請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80966完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張瑞峰(Ruey-Feng Chang) | |
| dc.contributor.author | Sin-You Chang | en |
| dc.contributor.author | 張馨友 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:24:00Z | - |
| dc.date.available | 2021-09-17 | |
| dc.date.available | 2022-11-24T03:24:00Z | - |
| dc.date.copyright | 2021-09-17 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-08 | |
| dc.identifier.citation | [1]H. Sung et al., 'Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,' CA: a cancer journal for clinicians, vol. 71, no. 3, pp. 209-249, 2021. [2]R. L. Siegel, K. D. Miller, H. E. Fuchs, and A. Jemal, 'Cancer statistics, 2021,' CA: a cancer journal for clinicians, vol. 71, no. 1, pp. 7-33, 2021. [3]S. Birring and M. Peake, 'Symptoms and the early diagnosis of lung cancer,' ed: BMJ Publishing Group Ltd, 2005. [4]J. Vansteenkiste, C. Dooms, C. Mascaux, and K. Nackaerts, 'Screening and early—detection of lung cancer,' Annals of Oncology, vol. 23, pp. x320-x327, 2012. [5]Y. She et al., 'Development and validation of a deep learning model for non–small cell lung cancer survival,' JAMA network open, vol. 3, no. 6, pp. e205842-e205842, 2020. [6]K. A. Miles, 'How to use CT texture analysis for prognostication of non-small cell lung cancer,' Cancer Imaging, vol. 16, no. 1, pp. 1-6, 2016. [7]N. L. S. T. R. Team, 'Reduced lung-cancer mortality with low-dose computed tomographic screening,' New England Journal of Medicine, vol. 365, no. 5, pp. 395-409, 2011. [8]O. Ozdemir, R. L. Russell, and A. A. Berlin, 'A 3D probabilistic deep learning system for detection and diagnosis of lung cancer using low-dose CT scans,' IEEE transactions on medical imaging, vol. 39, no. 5, pp. 1419-1429, 2019. [9]Y. Lei, Y. Tian, H. Shan, J. Zhang, G. Wang, and M. K. Kalra, 'Shape and margin-aware lung nodule classification in low-dose CT images via soft activation mapping,' Medical image analysis, vol. 60, p. 101628, 2020. [10]V.-H. Le, Q.-H. Kha, T. N. K. Hung, and N. Q. K. Le, 'Risk Score Generated from CT-Based Radiomics Signatures for Overall Survival Prediction in Non-Small Cell Lung Cancer,' Cancers, vol. 13, no. 14, p. 3616, 2021. [11]B. He, W. Zhao, J.-Y. Pi, D. Han, Y.-M. Jiang, and Z.-G. Zhang, 'A biomarker basing on radiomics for the prediction of overall survival in non–small cell lung cancer patients,' Respiratory research, vol. 19, no. 1, pp. 1-8, 2018. [12]O. Grove et al., 'Quantitative computed tomographic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinoma,' PloS one, vol. 10, no. 3, p. e0118261, 2015. [13]J. R. Ferreira Junior et al., 'Radiomic analysis of lung cancer for the assessment of patient prognosis and intratumor heterogeneity,' Radiologia Brasileira, vol. 54, no. 2, pp. 87-93, 2021. [14]J. E. van Timmeren et al., 'Survival prediction of non-small cell lung cancer patients using radiomics analyses of cone-beam CT images,' Radiotherapy and Oncology, vol. 123, no. 3, pp. 363-369, 2017. [15]C. Shen et al., '2D and 3D CT radiomics features prognostic performance comparison in non-small cell lung cancer,' Translational oncology, vol. 10, no. 6, pp. 886-894, 2017. [16]G. Lee et al., 'Radiomics and its emerging role in lung cancer research, imaging biomarkers and clinical management: state of the art,' European journal of radiology, vol. 86, pp. 297-307, 2017. [17]R. Thawani et al., 'Radiomics and radiogenomics in lung cancer: a review for the clinician,' Lung cancer, vol. 115, pp. 34-41, 2018. [18]Y. Huang et al., 'Radiomics signature: a potential biomarker for the prediction of disease-free survival in early-stage (I or II) non—small cell lung cancer,' Radiology, vol. 281, no. 3, pp. 947-957, 2016. [19]H. J. Aerts et al., 'Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach,' Nature communications, vol. 5, no. 1, pp. 1-9, 2014. [20]D. Hong, L. Zhang, K. Xu, X. Wan, and Y. Guo, 'Prognostic Value of Pre-Treatment CT Radiomics and Clinical Factors for the Overall Survival of Advanced (IIIB–IV) Lung Adenocarcinoma Patients,' Frontiers in oncology, vol. 11, p. 1888, 2021. [21]S. K. Zhou et al., 'A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises,' Proceedings of the IEEE, 2021. [22]S. Wang et al., 'Unsupervised deep learning features for lung cancer overall survival analysis,' in 2018 40th Annual international conference of the IEEE engineering in medicine and biology society (EMBC), 2018: IEEE, pp. 2583-2586. [23]A. Bizzego et al., 'Integrating deep and radiomics features in cancer bioimaging,' in 2019 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), 2019: IEEE, pp. 1-8. [24]W. Han et al., 'Deep transfer learning and radiomics feature prediction of survival of patients with high-grade gliomas,' American Journal of Neuroradiology, vol. 41, no. 1, pp. 40-48, 2020. [25]Y. Zhang, E. M. Lobo-Mueller, P. Karanicolas, S. Gallinger, M. A. Haider, and F. Khalvati, 'Improving prognostic performance in resectable pancreatic ductal adenocarcinoma using radiomics and deep learning features fusion in CT images,' Scientific Reports, vol. 11, no. 1, pp. 1-11, 2021. [26]C.-H. Huang, H.-Y. Wu, and Y.-L. Lin, 'Hardnet-mseg: A simple encoder-decoder polyp segmentation neural network that achieves over 0.9 mean dice and 86 fps,' arXiv preprint arXiv:2101.07172, 2021. [27]J. Park, S. Woo, J.-Y. Lee, and I. S. Kweon, 'Bam: Bottleneck attention module,' arXiv preprint arXiv:1807.06514, 2018. [28]P. Chao, C.-Y. Kao, Y.-S. Ruan, C.-H. Huang, and Y.-L. Lin, 'Hardnet: A low memory traffic network,' in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 3552-3561. [29]G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, 'Densely connected convolutional networks,' in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 4700-4708. [30]J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, 'Imagenet: A large-scale hierarchical image database,' in 2009 IEEE conference on computer vision and pattern recognition, 2009: Ieee, pp. 248-255. [31]S. Liu and D. Huang, 'Receptive field block net for accurate and fast object detection,' in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 385-400. [32]S. A. Taghanaki et al., 'Combo loss: Handling input and output imbalance in multi-organ segmentation,' Computerized Medical Imaging and Graphics, vol. 75, pp. 24-33, 2019. [33]R. J. Gillies, P. E. Kinahan, and H. Hricak, 'Radiomics: images are more than pictures, they are data,' Radiology, vol. 278, no. 2, pp. 563-577, 2016. [34]V. Parekh and M. A. Jacobs, 'Radiomics: a new application from established techniques,' Expert review of precision medicine and drug development, vol. 1, no. 2, pp. 207-226, 2016. [35]H. Chao et al., 'Integrative analysis for COVID-19 patient outcome prediction,' Medical Image Analysis, vol. 67, p. 101844, 2021. [36]J. J. Van Griethuysen et al., 'Computational radiomics system to decode the radiographic phenotype,' Cancer research, vol. 77, no. 21, pp. e104-e107, 2017. [37]S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, 'Aggregated residual transformations for deep neural networks,' in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1492-1500. [38]K. He, X. Zhang, S. Ren, and J. Sun, 'Deep residual learning for image recognition,' in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770-778. [39]N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, 'Dropout: a simple way to prevent neural networks from overfitting,' The journal of machine learning research, vol. 15, no. 1, pp. 1929-1958, 2014. [40]T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, 'Focal loss for dense object detection,' in Proceedings of the IEEE international conference on computer vision, 2017, pp. 2980-2988. [41]D. P. Kingma and J. Ba, 'Adam: A method for stochastic optimization,' arXiv preprint arXiv:1412.6980, 2014. [42]L. R. Dice, 'Measures of the amount of ecologic association between species,' Ecology, vol. 26, no. 3, pp. 297-302, 1945. [43]Q. McNemar, 'Note on the sampling error of the difference between correlated proportions or percentages,' Psychometrika, vol. 12, no. 2, pp. 153-157, 1947. [44]E. R. DeLong, D. M. DeLong, and D. L. Clarke-Pearson, 'Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach,' Biometrics, pp. 837-845, 1988. [45]O. Ronneberger, P. Fischer, and T. Brox, 'U-net: Convolutional networks for biomedical image segmentation,' in International Conference on Medical image computing and computer-assisted intervention, 2015: Springer, pp. 234-241. [46]Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, 'Unet++: Redesigning skip connections to exploit multiscale features in image segmentation,' IEEE transactions on medical imaging, vol. 39, no. 6, pp. 1856-1867, 2019. [47]J. A. Hanley and B. J. McNeil, 'The meaning and use of the area under a receiver operating characteristic (ROC) curve,' Radiology, vol. 143, no. 1, pp. 29-36, 1982. [48]G. A. Woodard, K. D. Jones, and D. M. Jablons, 'Lung cancer staging and prognosis,' Lung Cancer, pp. 47-75, 2016. [49]A. Chaddad, C. Desrosiers, M. Toews, and B. Abdulkarim, 'Predicting survival time of lung cancer patients using radiomic analysis,' Oncotarget, vol. 8, no. 61, p. 104393, 2017. [50]H. Chen, M. Liang, X. Li, T. Wu, L. Zhang, and X. Liu, 'An individualised radiomics composite model predicting prognosis of stage 1 solid lung adenocarcinoma,' Clinical radiology, vol. 75, no. 7, pp. 562. e11-562. e19, 2020. [51]Y. Sugai et al., 'Impact of feature selection methods and subgroup factors on prognostic analysis with CT-based radiomics in non-small cell lung cancer patients,' Radiation Oncology, vol. 16, no. 1, pp. 1-12, 2021. [52]G. Chandrarathne, K. Thanikasalam, and A. Pinidiyaarachchi, 'A comprehensive study on deep image classification with small datasets,' in Advances in Electronics Engineering: Springer, 2020, pp. 93-106. [53]J. H. Lee, E. M. Song, Y. S. Sim, Y. J. Ryu, and J. H. Chang, 'Forced expiratory volume in one second as a prognostic factor in advanced non-small cell lung cancer,' Journal of Thoracic Oncology, vol. 6, no. 2, pp. 305-309, 2011. [54]A. Andalib, A. V. Ramana-Kumar, G. Bartlett, E. L. Franco, and L. E. Ferri, 'Influence of postoperative infectious complications on long-term survival of lung cancer patients: a population-based cohort study,' Journal of thoracic oncology, vol. 8, no. 5, pp. 554-561, 2013. [55]S. Shinohara et al., 'Long-term impact of complications after lung resections in non-small cell lung cancer,' Journal of thoracic disease, vol. 11, no. 5, p. 2024, 2019. [56]C. Cao et al., 'Video-assisted thoracic surgery versus open thoracotomy for non-small-cell lung cancer: a propensity score analysis based on a multi-institutional registry,' European Journal of Cardio-Thoracic Surgery, vol. 44, no. 5, pp. 849-854, 2013. [57]S.-W. Kuo, J.-S. Chen, P.-M. Huang, H.-H. Hsu, H.-S. Lai, and J.-M. Lee, 'Prognostic significance of histologic differentiation, carcinoembryonic antigen value, and lymphovascular invasion in stage I non–small cell lung cancer,' The Journal of thoracic and cardiovascular surgery, vol. 148, no. 4, pp. 1200-1207. e3, 2014. [58]M. Agarwal, G. Brahmanday, G. W. Chmielewski, R. J. Welsh, and K. Ravikrishnan, 'Age, tumor size, type of surgery, and gender predict survival in early stage (stage I and II) non-small cell lung cancer after surgical resection,' Lung Cancer, vol. 68, no. 3, pp. 398-402, 2010. [59]T. Iizasa et al., 'Preoperative pulmonary function as a prognostic factor for stage I non–small cell lung carcinoma,' The Annals of thoracic surgery, vol. 77, no. 6, pp. 1896-1902, 2004. [60]Z. Sun et al., 'Histologic grade is an independent prognostic factor for survival in non–small cell lung cancer: An analysis of 5018 hospital-and 712 population-based cases,' The Journal of thoracic and cardiovascular surgery, vol. 131, no. 5, pp. 1014-1020, 2006. [61]X.-L. Fu et al., 'Study of prognostic predictors for non-small cell lung cancer,' Lung cancer, vol. 23, no. 2, pp. 143-152, 1999. [62]B. Ganeshan, E. Panayiotou, K. Burnand, S. Dizdarevic, and K. Miles, 'Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival,' European radiology, vol. 22, no. 4, pp. 796-802, 2012. [63]B. Ganeshan, V. Goh, H. C. Mandeville, Q. S. Ng, P. J. Hoskin, and K. A. Miles, 'Non–small cell lung cancer: histopathologic correlates for texture parameters at CT,' Radiology, vol. 266, no. 1, pp. 326-336, 2013. [64]T. Win et al., 'Tumor heterogeneity and permeability as measured on the CT component of PET/CT predict survival in patients with non–small cell lung cancer,' Clinical Cancer Research, vol. 19, no. 13, pp. 3591-3599, 2013. [65]G. Lee et al., 'Comprehensive computed tomography radiomics analysis of lung adenocarcinoma for prognostication,' The oncologist, vol. 23, no. 7, p. 806, 2018. [66]S. Y. Ahn et al., 'Prognostic value of computed tomography texture features in non–small cell lung cancers treated with definitive concomitant chemoradiotherapy,' Investigative radiology, vol. 50, no. 10, pp. 719-725, 2015. [67]O. Gevaert, 'Meta-learning reduces the amount of data needed to build AI models in oncology,' British Journal of Cancer, pp. 1-2, 2021. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80966 | - |
| dc.description.abstract | "肺癌是全球死亡率最高的癌症,五年存活率僅約一至兩成,準確的預後評估可輔助醫生及早做出個人化醫療的相關決策並有效降低死亡率。一般而言,癌症分期是預後最重要的指標之一,但即使患者處於相同的癌症分期,存活時間也大為不同。因此,需要探索額外的預後因子以提升預測的準確度。 本研究提出了一種結合胸腔電腦斷層掃描影像(Computed tomography, CT)與臨床數據的預後系統來預測肺癌患者的生存狀態。首先,從CT影像擷取出腫瘤區域並輸入至卷積神經網路(Convolutional neural network, CNN)中進行切割以取得腫瘤遮罩,該模型由修改過的三維HarDNet-MSEG網路與瓶頸注意力模塊(Bottleneck attention module, BAM)所構成。接著,利用腫瘤區域影像與腫瘤遮罩提取影像特徵,包含影像組學(Radiomics)與CNN特徵,前者用於計算腫瘤的形狀與紋理屬性,後者利用ResNeSt模型自動學習存活預測的圖像特徵。為消除冗餘資訊,採用一種基於多個機器學習模型的特徵選擇策略來保留最具鑑別度的特徵。最後,使用全連接神經網路整合臨床數據、影像組學與CNN特徵以預測患者的存歿狀態。本研究在三年預後與五年預後實驗中,分別使用437筆與302筆肺癌案例來評估預後系統的性能。根據結果,提出的方法在三年預後中,其準確度、靈敏度、特異性和ROC曲線下面積(AUC)分別為80.78%、73.57%、84.18%和0.8425,而五年預後為81.79%、86.67%、74.59%和0.8373,其性能優於使用單一種特徵與多種機器學習分類器,證實了本研究設計的系統可透過結合圖像特徵與臨床指標有效提升肺癌的預後性能。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:24:00Z (GMT). No. of bitstreams: 1 U0001-0709202123200600.pdf: 2556851 bytes, checksum: 608fd8323ecf7feb90f29043c79a68c2 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 致謝 ii 摘要 iii Abstract iv Table of Contents vi List of Figures vii List of Tables ix Chapter 1 Introduction 1 Chapter 2 Materials 5 Chapter 3 Methods 9 3.1 Image Preprocessing 10 3.2 Tumor Segmentation 11 3.2.1 3-D HarDNet-MSEG 13 3.2.2 Bottleneck Attention Module (BAM) 15 3.2.3 Loss Function 17 3.3 Image Feature Extraction 18 3.3.1 Tumor Region Radiomics Features 19 3.3.2 CNN-based Features 22 3.4 Multivariate Data Analysis 24 3.4.1 Clinical Data Preprocessing 24 3.4.2 Holistic Feature Selection 25 3.5 Prognosis 27 3.6 Experimental Setting 28 Chapter 4 Experimental Results 30 4.1 Environment 30 4.2 Evaluation and Statistics 30 4.3 Comparison of Different Models for Segmentation 31 4.4 Comparison of Different Combinations of Feature Types 32 4.5 Comparison of Different Classifiers 38 4.6 Analysis of Selected Features 44 Chapter 5 Discussion and Conclusion 50 References 56 | |
| dc.language.iso | en | |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 肺癌 | zh_TW |
| dc.subject | 預後 | zh_TW |
| dc.subject | 電腦斷層掃描 | zh_TW |
| dc.subject | 影像組學 | zh_TW |
| dc.subject | 卷積神經網路 | zh_TW |
| dc.subject | 特徵選擇 | zh_TW |
| dc.subject | Feature selection | en |
| dc.subject | Machine learning | en |
| dc.subject | Lung cancer | en |
| dc.subject | Prognosis | en |
| dc.subject | Computed tomography | en |
| dc.subject | Radiomics | en |
| dc.subject | Convolution neural network | en |
| dc.title | 使用AI驅動的肺癌預後模型整合臨床數據與定量影像組學於胸腔電腦斷層掃描 | zh_TW |
| dc.title | AI-driven Prognostic Modeling for Lung Cancer Using Clinical Data and Quantitative Radiomic Features from Chest CT Images | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 羅崇銘(Hsin-Tsai Liu),陳啟禎(Chih-Yang Tseng) | |
| dc.subject.keyword | 肺癌,預後,電腦斷層掃描,影像組學,卷積神經網路,特徵選擇,機器學習, | zh_TW |
| dc.subject.keyword | Lung cancer,Prognosis,Computed tomography,Radiomics,Convolution neural network,Feature selection,Machine learning, | en |
| dc.relation.page | 61 | |
| dc.identifier.doi | 10.6342/NTU202103047 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-09-09 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0709202123200600.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
