請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80970完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊嘉揚(Jia-Yang Juang) | |
| dc.contributor.author | Ya-Hsuan Liao | en |
| dc.contributor.author | 廖亞軒 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:24:11Z | - |
| dc.date.available | 2021-09-13 | |
| dc.date.available | 2022-11-24T03:24:11Z | - |
| dc.date.copyright | 2021-09-13 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-08 | |
| dc.identifier.citation | R. R. Nagavally, 'Composite materials-history, types, fabrication techniques, advantages, and applications,' International Journal of Mechanical and Production Engineering, vol. 5, no. 9, pp. 82-7, 2017. P. K. Mallick, Fiber-reinforced composites: materials, manufacturing, and design. CRC press, 2007. M. Bannister, 'Challenges for composites into the next millennium — a reinforcement perspective,' Composites Part A: Applied Science and Manufacturing, vol. 32, no. 7, pp. 901-910, 2001, doi: 10.1016/s1359-835x(01)00008-2. E. J. Barbero, Introduction to composite materials design. CRC press, 2010. Y. Y. Tsai, Y. Chiang, J. L. Buford, M. L. Tsai, H. C. Chen, and S. W. Chang, 'Mechanical and crack propagating behavior of sierpinski carpet composites,' ACS Biomaterials Science Engineering, Apr 11 2021, doi: 10.1021/acsbiomaterials.0c01595. A. Ghimire, Y.-Y. Tsai, P.-Y. Chen, and S.-W. Chang, 'Tunable interface hardening: Designing tough bio-inspired composites through 3D printing, testing, and computational validation,' Composites Part B: Engineering, vol. 215, 2021, doi: 10.1016/j.compositesb.2021.108754. Z. Jia, Y. Yu, S. Hou, and L. Wang, 'Biomimetic architected materials with improved dynamic performance,' Journal of the Mechanics and Physics of Solids, vol. 125, pp. 178-197, 2019, doi: 10.1016/j.jmps.2018.12.015. Y. Yang et al., 'Recent progress in biomimetic additive manufacturing technology: From materials to functional structures,' Advanced Materials, p. e1706539, Jun 19 2018, doi: 10.1002/adma.201706539. T.-H. Huang, C.-S. Chen, and S.-W. Chang, 'Microcrack patterns control the mechanical strength in the biocomposites,' Materials Design, vol. 140, pp. 505-515, 2018, doi: 10.1016/j.matdes.2017.12.015. G. X. Gu, C.-T. Chen, D. J. Richmond, and M. J. Buehler, 'Bioinspired hierarchical composite design using machine learning: simulation, additive manufacturing, and experiment,' Materials Horizons, vol. 5, no. 5, pp. 939-945, 2018, doi: 10.1039/c8mh00653a. G. X. Gu, M. Takaffoli, and M. J. Buehler, 'Hierarchically enhanced impact resistance of bioinspired composites,' Advanced Materials, vol. 29, no. 28, Jul 2017, doi: 10.1002/adma.201700060. G. X. Gu, F. Libonati, S. D. Wettermark, and M. J. Buehler, 'Printing nature: Unraveling the role of nacre's mineral bridges,' Journal of the Mechanical Behavior of Biomedical Materials, vol. 76, pp. 135-144, Dec 2017, doi: 10.1016/j.jmbbm.2017.05.007. F. Libonati, G. X. Gu, Z. Qin, L. Vergani, and M. J. Buehler, 'Bone-inspired materials by design: Toughness amplification observed using 3D printing and testing ' Advanced Engineering Materials, vol. 18, no. 8, pp. 1354-1363, 2016, doi: 10.1002/adem.201600143. L. Djumas, A. Molotnikov, G. P. Simon, and Y. Estrin, 'Enhanced mechanical performance of bio-inspired hybrid structures utilising topological interlocking geometry,' Scientific Reports, vol. 6, p. 26706, May 24 2016, doi: 10.1038/srep26706. R. Mirzaeifar, L. S. Dimas, Z. Qin, and M. J. Buehler, 'Defect-tolerant bioinspired hierarchical composites: Simulation and experiment,' ACS Biomaterials Science Engineering, vol. 1, no. 5, pp. 295-304, May 11 2015, doi: 10.1021/ab500120f. M. A. Meyers, J. McKittrick, and P. Y. Chen, 'Structural biological materials: critical mechanics-materials connections,' Science, vol. 339, no. 6121, pp. 773-9, Feb 15 2013, doi: 10.1126/science.1220854. L. S. Dimas, G. H. Bratzel, I. Eylon, and M. J. Buehler, 'Tough composites inspired by mineralized natural materials: Computation, 3D printing, and testing,' Advanced Functional Materials, vol. 23, no. 36, pp. 4629-4638, 2013, doi: 10.1002/adfm.201300215. C. Yang, Y. Kim, S. Ryu, and G. X. Gu, 'Using convolutional neural networks to predict composite properties beyond the elastic limit,' MRS Communications, vol. 9, no. 02, pp. 609-617, 2019, doi: 10.1557/mrc.2019.49. C. T. Chen and G. X. Gu, 'Effect of constituent materials on composite performance: Exploring design strategies via machine learning,' Advanced Theory and Simulations, 2019, doi: 10.1002/adts.201900056. G. X. Gu, C.-T. Chen, and M. J. Buehler, 'De novo composite design based on machine learning algorithm,' Extreme Mechanics Letters, vol. 18, pp. 19-28, 2018, doi: 10.1016/j.eml.2017.10.001. G. X. Gu, S. Wettermark, and M. J. Buehler, 'Algorithm-driven design of fracture resistant composite materials realized through additive manufacturing,' Additive Manufacturing, vol. 17, pp. 47-54, 2017, doi: 10.1016/j.addma.2017.07.002. V. Daghigh et al., 'Machine learning predictions on fracture toughness of multiscale bio-nano-composites,' Journal of Reinforced Plastics and Composites, vol. 39, no. 15-16, pp. 587-598, 2020, doi: 10.1177/0731684420915984. Y. LeCun, Y. Bengio, and G. Hinton, 'Deep learning,' Nature, vol. 521, no. 7553, pp. 436-44, May 28 2015, doi: 10.1038/nature14539. K. O'Shea and R. Nash, 'An introduction to convolutional neural networks,' arXiv preprint arXiv:1511.08458, 2015. F. Khademi, M. Akbari, S. M. Jamal, and M. Nikoo, 'Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete,' Frontiers of Structural and Civil Engineering, vol. 11, no. 1, pp. 90-99, 2017, doi: 10.1007/s11709-016-0363-9. M. Abadi et al., 'Tensorflow: Large-scale machine learning on heterogeneous distributed systems,' arXiv preprint arXiv:1603.04467, 2016. G. E. Hinton and R. R. Salakhutdinov, 'Reducing the dimensionality of data with neural networks,' Science, vol. 313, no. 5786, pp. 504-7, Jul 28 2006, doi: 10.1126/science.1127647. G. E. Hinton, S. Osindero, and Y. W. Teh, 'A fast learning algorithm for deep belief nets,' Neural Comput, vol. 18, no. 7, pp. 1527-54, Jul 2006, doi: 10.1162/neco.2006.18.7.1527. A. J. Smola and B. Scholkopf, 'A tutorial on support vector regression,' (in English), Statistics and Computing, vol. 14, no. 3, pp. 199-222, Aug 2004, doi: Doi 10.1023/B:Stco.0000035301.49549.88. M. Skalic, J. Jimenez, D. Sabbadin, and G. De Fabritiis, 'Shape-based generative modeling for de novo drug design,' Journal of Chemical Information and Modeling, vol. 59, no. 3, pp. 1205-1214, Mar 25 2019, doi: 10.1021/acs.jcim.8b00706. S. Kang and K. Cho, 'Conditional molecular design with deep generative models,' Journal of Chemical Information and Modeling, vol. 59, no. 1, pp. 43-52, Jan 28 2019, doi: 10.1021/acs.jcim.8b00263. J. Lim, S. Ryu, J. W. Kim, and W. Y. Kim, 'Molecular generative model based on conditional variational autoencoder for de novo molecular design,' Journal of Cheminformatics, vol. 10, no. 1, p. 31, Jul 11 2018, doi: 10.1186/s13321-018-0286-7. D. T. Ahneman, J. G. Estrada, S. Lin, S. D. Dreher, and A. G. Doyle, 'Predicting reaction performance in C-N cross-coupling using machine learning,' Science, vol. 360, no. 6385, pp. 186-190, Apr 13 2018, doi: 10.1126/science.aar5169. G. Pilania, C. Wang, X. Jiang, S. Rajasekaran, and R. Ramprasad, 'Accelerating materials property predictions using machine learning,' Scientific Reports, vol. 3, p. 2810, Sep 30 2013, doi: 10.1038/srep02810. X. Lei, C. Liu, Z. Du, W. Zhang, and X. Guo, 'Machine learning-driven real-time topology optimization under moving morphable component-dased framework,' Journal of Applied Mechanics, vol. 86, no. 1, 2019, doi: 10.1115/1.4041319. C. Bisagni and L. Lanzi, 'Post-buckling optimisation of composite stiffened panels using neural networks,' Composite Structures, vol. 58, no. 2, pp. 237-247, 2002, doi: 10.1016/s0263-8223(02)00053-3. Y.-C. Hsu, C.-H. Yu, and M. J. Buehler, 'Using deep learning to predict fracture patterns in crystalline solids,' Matter, vol. 3, no. 1, pp. 197-211, 2020, doi: 10.1016/j.matt.2020.04.019. C.-T. Wu et al., 'Machine learning recommends affordable new Ti alloy with bone-like modulus,' Materials Today, vol. 34, pp. 41-50, 2020, doi: 10.1016/j.mattod.2019.08.008. B. Kim, S. Lee, and J. Kim, 'Inverse design of porous materials using artificial neural networks,' Science Advances, vol. 6, no. 1, p. eaax9324, Jan 2020, doi: 10.1126/sciadv.aax9324. R. K. Tan, N. L. Zhang, and W. Ye, 'A deep learning–based method for the design of microstructural materials,' Structural and Multidisciplinary Optimization, vol. 61, no. 4, pp. 1417-1438, 2019, doi: 10.1007/s00158-019-02424-2. P. Z. Hanakata, E. D. Cubuk, D. K. Campbell, and H. S. Park, 'Accelerated search and design of stretchable graphene kirigami using machine learning,' Physical Review Letters, vol. 121, no. 25, p. 255304, Dec 21 2018, doi: 10.1103/PhysRevLett.121.255304. Y. Liu, T. Zhao, W. Ju, S. Shi, S. Shi, and S. Shi, 'Materials discovery and design using machine learning,' Journal of Materiomics, vol. 3, no. 3, pp. 159-177, 2017, doi: 10.1016/j.jmat.2017.08.002. R. Liu, A. Kumar, Z. Chen, A. Agrawal, V. Sundararaghavan, and A. Choudhary, 'A predictive machine learning approach for microstructure optimization and materials design,' Scientific Reports, vol. 5, p. 11551, Jun 23 2015, doi: 10.1038/srep11551. Y. Mishin, 'Machine-learning interatomic potentials for materials science,' Acta Materialia, vol. 214, 2021, doi: 10.1016/j.actamat.2021.116980. J. E. Gubernatis and T. Lookman, 'Machine learning in materials design and discovery: Examples from the present and suggestions for the future,' Physical Review Materials, vol. 2, no. 12, 2018, doi: 10.1103/PhysRevMaterials.2.120301. K. Guo, Z. Yang, C.-H. Yu, and M. J. Buehler, 'Artificial intelligence and machine learning in design of mechanical materials,' Materials Horizons, vol. 8, no. 4, pp. 1153-1172, 2021, doi: 10.1039/d0mh01451f. S. Bonfanti, R. Guerra, M. Zaiser, and S. Zapperi, 'Digital strategies for structured and architected materials design,' APL Materials, vol. 9, no. 2, 2021, doi: 10.1063/5.0026817. C.-T. Chen and G. X. Gu, 'Machine learning for composite materials,' MRS Communications, vol. 9, no. 02, pp. 556-566, 2019, doi: 10.1557/mrc.2019.32. S. Tiryaki and A. Aydın, 'An artificial neural network model for predicting compression strength of heat treated woods and comparison with a multiple linear regression model,' Construction and Building Materials, vol. 62, pp. 102-108, 2014, doi: 10.1016/j.conbuildmat.2014.03.041. C. Qi, A. Fourie, and Q. Chen, 'Neural network and particle swarm optimization for predicting the unconfined compressive strength of cemented paste backfill,' Construction and Building Materials, vol. 159, pp. 473-478, 2018, doi: 10.1016/j.conbuildmat.2017.11.006. M. V. Pathan et al., 'Predictions of the mechanical properties of unidirectional fibre composites by supervised machine learning,' Scientific Reports, vol. 9, no. 1, p. 13964, Sep 27 2019, doi: 10.1038/s41598-019-50144-w. S. Ye, B. Li, Q. Li, H.-P. Zhao, and X.-Q. Feng, 'Deep neural network method for predicting the mechanical properties of composites,' Applied Physics Letters, vol. 115, no. 16, 2019, doi: 10.1063/1.5124529. E. W. Jacobs, C. Yang, K. G. Demir, and G. X. Gu, 'Vibrational detection of delamination in composites using a combined finite element analysis and machine learning approach,' Journal of Applied Physics, vol. 128, no. 12, 2020, doi: 10.1063/5.0015648. Z. Yang, C. H. Yu, and M. J. Buehler, 'Deep learning model to predict complex stress and strain fields in hierarchical composites,' Science Advances S, vol. 7, no. 15, Apr 2021, doi: 10.1126/sciadv.abd7416. C. Yang, Y. Kim, S. Ryu, and G. X. Gu, 'Prediction of composite microstructure stress-strain curves using convolutional neural networks,' Materials Design, vol. 189, 2020, doi: 10.1016/j.matdes.2020.108509. Z. Yang et al., 'Deep learning approaches for mining structure-property linkages in high contrast composites from simulation datasets,' Computational Materials Science, vol. 151, pp. 278-287, 2018, doi: 10.1016/j.commatsci.2018.05.014. G. X. Gu, L. Dimas, Z. Qin, and M. J. Buehler, 'Optimization of composite fracture properties: Method, validation, and applications,' Journal of Applied Mechanics, vol. 83, no. 7, 2016, doi: 10.1115/1.4033381. S. Kench and S. J. Cooper, 'Generating three-dimensional structures from a two-dimensional slice with generative adversarial network-based dimensionality expansion,' Nature Machine Intelligence, vol. 3, no. 4, pp. 299-305, 2021, doi: 10.1038/s42256-021-00322-1. C.-H. Yu, Z. Qin, and M. J. Buehler, 'Artificial intelligence design algorithm for nanocomposites optimized for shear crack resistance,' Nano Futures, vol. 3, no. 3, 2019, doi: 10.1088/2399-1984/ab36f0. C. T. Chen and G. X. Gu, 'Generative deep neural networks for inverse materials design using backpropagation and active learning,' Advanced Science (Weinh), vol. 7, no. 5, p. 1902607, Mar 2020, doi: 10.1002/advs.201902607. Y. Kim, H. Jeong, G. X. Gu, and S. Ryu, 'A three-dimensional fracture pattern diagram of staggered platelet structures,' Composite Structures, vol. 220, pp. 769-775, 2019, doi: 10.1016/j.compstruct.2019.04.017. A. Pinar Saygin, I. Cicekli, and V. Akman, 'Turing test: 50 years later,' Minds and Machines, vol. 10, no. 4, pp. 463-518, 2000, doi: 10.1023/a:1011288000451. N. Yadav, A. Yadav, and M. Kumar, 'History of neural networks,' in An Introduction to Neural Network Methods for Differential Equations: Springer, 2015, pp. 13-15. B. Rohrer. 'How do convolutional neural networks work?' https://e2eml.school/how_convolutional_neural_networks_work.html (accessed. J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press, 1992. D. Whitley, 'A genetic algorithm tutorial,' Statistics and Computing, vol. 4, no. 2, 1994, doi: 10.1007/bf00175354. A. Hassanat, K. Almohammadi, E. a. Alkafaween, E. Abunawas, A. Hammouri, and V. B. S. Prasath, 'Choosing mutation and crossover ratios for genetic algorithms—A review with a new dynamic approach,' Information, vol. 10, no. 12, 2019, doi: 10.3390/info10120390. R. Leardi, 'Genetic algorithms in chemistry,' Journal of Chromatography A, vol. 1158, no. 1-2, pp. 226-33, Jul 27 2007, doi: 10.1016/j.chroma.2007.04.025. C.-C. Lin and Y.-J. Lee, 'Stacking sequence optimization of laminated composite structures using genetic algorithm with local improvement,' Composite Structures, vol. 63, no. 3-4, pp. 339-345, 2004, doi: 10.1016/s0263-8223(03)00182-x. G. Jones, P. Willett, R. C. Glen, A. R. Leach, and R. Taylor, 'Development and validation of a genetic algorithm for flexible docking,' Journal of Molecular Biology, vol. 267, no. 3, pp. 727-48, Apr 4 1997, doi: 10.1006/jmbi.1996.0897. C. D. Chapman, K. Saitou, and M. J. Jakiela, 'Genetic algorithms as an approach to configuration and topology design,' Journal of Mechanical Design, vol. 116, no. 4, pp. 1005-1012, 1994, doi: 10.1115/1.2919480. C. E. Inglis, 'Stresses in plates due to the presence of cracks and sharp corners,' Transactions of the Institute of Naval Architects, vol. 55, pp. 219-241, 1913. A. A. Griffith, 'VI. The phenomena of rupture and flow in solids,' Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, vol. 221, no. 582-593, pp. 163-198, 1920, doi: 10.1098/rsta.1921.0006. B. McGinty. 'Fracture mechanics.' https://www.fracturemechanics.org/index.html (accessed. G. R. Irwin, 'Analysis of stresses and strains near the end of a crack traversing a Plate,' Journal of Applied Mechanics, vol. 24, no. 3, pp. 361-364, 1957, doi: 10.1115/1.4011547. C. Bjerkén and C. Persson, 'A numerical method for calculating stress intensity factors for interface cracks in bimaterials,' Engineering Fracture Mechanics, vol. 68, no. 2, pp. 235-246, 2001, doi: 10.1016/s0013-7944(00)00098-9. F. Erdogan, 'Fracture mechanics,' International Journal of Solids and Structures, vol. 37, no. 1-2, pp. 171-183, 2000, doi: 10.1016/s0020-7683(99)00086-4. C. H. Wang, Introduction to fracture mechanics. DSTO Aeronautical and Maritime Research Laboratory Melbourne, Australia, 1996. E. K. Oneida, M. C. H. van der Meulen, and A. R. Ingraffea, 'Method for calculating G, GI, and GII to simulate crack growth in 2D, multiple-material structures,' Engineering Fracture Mechanics, vol. 140, pp. 106-126, 2015, doi: 10.1016/j.engfracmech.2015.03.033. J. R. Rice, 'A path independent integral and the approximate analysis of strain concentration by notches and cracks,' Journal of Applied Mechanics, vol. 35, no. 2, pp. 379-386, 1968, doi: 10.1115/1.3601206. X.-K. Zhu and J. A. Joyce, 'Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization,' Engineering Fracture Mechanics, vol. 85, pp. 1-46, 2012, doi: 10.1016/j.engfracmech.2012.02.001. Y. Yang et al., 'Intrinsic toughening and stable crack propagation in hexagonal boron nitride,' Nature, vol. 594, no. 7861, pp. 57-61, Jun 2021, doi: 10.1038/s41586-021-03488-1. G. Roscioli, S. M. Taheri-Mousavi, and C. C. Tasan, 'How hair deforms steel,' Science, vol. 369, no. 6504, pp. 689-694, Aug 7 2020, doi: 10.1126/science.aba9490. S. Lee and M. Pharr, 'Sideways and stable crack propagation in a silicone elastomer,' Proceedings of the National Academy of Sciences of the United States of America, vol. 116, no. 19, pp. 9251-9256, May 7 2019, doi: 10.1073/pnas.1820424116. A. J. W. McClung, G. P. Tandon, K. E. Goecke, and J. W. Baur, 'Non-contact technique for characterizing full-field surface deformation of shape memory polymers at elevated and room temperatures,' Polymer Testing, vol. 30, no. 1, pp. 140-149, 2011, doi: 10.1016/j.polymertesting.2010.11.010. J. Blaber. 'Ncorr.' http://www.ncorr.com/index.php (accessed. J. Blaber, B. Adair, and A. Antoniou, 'Ncorr: Open-source 2D digital image correlation matlab software,' Experimental Mechanics, vol. 55, no. 6, pp. 1105-1122, 2015, doi: 10.1007/s11340-015-0009-1. P. Lava, S. Cooreman, and D. Debruyne, 'Study of systematic errors in strain fields obtained via DIC using heterogeneous deformation generated by plastic FEA,' Optics and Lasers in Engineering, vol. 48, no. 4, pp. 457-468, 2010, doi: 10.1016/j.optlaseng.2009.08.013. T. C. Chu, W. F. Ranson, and M. A. Sutton, 'Applications of digital-image-correlation techniques to experimental mechanics,' Experimental Mechanics, vol. 25, no. 3, pp. 232-244, 1985, doi: 10.1007/bf02325092. Y. X. Xu and J. Y. Juang, 'Measurement of nonlinear poisson's ratio of thermoplastic polyurethanes under cyclic softening using 2D digital image correlation,' Polymers (Basel), vol. 13, no. 9, May 6 2021, doi: 10.3390/polym13091498. F. Zhu, P. Bai, H. Shi, Z. Jiang, D. Lei, and X. He, 'Enhancement of strain measurement accuracy using optical extensometer by application of dual-reflector imaging,' Measurement Science and Technology, vol. 27, no. 6, 2016, doi: 10.1088/0957-0233/27/6/065007. B. Pan, L. Yu, J. Yuan, Z. Shen, and G. Tang, 'Determination of viscoelastic poisson’s ratio of solid propellants using an accuracy-enhanced 2D digital image correlation technique,' Propellants, Explosives, Pyrotechnics, vol. 40, no. 6, pp. 821-830, 2015, doi: 10.1002/prep.201500042. F. Zhu, J. Gu, R. Lu, P. Bai, D. Lei, and X. Kang, 'High-accuracy optical extensometer realized by two parallel cameras and two-dimensional digital image correlation,' Applied Optics, vol. 59, no. 34, pp. 10813-10825, Dec 1 2020, doi: 10.1364/AO.405419. B. Pan, 'Digital image correlation for surface deformation measurement: historical developments, recent advances and future goals,' Measurement Science and Technology, vol. 29, no. 8, 2018, doi: 10.1088/1361-6501/aac55b. M. Merzkirch, L. Ahure Powell, and T. Foecke, 'Measurements of mode I interlaminar properties of carbon fiber reinforced polymers using digital image correlation,' Key Engineering Materials, vol. 742, pp. 652-659, 2017, doi: 10.4028/www.scientific.net/KEM.742.652. K. Allaer, I. De Baere, W. Van Paepegem, and J. Degrieck, 'Direct fracture toughness determination of a ductile epoxy polymer from digital image correlation measurements on a single edge notched bending sample,' Polymer Testing, vol. 42, pp. 199-207, 2015, doi: 10.1016/j.polymertesting.2015.01.014. L. Yu and B. Pan, 'In-plane displacement and strain measurements using a camera phone and digital image correlation,' Optical Engineering, vol. 53, no. 5, 2014, doi: 10.1117/1.Oe.53.5.054107. N. A. Hoult, W. Andy Take, C. Lee, and M. Dutton, 'Experimental accuracy of two dimensional strain measurements using Digital Image Correlation,' Engineering Structures, vol. 46, pp. 718-726, 2013, doi: 10.1016/j.engstruct.2012.08.018. B. Pan, L. Yu, and D. Wu, 'High-accuracy 2D digital image correlation measurements using low-cost imaging lenses: implementation of a generalized compensation method,' Measurement Science and Technology, vol. 25, no. 2, 2014, doi: 10.1088/0957-0233/25/2/025001. B. Pan, L. Yu, and D. Wu, 'High-accuracy 2D digital image correlation measurements with bilateral telecentric lenses: Error analysis and experimental verification,' Experimental Mechanics, vol. 53, no. 9, pp. 1719-1733, 2013, doi: 10.1007/s11340-013-9774-x. A. E. Ismail, S. Jamian, K. Kamarudin, M. K. Mohd Nor, M. N. Ibrahim, and M. A. Choiron, 'An overview of fracture mechanics with ANSYS,' International Journal of Integrated Engineering, vol. 10, no. 5, 2018, doi: 10.30880/ijie.2018.10.05.010. G. V. Guinea, J. Planas, and M. Elices, 'KI evaluation by the displacement extrapolation technique,' Engineering Fracture Mechanics, vol. 66, no. 3, pp. 243-255, 2000, doi: 10.1016/s0013-7944(00)00016-3. R. Krueger, 'Virtual crack closure technique: History, approach, and applications,' Applied Mechanics Reviews, vol. 57, no. 2, pp. 109-143, 2004, doi: 10.1115/1.1595677. A. Gliszczynski, S. Samborski, N. Wiacek, and J. Rzeczkowski, 'Mode I interlaminar fracture of Glass/Epoxy unidirectional laminates. Part II: Numerical analysis,' Materials (Basel), vol. 12, no. 10, May 16 2019, doi: 10.3390/ma12101604. P. S. Valvo, 'A revised virtual crack closure technique for physically consistent fracture mode partitioning,' International Journal of Fracture, vol. 173, no. 1, pp. 1-20, 2011, doi: 10.1007/s10704-011-9658-y. A. Gopichand, 'Computation of stress intensity factor of brass plate with edge crack using J-integral technique,' International Journal of Research in Engineering and Technology, vol. 01, no. 03, pp. 261-266, 2012, doi: 10.15623/ijret.2012.0103011. S. M. Barhli, M. Mostafavi, A. F. Cinar, D. Hollis, and T. J. Marrow, 'J-integral calculation by finite element processing of measured full-field surface displacements,' Experimental Mechanics, vol. 57, no. 6, pp. 997-1009, 2017, doi: 10.1007/s11340-017-0275-1. A. Carpinteri, M. Paggi, and N. Pugno, 'Numerical evaluation of generalized stress-intensity factors in multi-layered composites,' International Journal of Solids and Structures, vol. 43, no. 3-4, pp. 627-641, 2006, doi: 10.1016/j.ijsolstr.2005.06.009. V. B. Watwood, 'The finite element method for prediction of crack behavior,' Nuclear Engineering and Design, vol. 11, no. 2, pp. 323-332, 1970, doi: 10.1016/0029-5493(70)90155-x. M. May, 'Measuring the rate-dependent mode I fracture toughness of composites – A review,' Composites Part A: Applied Science and Manufacturing, vol. 81, pp. 1-12, 2016, doi: 10.1016/j.compositesa.2015.10.033. J. Manterola, J. Renart, J. Zurbitu, A. Turon, and I. Urresti, 'Mode I fracture characterisation of rigid and flexible bonded joints using an advanced Wedge-Driven Test,' Mechanics of Materials, vol. 148, 2020, doi: 10.1016/j.mechmat.2020.103534. R. Krueger, L. Deobald, and H. Gu, 'A benchmark example for delamination growth predictions based on the Single Leg Bending specimen under fatigue loading,' Advanced Modeling and Simulation in Engineering Sciences, vol. 7, no. 1, 2020, doi: 10.1186/s40323-020-00148-3. A. S. Khan, A. Ali, G. Hussain, and M. Ilyas, 'An experimental study on interfacial fracture toughness of 3-D printed ABS/CF-PLA composite under mode I, II, and mixed-mode loading,' Journal of Thermoplastic Composite Materials, 2019, doi: 10.1177/0892705719874860. D. Young, N. Wetmore, and M. Czabaj, 'Interlayer fracture toughness of additively manufactured unreinforced and carbon-fiber-reinforced acrylonitrile butadiene styrene,' Additive Manufacturing, vol. 22, pp. 883-890, 2018, doi: 10.1016/j.addma.2018.02.010. W. Xu and Z. Z. Guo, 'A simple method for determining the mode I interlaminar fracture toughness of composite without measuring the growing crack length,' Engineering Fracture Mechanics, vol. 191, pp. 476-485, 2018, doi: 10.1016/j.engfracmech.2018.01.014. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80970 | - |
| dc.description.abstract | 因為3D列印技術的發展,讓仿生複合材料得以跳脫傳統複合材料的製造與設計限制,師法自然界而設計出複雜的複合材料結構,而材料的優化方向也從剛性的強化轉向韌性的提升。也因為仿生複合材料的設計多樣性,機器學習的使用可以降低探索設計空間時所需的人力和時間。現有關於仿生複合材料的研究不勝枚舉,但鮮少有研究提出的從複合材料性質的有限元素模擬、實驗驗證再到機器學習應用相結合的完整方案,這亦是本研究欲達成之目標。 本研究設計一由兩種軟硬材料組合而成的平面網格複合材料,藉由加入少量的軟材料於硬材料中,在不影響其勁度表現的前提下,可以讓複合材料的韌度表現提到提升。本研究引用能量釋放速率和臨界能量釋放速率作為韌度的比較依據,以降低有限元素模擬所需的計算效能和時間,並透過Polyjet 3D列印技術製備試片進行實驗,並確認斷裂韌性與韌度間的關係。本研究也成功建立一套由卷積神經網路和基因演算法組合而成的反向設計方案,藉由卷積神經網路預測複合材料的韌度作為基因演算法的演化參考依據,設計出符合需求的平面網格複合材料。為相關複合材料設計提供一套簡單高效的開發方案。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:24:11Z (GMT). No. of bitstreams: 1 U0001-0709202113482500.pdf: 4480069 bytes, checksum: 9d0ebb46d66d8d817c330a120a0b0e7f (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "誌謝 I 摘要 II ABSTRACT III 目錄 V 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1 複合材料簡介 1 1.2 文獻回顧 2 1.3 研究動機與目的 4 第二章 相關理論 6 2.1 類神經網路(Neural networks, NN) 6 2.1.1 卷積神經網路(Convolutional neural networks, CNN ) 9 2.2 基因演算法(Genetic algorithm, GA ) 13 2.3 材料勁度(Stiffness)與韌度(Toughness ) 16 2.4 能量釋放速率(Energy release rate) 17 2.5 數位影像相關法(Digital image correlation, DIC) 22 第三章 研究方法與材料 27 3.1 實驗架構 27 3.2 有限元素模擬 28 3.2.1 複合材料設計 28 3.2.2 模擬方法與流程 29 3.2.3 大量模擬流程 32 3.3 試片材料與製備 35 3.3.1 熱熔融層積式3D列印(Fused deposition modeling, FDM) 35 3.3.2 彩色噴墨式3D列印(Polyjet) 38 3.4 拉伸試驗 39 3.4.1 數位影像相關法之開源軟體Ncorr操作 41 3.4.2 純材料性質量測 44 3.4.2.1 楊氏模數(Young’s modulus) 44 3.4.2.2 臨界能量釋放速率(Critical energy release rate) 44 3.4.3 複合材料性質量測 45 3.4.3.1 勁度量測 45 3.4.3.2 韌度量測 46 3.5 機器學習 47 3.5.1 機器學習軟體套件 47 3.5.2 反向設計模型架構 49 3.5.2.1 CNN預測複合材料性質模型 49 3.5.2.2 基因演算法設計複合材料模型 50 第四章 結果與討論 52 4.1 純材料性質 52 4.2 複合材料模擬與實驗結果之比較 54 4.2.1 勁度 57 4.2.2 韌度 58 4.3 反向設計 63 4.3.1 複合材料性質之預測結果 63 4.3.2 複合材料之設計結果 64 第五章 結論與未來展望 70 5.1 結論 70 5.2 未來展望 73 參考文獻 74" | |
| dc.language.iso | zh-TW | |
| dc.subject | 3D列印 | zh_TW |
| dc.subject | 複合材料 | zh_TW |
| dc.subject | 卷積神經網路 | zh_TW |
| dc.subject | 基因演算法 | zh_TW |
| dc.subject | 能量釋放速率 | zh_TW |
| dc.subject | 反向設計 | zh_TW |
| dc.subject | composite material | en |
| dc.subject | 3D printing | en |
| dc.subject | energy release rate | en |
| dc.subject | inverse design | en |
| dc.subject | genetic algorithm | en |
| dc.subject | convolutional neural network | en |
| dc.title | 以基因演算法設計平面網格複合材料 | zh_TW |
| dc.title | Design of Planar Grid Composite Materials Using Genetic Algorithm | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉益宏(Hsin-Tsai Liu),蔡佳霖(Chih-Yang Tseng) | |
| dc.subject.keyword | 複合材料,卷積神經網路,基因演算法,能量釋放速率,反向設計,3D列印, | zh_TW |
| dc.subject.keyword | composite material,convolutional neural network,genetic algorithm,inverse design,energy release rate,3D printing, | en |
| dc.relation.page | 83 | |
| dc.identifier.doi | 10.6342/NTU202103029 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-09-09 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0709202113482500.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
