,亦未於模式中呈現。上述空間問題,將使特徵因子的應用受限及影響評估結果的闡釋。 本研究目的為建置區域性水資源耗用衝擊特徵模式。研究中提出集水區影響範圍 (Watershed-Affected Area, WAA) 概念,以呈現集水區及其供水轄區間的空間關係;並選用社會經濟資料描述損害受體於供水轄區內的空間分布。區域性特徵模式的基本架構即是以集水區影響範圍為基礎,並藉由矩陣運算將宿命因子、暴露因子及影響因子等參數的空間屬性納入考量。 研究中以淡水河、濁水溪及高屏溪集水區為案例,以民生、農業及工業部門為水資源耗用損害承受受體,建置各集水區於豐、枯水期的特徵因子;並以水資源經濟價值為指標,量化水資源耗用對各用水部門的影響。案例中以自來水供水系統及灌溉系統資料建置集水區影響範圍;以用水量、人口數與用地面積及產業關聯表分別推估具空間屬性之宿命因子、曝露因子及影響因子。 案例結果顯示,以豐水期 (5月~10月) 新北市板橋區民生部門之特徵因子 NTD 200.37/ m3consumed 為例,其意義為:豐水期於淡水河集水區取用水資源 1 立方公尺,且不排回原集水區時,板橋區民生部門因而無法取得足夠用水的附加價值損失為 200.37 元。而豐水期於淡水河集水區取用水,其影響範圍內民生部門的總損害則為 NTD 3,121.2/ m3consumed。 由此可知,區域性特徵因子具空間屬性轉換特性:輸入集水區尺度之水資源耗用盤查資料,輸出結果將以行政區尺度呈現;且可描述水資源耗用損害於集水區影響範圍內的潛在分布。水資源盤查資料常以集水區為空間尺度,但為使評估結果適用於水資源耗用後的衝擊調適或補償施行,行政區尺度的結果將更具有支援決策的應用價值。此即為本研究所建置之特徵因子的主要貢獻。 研究中亦將區域性特徵因子應用於水稻種植灌溉用水評估、再生水供水效益評估及季節性水價制定,探討衝擊評估結果如何輔助區域水資源管理。結果顯示,有別於供水量,水資源耗用衝擊評估因隱含評估地區的水資源條件,結果能描述水資源耗用造成的後續影響,適用於從集水區或行政區角度的管理,例如:水資源管理及分配或休耕補償等。 本研究解決的空間問題其重要性為:於計算特徵因子時,因已知潛在受體及其分布,而能使用正確的受體資料,進而提高特徵因子的代表性及評估結果的準確度。並且,因具有詳盡損害量化及受體空間資訊之評估結果,不僅可用於生產端的方案決策,亦有助於損害受體端的災害預防及區域治理。 | zh_TW |
| dc.description.abstract | Life Cycle Assessment (LCA) is a systematic method for evaluating the impacts of human activities. Under the framework of LCA, the impact of water consumption intends to quantify the environmental burden due to insufficient water supply resulting from water consumption. Yet, two spatial problems were identified in the current LCA framework, particularly for the application of characterization models and characterization factors (CFs) for the impact of water consumption. The presence of spatial differences between the water-providing watershed and the water demand regions, and the distribution of damage receptors in the research area, may hinder interpretation of the impact results. This study aims to establish a regionalized characterization model of water consumption impact under the LCA framework. The characterization model was developed based on Watershed-Affected Area (WAA), which represents the relationship between a watershed and its supply areas. Socio-economic data describing the distribution of damage receptors in the water supply area was also adopted in the characterization model. The model was operated in matrix form, considering the complexity of spatial attributes such as fate factor, exposure factor, and effect factor. This regionalized characterization model was demonstrated on the Tamsui River, the Zhuosui River, and the Gaoping River in Taiwan. The domestic sector, the agricultural sector, and the industrial sector were defined as damage receptors in the case study. Besides, the economic value of water was selected as an indicator to understand the impacts of water consumption on each sector. The WAA was constructed by analyzing the potable water supply system and the irrigation system. The water demand data, land use area, and the Input-Output tables were used to derive fate factors, exposures factors, and effect factors, respectively. Take the Tamsui River as an example: the CF of the domestic sector in Banqiao District, New Taipei City, was NTD 200.37/ m3consumed during the high-flow period (May-October). This result indicated that consuming 1 m3 of water in the Tamsui River during this period would cause insufficient water supply to the domestic sector in Banqiao District and result in the loss of NTD 200.37 of added value. Moreover, the total loss of added value of the whole domestic sector in the WAA of the Tamsui River would be NTD 3,121.2. From the results of the regionalized CFs, it was learned that this model enabled the transformation of impacts from different scales, that is, inputting water consumption inventory data at a watershed scale and outputting damage results at a local administrative scale. This model could also be used to reveal the distribution of water consumption impacts at the regional level. These are the main contributions of this study, as the impact results at administrative scale could improve easiness in supporting decision-making. To further understand the feasibility of the developed CFs in regional water resources management, scenario studies on the influences of irrigation water demand for paddy rice, implementation of wastewater reclamation plants for water supply augmentation, as well as for possible formulating of seasonal water pricing, were conducted. Results from the impact assessment reported the consequences of water consumption rather than quantitative results of water supply resulting from the inclusion of water characteristics data. Therefore, compared to the volumetric outputs, the impact results could provide more information to support water resources management such as water resource distribution or subsidies for fallow farmland. The regionalized characterization model developed in this study is expected to improve the quality of the CFs and their impact results, mainly due to the consideration of known spatial features of damage receptors in the model. The results with detailed spatial information can be used not only for the selection of alternative practices but also for improving regional governance and drafting damage prevention strategies. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T00:48:54Z (GMT). No. of bitstreams: 1 U0001-2809202000151700.pdf: 5514424 bytes, checksum: ea1b81ccb1ce779d2923580910326fa1 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員審定書 i 誌謝 iii 摘要 v Abstract vii 圖目錄 xiv 表目錄 xvi 第 1 章 緒論 1 1.1 研究背景 1 1.2 研究目的 5 1.3 研究架構 5 第 2 章 文獻回顧 7 2.1 生命週期衝擊評估 7 2.1.1 衝擊評估及衝擊特徵模式之架構 9 2.1.2 中間點衝擊與終點損害 10 2.1.3 保護領域與關注領域 12 2.2 水資源耗用衝擊評估 13 2.2.1 水資源耗用中間點衝擊評估 14 2.2.2 水資源耗用終點損害評估 17 2.3 區域性生命週期衝擊評估 22 2.3.1 區域性衝擊評估模式建置之考量 22 2.3.2 全球區域性衝擊評估模式 IMPACT World + 24 2.4 水資源經濟價值評估 26 2.4.1 水資源經濟價值評估方法之分類 27 2.4.2 水資源經濟價值評估方法──附加價值法 28 第 3 章 研究方法 31 3.1 研究流程 31 3.2 區域性水資源耗用衝擊特徵模式之建立 32 3.2.1 集水區影響範圍矩陣 M 34 3.2.2 宿命因子 f 35 3.2.3 暴露因子 x 36 3.2.4 影響因子 e 36 3.3 簡化範例 36 3.4 臺灣區域性水資源耗用衝擊特徵因子之建置 40 3.4.1 案例集水區介紹 40 3.4.2 特徵模式之參數計算 41 第 4 章 結果與討論 51 4.1 區域性水資源耗用衝擊特徵模式之建立 51 4.1.1 集水區用水部門別影響範圍 51 4.1.2 集水區用水部門別宿命因子 53 4.1.3 行政區用水部門別暴露因子 53 4.1.4 用水部門別影響因子 56 4.2 區域性水資源耗用衝擊特徵因子之建置 56 4.3 區域性水資源耗用衝擊特徵因子之討論 61 4.4 臺灣區域性水資源耗用衝擊特徵因子之限制 62 第 5 章 區域性水資源耗用衝擊特徵因子之應用 65 5.1 應用:水稻種植之灌溉用水評估 66 5.2 應用:再生水廠供水評估 70 5.2.1 再生水廠介紹 71 5.2.2 再生水供給之衝擊評估 72 5.3 應用:季節性水價制定 75 5.3.1 臺灣現有水資源相關費用 76 5.3.2 區域性衝擊特徵因子應用於季節性水價制定之探討 77 第 6 章 結論與建議 81 6.1 結論 81 6.2 建議 84 參考文獻 87 附錄 1 集水區水資源耗用衝擊特徵因子 95 附錄 2 各產業別用水量及產值相關資料 105 附錄 3 臺灣水資源相關費用 108 附錄 4 建立臺灣區域性特徵因子之重要性 111 | |
| dc.language.iso | zh-TW | |
| dc.title | 區域性水資源耗用衝擊特徵模式之建立 | zh_TW |
| dc.title | Regionalized Characterization Model of Water Consumption Impacts | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.author-orcid | 0000-0003-2474-1965 | |
| dc.contributor.oralexamcommittee | 駱尚廉(Shang-Lien Lo),張尊國(Tsun-Kuo Chang),吳瑞賢(Ray-Shyan Wu),胡憲倫(Allen H. Hu),馬鴻文(Hwong-Wen Ma) | |
| dc.subject.keyword | 水資源耗用,衝擊評估,特徵模式,水資源經濟價值,水資源管理, | zh_TW |
| dc.subject.keyword | Water consumption,Impact assessment,Characterization model,Economic value of water,Water management, | en |
| dc.relation.page | 112 | |
| dc.identifier.doi | 10.6342/NTU202004230 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2020-09-28 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-07-31 | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2809202000151700.pdf | 5.39 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
