Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80962
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴亮全(Liang-Chuan Lai)
dc.contributor.authorKuan-Yi Leeen
dc.contributor.author李冠儀zh_TW
dc.date.accessioned2022-11-24T03:23:50Z-
dc.date.available2021-11-08
dc.date.available2022-11-24T03:23:50Z-
dc.date.copyright2021-11-08
dc.date.issued2021
dc.date.submitted2021-09-08
dc.identifier.citation1. Mattiuzzi, C. and G. Lippi, Current Cancer Epidemiology. J Epidemiol Glob Health, 2019. 9(4): p. 217-222. 2. Croce, C.M., Oncogenes and cancer. N Engl J Med, 2008. 358(5): p. 502-11. 3. Dhillon, A.S., et al., MAP kinase signalling pathways in cancer. Oncogene, 2007. 26(22): p. 3279-90. 4. Diamandis, E.P., Oncogenes and tumor suppressor genes: new biochemical tests. Crit Rev Clin Lab Sci, 1992. 29(3-4): p. 269-305. 5. Soussi, T., The p53 tumor suppressor gene: from molecular biology to clinical investigation. Ann N Y Acad Sci, 2000. 910: p. 121-37; discussion 137-9. 6. Anastasiadou, E., L.S. Jacob, and F.J. Slack, Non-coding RNA networks in cancer. Nat Rev Cancer, 2018. 18(1): p. 5-18. 7. Zhou, Y., et al., Activation of p53 by MEG3 non-coding RNA. J Biol Chem, 2007. 282(34): p. 24731-42. 8. Chen, Q., et al., A nuclear lncRNA Linc00839 as a Myc target to promote breast cancer chemoresistance via PI3K/AKT signaling pathway. Cancer Sci, 2020. 111(9): p. 3279-3291. 9. Suzuki, H. and T. Tsukahara, A view of pre-mRNA splicing from RNase R resistant RNAs. Int J Mol Sci, 2014. 15(6): p. 9331-42. 10. Chen, L.L. and L. Yang, Regulation of circRNA biogenesis. RNA Biol, 2015. 12(4): p. 381-8. 11. Hsu, M.T. and M. Coca-Prados, Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature, 1979. 280(5720): p. 339-40. 12. Hansen, T.B., et al., Natural RNA circles function as efficient microRNA sponges. Nature, 2013. 495(7441): p. 384-8. 13. Memczak, S., et al., Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013. 495(7441): p. 333-8. 14. Ashwal-Fluss, R., et al., circRNA biogenesis competes with pre-mRNA splicing. Mol Cell, 2014. 56(1): p. 55-66. 15. Du, W.W., et al., Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res, 2016. 44(6): p. 2846-58. 16. Chen, N., et al., A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol, 2018. 19(1): p. 218. 17. Li, Z., et al., Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol, 2015. 22(3): p. 256-64. 18. Holdt, L.M., et al., Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun, 2016. 7: p. 12429. 19. Zhao, Z., et al., Hsa_circ_0054633 in peripheral blood can be used as a diagnostic biomarker of pre-diabetes and type 2 diabetes mellitus. Acta Diabetol, 2017. 54(3): p. 237-245. 20. Bai, Y., et al., Circular RNA DLGAP4 Ameliorates Ischemic Stroke Outcomes by Targeting miR-143 to Regulate Endothelial-Mesenchymal Transition Associated with Blood-Brain Barrier Integrity. J Neurosci, 2018. 38(1): p. 32-50. 21. Chen, L., et al., circRNA_100290 plays a role in oral cancer by functioning as a sponge of the miR-29 family. Oncogene, 2017. 36(32): p. 4551-4561. 22. Geng, Y., J. Jiang, and C. Wu, Function and clinical significance of circRNAs in solid tumors. J Hematol Oncol, 2018. 11(1): p. 98. 23. Zhong, Z., et al., Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway. Cancer Lett, 2017. 403: p. 305-317. 24. Huang, G., et al., cir-ITCH plays an inhibitory role in colorectal cancer by regulating the Wnt/beta-catenin pathway. PLoS One, 2015. 10(6): p. e0131225. 25. Wang, G.L. and G.L. Semenza, General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci U S A, 1993. 90(9): p. 4304-8. 26. Denko, N.C., Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer, 2008. 8(9): p. 705-13. 27. Conway, E.M., D. Collen, and P. Carmeliet, Molecular mechanisms of blood vessel growth. Cardiovasc Res, 2001. 49(3): p. 507-21. 28. Wojtkowiak, J.W., et al., Drug resistance and cellular adaptation to tumor acidic pH microenvironment. Mol Pharm, 2011. 8(6): p. 2032-8. 29. Zub, K.A., et al., Modulation of cell metabolic pathways and oxidative stress signaling contribute to acquired melphalan resistance in multiple myeloma cells. PLoS One, 2015. 10(3): p. e0119857. 30. Rockwell, S., et al., Hypoxia and radiation therapy: past history, ongoing research, and future promise. Curr Mol Med, 2009. 9(4): p. 442-58. 31. Gray, L.H., et al., The Concentration of Oxygen Dissolved in Tissues at the Time of Irradiation as a Factor in Radiotherapy. British Journal of Radiology, 1953. 26(312): p. 638-648. 32. Triner, D. and Y.M. Shah, Hypoxia-inducible factors: a central link between inflammation and cancer. J Clin Invest, 2016. 126(10): p. 3689-3698. 33. Barsoum, I.B., et al., Mechanisms of hypoxia-mediated immune escape in cancer. Cancer Res, 2014. 74(24): p. 7185-90. 34. Hatfield, S.M., et al., Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci Transl Med, 2015. 7(277): p. 277ra30. 35. Noman, M.Z., et al., PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med, 2014. 211(5): p. 781-90. 36. Petrova, V., et al., The hypoxic tumour microenvironment. Oncogenesis, 2018. 7(1): p. 10. 37. Gao, Y., J. Wang, and F. Zhao, CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol, 2015. 16: p. 4. 38. Bakheet, T., et al., The AU-rich element landscape across human transcriptome reveals a large proportion in introns and regulation by ELAVL1/HuR. Biochim Biophys Acta Gene Regul Mech, 2018. 1861(2): p. 167-177. 39. Wang, X., et al., N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell, 2015. 161(6): p. 1388-99. 40. Kapeli, K., et al., Distinct and shared functions of ALS-associated proteins TDP-43, FUS and TAF15 revealed by multisystem analyses. Nat Commun, 2016. 7: p. 12143. 41. Udagawa, T., et al., FUS regulates AMPA receptor function and FTLD/ALS-associated behaviour via GluA1 mRNA stabilization. Nat Commun, 2015. 6: p. 7098. 42. Fujii, R., et al., The RNA binding protein TLS is translocated to dendritic spines by mGluR5 activation and regulates spine morphology. Curr Biol, 2005. 15(6): p. 587-93. 43. Bulavin, D.V., et al., Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Nat Genet, 2002. 31(2): p. 210-5. 44. Hong, B., et al., p38 MAPK inhibits breast cancer metastasis through regulation of stromal expansion. Int J Cancer, 2015. 136(1): p. 34-43. 45. Qi, X., et al., p38 MAPK activation selectively induces cell death in K-ras-mutated human colon cancer cells through regulation of vitamin D receptor. J Biol Chem, 2004. 279(21): p. 22138-44. 46. Strippoli, R., et al., p38 maintains E-cadherin expression by modulating TAK1-NF-kappa B during epithelial-to-mesenchymal transition. J Cell Sci, 2010. 123(Pt 24): p. 4321-31. 47. Hu, B., et al., LncRNA CYTOR affects the proliferation, cell cycle and apoptosis of hepatocellular carcinoma cells by regulating the miR-125b-5p/KIAA1522 axis. Aging (Albany NY), 2020. 13(2): p. 2626-2639. 48. Jian, Y., et al., Jade family PHD finger 3 (JADE3) increases cancer stem cell-like properties and tumorigenicity in colon cancer. Cancer Lett, 2018. 428: p. 1-11. 49. Huang, A., et al., Circular RNA-protein interactions: functions, mechanisms, and identification. Theranostics, 2020. 10(8): p. 3503-3517. 50. Abdelmohsen, K., et al., Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol, 2017. 14(3): p. 361-369. 51. Hansen, T.B., et al., miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J, 2011. 30(21): p. 4414-22. 52. Park, O.H., et al., Endoribonucleolytic Cleavage of m(6)A-Containing RNAs by RNase P/MRP Complex. Mol Cell, 2019. 74(3): p. 494-507 e8. 53. Huang, C., et al., A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs. Genes Dev, 2018. 32(9-10): p. 639-644. 54. Chen, R.X., et al., N(6)-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat Commun, 2019. 10(1): p. 4695. 55. Conn, S.J., et al., The RNA binding protein quaking regulates formation of circRNAs. Cell, 2015. 160(6): p. 1125-34. 56. Errichelli, L., et al., FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nat Commun, 2017. 8: p. 14741. 57. Liu, S., et al., FUS-induced circular RNA ZNF609 promotes tumorigenesis and progression via sponging miR-142-3p in lung cancer. J Cell Physiol, 2021. 236(1): p. 79-92. 58. Schoen, I. and S. Koitzsch, ATF3-Dependent Regulation of EGR1 in vitro and in vivo. ORL J Otorhinolaryngol Relat Spec, 2017. 79(5): p. 239-250. 59. Vert, A., et al., Activating transcription factor 3 is crucial for antitumor activity and to strengthen the antiviral properties of Onconase. Oncotarget, 2017. 8(7): p. 11692-11707. 60. Zhang, W. and H.T. Liu, MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res, 2002. 12(1): p. 9-18. 61. Huth, H.W., et al., Upregulation of p38 pathway accelerates proliferation and migration of MDA-MB-231 breast cancer cells. Oncol Rep, 2017. 37(4): p. 2497-2505. 62. Yang, R., et al., The circRNA circAGFG1 acts as a sponge of miR-195-5p to promote triple-negative breast cancer progression through regulating CCNE1 expression. Mol Cancer, 2019. 18(1): p. 4. 63. Jin, Y., et al., Circ_0086720 knockdown strengthens the radiosensitivity of non-small cell lung cancer via mediating the miR-375/SPIN1 axis. Neoplasma, 2021. 68(1): p. 96-107. 64. Han, F., et al., Silencing of lncRNA LINC00857 Enhances BIRC5-Dependent Radio-Sensitivity of Lung Adenocarcinoma Cells by Recruiting NF-kappaB1. Mol Ther Nucleic Acids, 2020. 22: p. 981-993. 65. Azzam, E.I., J.P. Jay-Gerin, and D. Pain, Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett, 2012. 327(1-2): p. 48-60. 66. Tsuiko, O., et al., A speculative outlook on embryonic aneuploidy: Can molecular pathways be involved? Dev Biol, 2019. 447(1): p. 3-13. 67. Zhou, B.B. and S.J. Elledge, The DNA damage response: putting checkpoints in perspective. Nature, 2000. 408(6811): p. 433-9. 68. Thornton, T.M. and M. Rincon, Non-classical p38 map kinase functions: cell cycle checkpoints and survival. Int J Biol Sci, 2009. 5(1): p. 44-51. 69. Navrkalova, V., et al., Oxidative stress as a therapeutic perspective for ATM-deficient chronic lymphocytic leukemia patients. Haematologica, 2015. 100(8): p. 994-6. 70. Roy, S., et al., The role of p38 MAPK pathway in p53 compromised state and telomere mediated DNA damage response. Mutat Res Genet Toxicol Environ Mutagen, 2018. 836(Pt A): p. 89-97. 71. Huang, L., et al., Curcumol triggers apoptosis of p53 mutant triple-negative human breast cancer MDA-MB 231 cells via activation of p73 and PUMA. Oncol Lett, 2017. 14(1): p. 1080-1088. 72. Hui, L., et al., Mutant p53 in MDA-MB-231 breast cancer cells is stabilized by elevated phospholipase D activity and contributes to survival signals generated by phospholipase D. Oncogene, 2006. 25(55): p. 7305-10. 73. Petkovic, S. and S. Muller, RNA circularization strategies in vivo and in vitro. Nucleic Acids Res, 2015. 43(4): p. 2454-65.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80962-
dc.description.abstract"癌症是目前發生率、死亡率皆高,且容易預後不良的疾病,而其中乳癌又為世界上盛行率最高的癌症之一。癌症的發生與腫瘤抑制基因(tumor suppressor gene)及致癌基因(oncogene)的突變有關,而近期有許多報導指出非編碼核糖核酸(non-coding RNAs)如:環形核糖核酸(circular RNAs, circRNAs),在癌細胞的分子調控路徑和機制中扮演著腫瘤抑制或是致癌基因的角色,進而影響細胞功能以及癌症的進程。此外,在癌症發展的過程中腫瘤容易形成缺氧的微環境,而缺氧微環境會導致癌細胞變得更加惡性且增加治療的抗性。然而,環狀核糖核酸在乳癌中的潛在生物學功能和機制仍不清楚。因此,本篇研究假設在缺氧癌細胞中表現量下降的環形核糖核酸可能具有腫瘤抑制的特性,目的是想從中找到一個扮演抑癌角色的環形核糖核酸,並研究其在乳癌細胞中的調控機制。首先,我們從先前實驗室的乳癌細胞次世代定序(next generation sequencing)資料中篩選出缺氧環境下表現量顯著下降的環狀核糖核酸circAAGAB,接著確認其環狀構造,並驗證在缺氧環境中的不同乳癌細胞株間表現量皆顯著下降。我們發現circAAGAB大部分位於細胞質中,且會吸附及抑制微小核糖核酸(micro RNA, miRNA) miR-378h,並上調其下游基因KIAA1522和JADE3的表現量。此外,也發現circAAGAB和FUS有直接的交互作用,並會促進circAAGAB的穩定性。接著透過Affymetrix微陣列晶片(microarray)發現circAAGAB會參與p38 MAPK訊息傳遞路徑,細胞實驗驗證後也發現過表達circAAGAB會抑制乳癌細胞的群落形成、細胞爬行及侵襲能力,且增加乳癌細胞的輻射敏感性。由以上結果顯示circAAGAB為一缺氧下調的腫瘤抑制非編碼核醣核酸,在細胞質中會抑制miR-378h而上調其下游KIAA1522及JADE3表現量,另和FUS結合增加穩定性,也會透過p38 MAPK訊息傳遞路徑抑制細胞惡性,並增加輻射敏感性。此研究或許能幫助乳癌治療的發展能更進一步。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:23:50Z (GMT). No. of bitstreams: 1
U0001-0809202120190100.pdf: 2183120 bytes, checksum: a691abf02f8dbff90f483ca361d66961 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"致謝...I 摘要...II Abstract...IV List of Tables...VIII List of Figures...IX Chapter 1 Introduction...1 1.1 Molecular mechanism influences the occurrence of cancer and tumor progression...1 1.2 Circular RNAs are involved in modulating cell functions in cancer...2 1.3 Hypoxic tumor microenvironment promotes tumor malignancy and therapy resistance...4 1.4 The aim hypothesis of this study...6 Chapter 2 Materials and Methods...7 2.1 Cell culture...7 2.2 Plasmid construction, RNA interference and microRNA over-expressing...7 2.3 Genomic DNA extraction, RNA isolation, reverse transcription and quantitative RT-PCR...8 2.4 Western blotting...9 2.5 RNase R treatment...10 2.6 Actinomycin D treatment...10 2.7 Ionizing radiation treatment...11 2.8 Nuclear-cytoplasmic fractionation...11 2.9 RNA pull-down assay...12 2.10 Luciferase reporter assay...13 2.11 Microarray analysis...13 2.12 BrdU and Immunofluorescence assay...14 2.13 MTT assay...15 2.14 Colony formation assay...15 2.15 Cell migration and invasion assay...15 2.16 Cell apoptosis and cell cycle analysis...16 2.17 Statistical analysis...17 Chapter 3 Results...18 3.1 A novel circular RNA, circAAGAB was downregulated under different oxygen concentrations in breast cancer cells...18 3.2 CircAAGAB acted as a sponge for miR-378h and inhibited its effect on target genes...20 3.3 RNA binding protein FUS increased the stability of circAAGAB via direct binding...22 3.4 CircAAGAB was involved in p38 MAPK signaling pathway and apoptosis-related pathways...24 3.5 CircAAGAB reduced colony formation, cell migration, invasion and epithelial–mesenchymal transition in MDA-MB-231 cells...25 3.6 CircAAGAB increased radiosensitivity in MDA-MB-231 cells...26 Chapter 4 Discussion...29 4.1 CircAAGAB acted as a sponge for miR-378h to up-regulate expression levels of KIAA1522 and JADE3...29 4.2 FUS directly bound circAAGAB and improved its stability...31 4.3 CircAAGAB inhibited cell colony formation, migration and invasion in breast cancer cells through p38 MAPK signaling pathway...32 4.4 Increasing radiosensitivity caused by circAAGAB might involve in p38 MAPK signaling pathway in breast cancer cells...34 4.5 Limitations of this study...36 4.6 Conclusion...38 Tables...39 Figures...46 References...67"
dc.language.isoen
dc.subject缺氧zh_TW
dc.subjectcircAAGABzh_TW
dc.subject輻射敏感性zh_TW
dc.subject乳癌zh_TW
dc.subject細胞功能zh_TW
dc.subject腫瘤抑制基因zh_TW
dc.subjectbreast canceren
dc.subjectradiosensitivityen
dc.subjectcell functionen
dc.subjecthypoxiaen
dc.subjectcircAAGABen
dc.subjecttumor suppressor geneen
dc.title探討缺氧反應之環形核糖核酸circAAGAB在乳癌細胞中之腫瘤抑制功能與輻射敏感性zh_TW
dc.titleInvestigation of the Tumor-Suppressing Roles and Radiosensitivity of Hypoxia-Responsive Circular RNA circAAGAB in Breast Cancer Cellsen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡孟勳(Hsin-Tsai Liu),楊鎧鍵(Chih-Yang Tseng),佘玉萍,蕭貴陽
dc.subject.keyword乳癌,腫瘤抑制基因,circAAGAB,缺氧,細胞功能,輻射敏感性,zh_TW
dc.subject.keywordbreast cancer,tumor suppressor gene,circAAGAB,hypoxia,cell function,radiosensitivity,en
dc.relation.page71
dc.identifier.doi10.6342/NTU202103068
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-09-09
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
U0001-0809202120190100.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved