請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80937完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 梁博煌(Po-Huang Liang) | |
| dc.contributor.author | Hao-Ming Chen | en |
| dc.contributor.author | 陳浩銘 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:22:43Z | - |
| dc.date.available | 2021-11-08 | |
| dc.date.available | 2022-11-24T03:22:43Z | - |
| dc.date.copyright | 2021-11-08 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-15 | |
| dc.identifier.citation | 1. Bušić, A., Marđetko, N., Kundas, S., Morzak, G., Belskaya, H., Ivančić Šantek, M., ... Šantek, B. (2018). Bioethanol production from renewable raw materials and its separation and purification: a review. Food technology and biotechnology, 56(3), 289-311. 2. Cesaro, A., Belgiorno, V. (2015). Combined biogas and bioethanol production: Opportunities and challenges for industrial application. Energies, 8(8), 8121-8144. 3. Patinvoh, R. J., Osadolor, O. A., Chandolias, K., Horváth, I. S., Taherzadeh, M. J. (2017). Innovative pretreatment strategies for biogas production. Bioresource technology, 224, 13-24. 4. Zheng, Y., Zhao, J., Xu, F., Li, Y. (2014). Pretreatment of lignocellulosic biomass for enhanced biogas production. Progress in energy and combustion science, 42, 35-53. 5. Meng, D., Wei, X., Zhang, Y. H. P. J., Zhu, Z., You, C., Ma, Y. (2018). Stoichiometric conversion of cellulosic biomass by in vitro synthetic enzymatic biosystems for biomanufacturing. ACS Catalysis, 8(10), 9550-9559. 6. George, J., Sabapathi, S. N. (2015). Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnology, science and applications, 8, 45. 7. Scheller, H. V., Ulvskov, P. (2010). Hemicelluloses. Annual review of plant biology, 61, 263-289. 8. Wang, F., Ouyang, D., Zhou, Z., Page, S. J., Liu, D., Zhao, X. (2021). Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage. Journal of Energy Chemistry, 57, 247-280. 9. Zakzeski, J., Bruijnincx, P. C., Jongerius, A. L., Weckhuysen, B. M. (2010). The catalytic valorization of lignin for the production of renewable chemicals. Chemical reviews, 110(6), 3552-3599. 10. Davies, G., Henrissat, B. (1995). Structures and mechanisms of glycosyl hydrolases. Structure, 3(9), 853-859. 11. Rajan, S. S., Yang, X., Collart, F., Yip, V. L., Withers, S. G., Varrot, A., ... Anderson, W. F. (2004). Novel catalytic mechanism of glycoside hydrolysis based on the structure of an NAD+/Mn2+-dependent phospho-α-glucosidase from Bacillus subtilis. Structure, 12(9), 1619-1629. 12. Yip, V. L., Varrot, A., Davies, G. J., Rajan, S. S., Yang, X., Thompson, J., ... Withers, S. G. (2004). An unusual mechanism of glycoside hydrolysis involving redox and elimination steps by a family 4 β-glycosidase from Thermotoga maritima. Journal of the American Chemical Society, 126(27), 8354-8355. 13. Ly, H. D., Withers, S. G. (1999). Mutagenesis of glycosidases. Annual review of biochemistry, 68(1), 487-522. 14. Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M., Henrissat, B. (2014). The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic acids research, 42(D1), D490-D495. 15. Berghem, L. E. R., Pettersson, L. G. (1973). Purification of a cellulolytic enzyme from Trichoderma viride active on highly ordered cellulose. Eur. J. Biochem, 37, 2130. 16. Yuan, S. F., Wu, T. H., Lee, H. L., Hsieh, H. Y., Lin, W. L., Yang, B., ... Liang, P. H. (2015). Biochemical characterization and structural analysis of a bifunctional cellulase/xylanase from Clostridium thermocellum. Journal of Biological Chemistry, 290(9), 5739-5748. 17. Heyworth, R., Walker, P. G. (1962). Almond-emulsin β-D-glucosidase and β-D-galactosidase. Biochemical Journal, 83(2), 331. 18. Howard, B. H., Jones, G., Purdom, M. R. (1960). The pentosanases of some rumen bacteria. Biochemical Journal, 74(1), 173-180. 19. Reese, E. T., Shibata, Y. (1965). β-Mannanases of fungi. Canadian Journal of Microbiology, 11(2), 167-183. 20. Hylin, J. W., Sawai, K. (1964). The Enzymatic Hydrolysis of Leucaena glauca Galactomannan ISOLATION OF CRYSTALLINE GALACTOMANNAN DEPOLYMERASE. Journal of Biological Chemistry, 239(4), 990-992. 21. Vohra, M., Manwar, J., Manmode, R., Padgilwar, S., Patil, S. (2014). Bioethanol production: Feedstock and current technologies. Journal of Environmental Chemical Engineering, 2(1), 573-584. 22. Liang, P. H., Lin, W. L., Hsieh, H. Y., Lin, T. Y., Chen, C. H., Tewary, S. K., ... Ho, M. C. (2018). A flexible loop for mannan recognition and activity enhancement in a bifunctional glycoside hydrolase family 5. Biochimica et Biophysica Acta (BBA)-General Subjects, 1862(3), 513-521. 23 Wu, T. H., Huang, C. H., Ko, T. P., Lai, H. L., Ma, Y., Chen, C. C., ... Guo, R. T. (2011). Diverse substrate recognition mechanism revealed by Thermotoga maritima Cel5A structures in complex with cellotetraose, cellobiose and mannotriose. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1814(12), 1832-1840. 24. Glasgow, E. M., Kemna, E. I., Bingman, C. A., Ing, N., Deng, K., Bianchetti, C. M., ... Fox, B. G. (2020). A structural and kinetic survey of GH5_4 endoglucanases reveals determinants of broad substrate specificity and opportunities for biomass hydrolysis. Journal of Biological Chemistry, 295(51), 17752-17769. 25. Studer, G., Tauriello, G., Bienert, S., Waterhouse, A. M., Bertoni, M., Bordoli, L., ... Lepore, R. (2019). Modeling of protein tertiary and quaternary structures based on evolutionary information. In Computational Methods in Protein Evolution (pp. 301-316). Humana Press, New York, NY. 26. Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., ... Schwede, T. (2014). SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic acids research, 42(W1), W252-W258. 27. Mariani, V., Biasini, M., Barbato, A., Schwede, T. (2013). lDDT: a local superposition-free score for comparing protein structures and models using distance difference tests. Bioinformatics, 29(21), 2722-2728. 28. Bordoli, L., Schwede, T. (2011). Automated protein structure modeling with SWISS-MODEL Workspace and the Protein Model Portal. In Homology Modeling (pp. 107-136). Humana Press. 29. Bordoli, L., Kiefer, F., Arnold, K., Benkert, P., Battey, J., Schwede, T. (2009). Protein structure homology modeling using SWISS-MODEL workspace. Nature protocols, 4(1), 1-13. 30. Kiefer, F., Arnold, K., Künzli, M., Bordoli, L., Schwede, T. (2009). The SWISS-MODEL Repository and associated resources. Nucleic acids research, 37(suppl_1), D387-D392. 31. Benkert, P., Künzli, M., Schwede, T. (2009). QMEAN server for protein model quality estimation. Nucleic acids research, 37(suppl_2), W510-W514. 32. Benkert, P., Schwede, T., Tosatto, S. C. (2009). QMEANclust: estimation of protein model quality by combining a composite scoring function with structural density information. BMC structural biology, 9(1), 1-17. 33. Arnold, K., Bordoli, L., Kopp, J., Schwede, T. (2006). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics, 22(2), 195-201. 34. Kopp, J., Schwede, T. (2006). The SWISS-MODEL Repository: new features and functionalities. Nucleic acids research, 34(suppl_1), D315-D318. 35. Kopp, J., Schwede, T. (2004). The SWISS‐MODEL Repository of annotated three‐dimensional protein structure homology models. Nucleic acids research, 32(suppl_1), D230-D234. 36. Schwede, T., Kopp, J., Guex, N., Peitsch, M. C. (2003). SWISS-MODEL: an automated protein homology-modeling server. Nucleic acids research, 31(13), 3381-3385. 37. Guex, N., Diemand, A., Peitsch, M. C. (1999). Protein modelling for all. Trends in biochemical sciences, 24(9), 364-367. 38. Guex, N., Peitsch, M. C. (1997). SWISS‐MODEL and the Swiss‐Pdb Viewer: an environment for comparative protein modeling. electrophoresis, 18(15), 2714-2723. 39. Peitsch, M. C. (1996). ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling. Chemical Design Automation News, 1(11), 13-14. 40. Peitsch, M. C., Herzyk, P., Wells, T. N., Hubbard, R. E. (1996). Automated modelling of the transmembrane region of G-protein coupled receptor by Swiss-model. Receptors channels, 4(3), 161-164. 41. Peitsch, M. C., Tschopp, J. (1995). Comparative molecular modelling of the Fas-ligand and other members of the TNF family. Molecular immunology, 32(10), 761-772. 42. Peitsch, M. C. (1995). Protein modeling by E-mail. Bio/technology, 13(7), 658-660. 43. Hsu, K. C., Chen, Y. F., Lin, S. R., Yang, J. M. (2011). iGEMDOCK: a graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC bioinformatics, 12(1), 1-11. 44. Aspeborg, H., Coutinho, P. M., Wang, Y., Brumer, H., Henrissat, B. (2012). Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC evolutionary biology, 12(1), 1-16 45. Peitsch, M. C., Jongeneel, C. V. (1993). A 3-D model for the CD40 ligand predicts that it is a compact trimer similar to the tumor necrosis factors. International immunology, 5(2), 233-238. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80937 | - |
| dc.description.abstract | 纖維素和半纖維素是地球上含量豐富的多醣類,透過發酵與酵素作用能夠被轉換成綠能使用。在我們先前的研究中,我們發現了兩種不同功能的酵素,一是來自 Thermotoga maritima 中的雙功能酵素TmCel5A,能夠分解纖維素與聚甘露糖,另一種則是來自Clostridium thermocellum 的CtCel5T,具有分解纖維素、聚木糖、聚甘露糖三種不同糖類的活性。根據這兩酵素的結構比較,我們發現在TmCel5A中210號的色胺酸與CtCel5T中360號的麩胺酸兩者在空間上與受質形成氫鍵作用的位置相似。且210號的色胺酸位於TmCel5A中的Tmloop上,而360號的麩胺酸位在CtCel5T的T2-loop上。於本研究中,我們透過將TmCel5A的210位點突變成麩胺酸,CtCel5T的360位點突變成色胺酸,藉此確認兩者對受質的活性是否也會因兩個關鍵位點的交換而有變化。結果顯示,E360W的突變種失去了催化水解聚木糖的能力但保留了部分的水解聚甘露糖的能力,由此可知麩胺酸對水解聚木糖的活性是很重要的。另一方面,W210E的突變種失去了原本能夠催化水解多糖的能力,由此可知色胺酸的存在對其來說是必要的。而我們也利用的電腦模型與分子對接技術,來顯示突變後受質與酵素間鍵結的變化來試圖觀察為何這些酵素會因此失去活性,事實上是否如此還需其後的實驗證實,本研究提供了交換的方式來加以驗證這兩種胺基酸在各酵素中的需求,相信這也能為日後開發酵素有所助益。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:22:43Z (GMT). No. of bitstreams: 1 U0001-1309202116323100.pdf: 3790629 bytes, checksum: e209de87402044f671076f80b6771b1e (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "中文摘要: v Abstract: vi ABBREVIATIONS vii Introduction 1 1.1 The demand of renewable energy 1 1.2 Structure of lignocellulosic biomass 1 1.3 Overview of glycoside hydrolases 3 1.4 Overview the development of bioethanol 5 1.5 Aim of this study 5 Method Materials 7 2.1 Reagents 7 2.2 DNA source and bacterial strains 7 2.3 Mutagenesis of CtCel5T and TmCel5A 7 2.4 Expression and purification constructed protein 8 2.5 Protein sequence alignment and structural analysis 9 2.6 Wild-type and mutant protein complexes structural modeling and analysis 10 2.7 Determine of Enzyme Activity 10 2.7.1 preparation of 3, 5-dinitrosalic acid (DNS) reagent 10 2.7.2 Enzyme activity assay 11 2.7.3 Determination of enzyme kinetic 11 Result 13 3.1 Previous study and designed primers for site-directed mutagenesis 13 3.2 Expression and characterization of wild type and mutant protein 14 3.3 Rescue cellulase activity of TmCel5A mutant 16 3.4 Molecular modeling and docking analysis 17 Discussion 19 Tables 21 Figures 25 Reference 43 " | |
| dc.language.iso | en | |
| dc.subject | 分子對接分析 | zh_TW |
| dc.subject | 纖維酵素 | zh_TW |
| dc.subject | 糖苷水解酶第5屬 | zh_TW |
| dc.subject | 蛋白質改造工程 | zh_TW |
| dc.subject | flexible loop | en |
| dc.subject | Cellulase | en |
| dc.subject | GH5 | en |
| dc.subject | docking analysis | en |
| dc.subject | protein engineering | en |
| dc.title | 探討雙功能與三功能纖維水解酵素之受質特異性 | zh_TW |
| dc.title | Substrate specificities of the bi-functional and tri-functional cellulase/xylanase/mannanase enzymes | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 何孟樵(Hsin-Tsai Liu),王彥士(Chih-Yang Tseng) | |
| dc.subject.keyword | 纖維酵素,糖苷水解酶第5屬,蛋白質改造工程,分子對接分析, | zh_TW |
| dc.subject.keyword | Cellulase,GH5,protein engineering,flexible loop,docking analysis, | en |
| dc.relation.page | 51 | |
| dc.identifier.doi | 10.6342/NTU202103150 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-09-15 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1309202116323100.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
