Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80995
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱俊翔(Jiunn-Shyang Chiou)
dc.contributor.authorHan-Yu Chienen
dc.contributor.author簡翰鈺zh_TW
dc.date.accessioned2022-11-24T03:25:21Z-
dc.date.available2026-09-03
dc.date.available2022-11-24T03:25:21Z-
dc.date.copyright2021-09-11
dc.date.issued2021
dc.date.submitted2021-09-03
dc.identifier.citation日本道路協會 (2012),「道路橋示方書」。 日本鐵道綜合技術研究所 (2012),「鐵道構造物等設計標準」。 交通部 (2018),「公路橋梁耐震設計規範」。 交通部 (2020),「公路橋梁耐震評估與補強設計規範」。 邱俊翔、柯永彥、黃俊鴻、陳正興 (2014),「剛性基腳之旋轉性能曲線與工程設計考量」,地工技術,140期,頁79-86。 陳正興、柯永彥、邱俊翔 (2015),「沉箱基礎設計規範之評析與側向阻抗之簡化分析模式」,地工技術,143期,頁7-20。 國家地震工程研究中心 (2011),「牛鬥橋現地實驗研討會會議手冊」,財團法人國家實驗研究院國家地震工程研究中心出版。 國家地震工程研究中心 (2012),「牛鬥橋耐震能力現地試驗」,實驗資料庫,計畫編號NCREE-F2012001。 游家奇 (2019),「現地橋梁沉箱基礎側推試驗之三維有限元素分析」,碩士論文。 ACI. (1971). “Building code requirements for reinforced concrete: ACI 318-71.” American Concrete Institute, Detroit, Michigan. ATC. (1981). “Seismic design guidelines for highway bridges.” Rep. No. ATC-6, Applied Technology Council, Redwood City, California. ATC. (1996). “Seismic evaluation and retrofit of concrete buildings.” Rep. No. ATC-40, Applied Technology Council, Redwood City, California. Barton, Y.O. (1982). “Laterally loaded model piles in sand: centrifuge tests and finite element analyses.” Ph.D. Dissertation, University of Cambridge. Bhushan, K., Haley, S.C., and Patrick, T.F. (1979). “Lateral load tests on drilled piers in stiff clays.” Journal of the Geotechnical Engineering Division, 105(8), 969-985. Bierschwale, M.W., Harry, M.C., and Bartoskewitz, R.E. (1981). “Field tests and new design procedure for laterally loaded drilled shafts in clay.” Rep. 211-3F, Texas Transportation Institute, Texas A M University, College Station, Texas. Bolton, M.D. (1986). “The strength and dilatancy of sands.” Géotechnique, 36(1), 65-78. Bowles, J.E. (1997). Foundation Analysis and Design. Fifth Edition. Broms, B.B. (1964a). “Lateral resistance of piles in cohesive soil.” Journal of the Soil Mechanics and Foundations Division, 90(2), 27-63. Broms, B.B. (1964b). “Lateral resistance of piles in cohesionless soil.” Journal of the Soil Mechanics and Foundations Division, 90(3), 123-156. Butterfield, R. (1981). “Another look at gravity platform foundations.” Presented at SMFE in Offshore Technology, CISM, Udine. Butterfield, R., and Ticof, J. (1979). “The use of physical models in designs. Discussion.” Proceeding of the 7th European Conference on Soil Mechanics Foundation Engineering, Brighton, 4, 259-261. Chai, Y.H. (2002). “Flexural strength and ductility of extended pile-shafts—I: analytical model.” Journal of Structural Engineering, 128, 586-594. Chiou, J.S., Ko, Y.Y., Hsu, S.Y., and Tsai, Y.C. (2012). “Testing and analysis of a laterally loaded bridge caisson foundation in gravel.” Soils and Foundations, 52(3), 562-573. Chiou, J.S., and Tsai, C.C. (2020). “Analysis of in situ bridge columns with exposed caisson foundations in a gravel stratum under lateral loading.” Advances in Structural Engineering, 23(8), 424-437. Chiou, J.S., Yang, H.H., and Chen, C.H. (2009). “Use of plastic hinge model in nonlinear pushover analysis of a pile.” Journal of Geotechnical and Geoenvironmental Engineering, 135(9), 1341-1346. Chiou, J.S., and You, J.Q. (2020). “Three-dimensional finite element analysis of laterally loaded bridge caisson foundations in gravelly soil.” Acta Geotechnica, 15(3), 3151-3166. Computers and Structures, Inc. (2017). SAP2000 Integrated Software for Structural Analysis and Design (v. 19.2.2). [computer software]. Berkeley, California. Davidson, H.L. (1982). “Laterally loaded drilled pier research.” Rep. EPRI-EL-2197-V2, Electric Power Research Institute, Pennsylvania. Duncan, J.M., Evans, Jr., L.T., and Ooi, P.S.K. (1994). “Lateral load analysis of single piles and drilled shafts.” Journal of Geotechnical Engineering, 120(6), 1018-1033. Easa, S.M., and Yan, W.Y. (2019). “Performance-based analysis in civil engineering: overview of applications.” Infrastructures, 4(2), 28. Evans, L.T. Jr., and Duncan, J.M. (1982). “Simplified analysis of laterally loaded piles.” Rep. No. UCB/GT/82-04, University of California, Berkeley, California. FEMA. (1997). “NEHRP guidelines for the seismic rehabilitation of buildings.” Rep. No. 273, Federal Emergency Management Agency, Washington, D.C., USA. FEMA. (2000). “Action plan for performance-based seismic design.” Rep. No. 349, Federal Emergency Management Agency, Washington, D.C., USA. Gerolymos, N., and Gazetas, G. (2006a). “Winkler model for lateral response of rigid caisson foundations in linear soil.” Soil Dynamics and Earthquake Engineering, 26, 347-361. Gerolymos, N., and Gazetas, G. (2006b). “Development of Winkler model for static and dynamic response of caisson foundations with soil and interface nonlinearities.” Soil Dynamics and Earthquake Engineering, 26, 363-376. Gerolymos, N., and Gazetas, G. (2006c). “Static and dynamic response of massive caisson foundations with soil and interface nonlinearities—validation and results.” Soil Dynamics and Earthquake Engineering, 26, 377-394. Gerolymos, N., Zafeirakos, A., and Karapiperis, K. (2015). “Generalized failure envelope for caisson foundations in cohesive soil: Static and dynamic loading.” Soil Dynamics and Earthquake Engineering, 78, 154-174. Gerolymos, N., Zafeirakos, A., and Souliotis, C. (2012). “Insight to failure mechanisms of caisson foundations under combined loading: a macro-element approach.” Second International Conference on Performance-based Design in Earthquake Geotechnical Engineering, Taormina, Italy, Paper No. 11.10. Glick, G.W. (1948). “Influence of soft ground on the design of long piles.” Proceedings of 2nd International Conference on Soil Mechanics and Foundation Engineering, Rotterdam, 4, 84-88. Gottardi, G., and Butterfield, R. (1993). “On the bearing capacity of surface footings on sand under general planar loads.” Soils and Foundations, 33(3), 68-79. Hardin, B.O., and Richart, Jr., F.E. (1963). “Elastic wave velocities in granular soils.” Journal of the Soil Mechanics and Foundations Division, 89(1), 33-65. JRA. (1990). “Specifications for Highway Bridges.” Japan Road Association. (in Japanese). Karapiperis, K., and Gerolymos, N. (2014). “Combined loading of caisson foundations in cohesive soil: Finite element versus Winkler modeling.” Computers and Geotechnics, 56, 100-120. Klinkvort, R.T. (2012). “Centrifuge modelling of drained lateral pile-soil response.” Ph.D. Dissertation, Technical University of Denmark. Klinkvort, R.T., and Hededal, O. (2014). “Effect of load eccentricity and stress level on monopile support for offshore wind turbines.” Canadian Geotechnical Journal, 51(9), 966-974. Kulhawy, F.H., and Mayne, P.W. (1990). “Manual on estimating soil properties for foundation design.” Rep. EL-6800, Electric Power Research Institute, Palo Alto, California. Matlock, H. (1970). “Correlations for design of laterally loaded piles in soft clay.” Proceedings of the 2nd Offshore Technology Conference, Houston, Texas, 577-588. Mayne, P.W., Kulhawy, F.H., and Trautmann, C.H. (1992). 'An experimental study of the behavior of drilled shaft foundations under static and cyclic lateral and moment loading.' Rep. TR-100221, Electric Power Research Institute, Palo Alto, California. Motta, E. (2013). “Lateral deflection of horizontally loaded rigid piles in elastoplastic medium.” Journal of Geotechnical and Geoenvironmental Engineering, 139(3), 501-506. MOW. (1972). “Highway bridge design brief.” Rep. No. CDP-701, Ministry of Works and Development, Wellington, New Zealand. Murff, J.D., and Hamilton, J.M. (1993). “P-ultimate for undrained analysis of laterally loaded piles.” Journal of Geotechnical Engineering, 119(1), 91-107. Reese, L.C., Cox, W.R., and Koop, F.D. (1974). “Analysis of laterally loaded piles in sand.” Proceedings of the 6th Offshore Technology Conference, Houston, Texas, 473-483. Reese, L.C., and Welch, R.C. (1975). “Lateral loading of deep foundations in stiff clay.” Journal of the Geotechnical Engineering Division, 101(7), 633-649. Scott, R.F. (1980). “Analysis of centrifuge pile tests; simulation of pile-driving.” Rep. OSAPR Project 13, American Petroleum Institute, Washington, D.C., USA. Scott, R. F. (1981). Foundation Analysis. Prentice-Hall, Inc., Englewood Cliffs. Song, S.T., Chai, Y.H., and Budek, A.M. (2006). “Methodology for preliminary seismic design of extended pile-shafts for bridge structures.” Earthquake Engineering and Structural Dynamics, 35, 1721-1738. Tan, F.S. (1990). “Centrifuge and theoretical modelling of conical footings on sand.” Ph.D. Dissertation, University of Cambridge. Terzaghi, K. (1955). “Evaluation of coefficients of subgrade reaction.” Géotechnique, 5(4), 297-326. TRC Companies, Inc. (2007). XTRACT (v. 3.0.8). [computer software]. Rancho Cordova, California. Veletsos, A.S., and Newmark, N.M. (1960). “Effect of inelastic behavior on the response of simple systems to earthquake motions.” Proceedings of 2nd World Conference on Earthquake Engineering, Tokyo, Japan, 2, 895-912. Winkler, E. (1867). Die Lehre Von Elasticitaet Und Festigkeit, 1st Edition, H. Dominicus, Prague, Czech Republic. Zafeirakos, A., and Gerolymos, N. (2014). “Towards a seismic capacity design of caisson foundations supporting bridge piers.” Soil Dynamics and Earthquake Engineering, 67, 179-197. Zhang, L. (2009). “Nonlinear analysis of laterally loaded rigid piles in cohesionless soil.” Computers and Geotechnics, 36, 718-724. Zhang, L., and Ahmari, S. (2013). “Nonlinear analysis of laterally loaded rigid piles in cohesive soil.” International Journal for Numerical and Analytical Methods in Geomechanics, 37(2), 201-220.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80995-
dc.description.abstract本研究以理論分析之角度,考慮沉箱基礎之非線性(韌性)行為,發展橋梁沉箱基礎之初步耐震設計流程。首先基於溫克模型 (Winkler model) 提出埋置於三種理想完全彈塑性土壤之剛性沉箱基礎,受到複合側力與彎矩載重下之反應解析解。分析模型僅考慮基礎周圍土壤之側向阻抗,並根據基礎頂部與底部周圍土壤之降伏情形界定出不同的載重狀態與極限狀態,以基礎頂部之力與彎矩平衡求得各載重狀態下基礎反應與極限承載力之解析解,並以此解析解建立側力-彎矩互制平面上之破壞包絡線與載重狀態分區。接著本研究提出修正之解析解以考慮底部剪力與彎矩效應之影響,利用此解析解可建立沉箱基礎頂部之力-位移與彎矩-轉角側推曲線,並模擬縮尺與現地試驗以進行驗證。 利用所提出之分析模型,本研究分析耐震設計規範中用以評估基礎性能之檢核項目及容許值與基礎-土壤狀態之關係,以此探討其之合適性。繼則進行受震反應分析以求得不同回歸期地震作用下橋梁沉箱基礎之性能反應值,並進行一系列參數研究探討各分析參數對基礎與結構系統性能之影響。 最後基於研究結果,提出橋梁沉箱基礎之初步耐震設計流程,分別考慮傳統以基礎為容量保護構件及以基礎為韌性構件之二種設計概念。並針對凝聚性及非凝聚性土壤之沉箱基礎為例,示範設計流程,並比較兩種設計概念所得的沉箱基礎設計結果之差異。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:25:21Z (GMT). No. of bitstreams: 1
U0001-0209202114230400.pdf: 5459487 bytes, checksum: ffc1018324556ab0a74f7d79792ba279 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents摘要 I Abstract II 目錄 III 圖目錄 VII 第一章 緒論 1 1.1 研究背景與目的 1 1.2 研究方法 1 1.3 研究內容 2 第二章 文獻回顧 3 2.1 耐震設計概述 3 2.1.1 耐震設計概念發展 3 2.1.2 基礎耐震設計 5 2.2 沉箱側載行為 7 2.2.1 側向受載反應 7 2.2.2 基礎反應理論分析 9 2.2.3 極限側力-彎矩互制曲線 17 2.2.4系統降伏狀態 19 2.3 基礎受震反應 20 2.4 小結 21 第三章 沉箱基礎側向荷載反應之理論分析 39 3.1 分析模型 39 3.2 理論解與互制曲線 40 3.2.1 均勻土壤 41 3.2.2 py隨深度線性增加之Gibson土壤 44 3.2.3 py與k皆隨深度線性增加之Gibson土壤 48 3.2.4 比較與討論 51 3.3 底部效應修正 52 3.3.1 理論分析 52 3.3.2 範例與探討 57 3.4 分析參數決定 59 3.4.1 均勻土壤 59 3.4.2 py隨深度線性增加之Gibson土壤 62 3.4.3 py與k隨深度線性增加之Gibson土壤 64 3.5 案例分析 64 3.5.1 凝聚性土壤 64 3.5.2 非凝聚性土壤 66 3.6 小結 69 第四章 沉箱基礎耐震性能分析 97 4.1 耐震性能規定介紹與檢討 97 4.1.1 設計地震與性能目標 97 4.1.2 現有規範性能指標與容許值之介紹 98 4.1.3降伏點與性能狀態之關係及決定方法 99 4.1.4 性能指標容許值與基礎-土壤狀態之關係 103 4.1.5 性能指標與容許值之建議 105 4.2 受震反應分析 106 4.2.1 設計地震反應譜 106 4.2.2 受震反應分析方法介紹 106 4.2.3 範例 108 4.3 受震反應參數研究 110 4.3.1 凝聚性土壤 110 4.3.2 非凝聚性土壤 113 4.3.3 參數交互影響 116 4.3.4 結構系統參數對側推曲線之影響 116 4.4 小結 117 第五章 沉箱基礎耐震設計 151 5.1 沉箱基礎耐震設計流程 151 5.1.1 以基礎為容量保護構件之設計流程 151 5.1.2 以基礎為韌性構件之設計流程 153 5.2 凝聚性土壤 155 5.2.1 以基礎為容量保護構件之設計流程 156 5.2.2 以基礎為韌性構件之設計流程 157 5.3 非凝聚性土壤 159 5.3.1 以基礎為容量保護構件之設計流程 159 5.3.2 以基礎為韌性構件之設計流程 161 5.4 小結 163 第六章 結論與建議 167 6.1 結論 167 6.2 建議 168 參考文獻 169 附錄A 理論分析推導 177 A.1 均勻土壤 177 A.2 py隨深度線性增加之Gibson土壤 180 A.3 py與k皆隨深度線性增加之Gibson土壤 182 附錄B 參數交互影響 189 B.1 均勻土壤 189 B.2 Gibson土壤 190
dc.language.isozh-TW
dc.subject耐震設計zh_TW
dc.subject解析解zh_TW
dc.subject複合載重zh_TW
dc.subject沉箱基礎zh_TW
dc.subject基礎性能zh_TW
dc.subjectSeismic designen
dc.subjectCaisson foundationsen
dc.subjectCombined loadingen
dc.subjectAnalytical solutionsen
dc.subjectFoundation performanceen
dc.title橋梁沉箱基礎耐震設計之理論分析模式發展zh_TW
dc.titleTheoretical Development of Seismic Design Procedure for Caisson Foundationsen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee柯永彥(Hsin-Tsai Liu),許尚逸(Chih-Yang Tseng)
dc.subject.keyword沉箱基礎,複合載重,解析解,基礎性能,耐震設計,zh_TW
dc.subject.keywordCaisson foundations,Combined loading,Analytical solutions,Foundation performance,Seismic design,en
dc.relation.page215
dc.identifier.doi10.6342/NTU202102954
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-09-06
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
dc.date.embargo-lift2026-09-03-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
U0001-0209202114230400.pdf
  未授權公開取用
5.33 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved