Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 物理治療學系所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80930
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙遠宏(Yuan-Hung Chao)
dc.contributor.authorYi-Heng Chiuen
dc.contributor.author邱宜姮zh_TW
dc.date.accessioned2022-11-24T03:22:24Z-
dc.date.available2021-11-08
dc.date.available2022-11-24T03:22:24Z-
dc.date.copyright2021-11-08
dc.date.issued2021
dc.date.submitted2021-09-16
dc.identifier.citation1. Beggs, I., Shoulder ultrasound. Seminars in Ultrasound Ct and Mri, 2011. 32(2): p. 101-13. 2. Whittaker, J.L., et al., Imaging with ultrasound in physical therapy: What is the PT's scope of practice? A competency-based educational model and training recommendations. Br J Sports Med, 2019. 53(23): p. 1447-53. 3. Bashford, G.R., et al., Tendinopathy discrimination by use of spatial frequency parameters in ultrasound B-mode images. IEEE Trans Med Imaging, 2008. 27(5): p. 608-15. 4. Kulig, K., et al., Ultrasound-based tendon micromorphology predicts mechanical characteristics of degenerated tendons. Ultrasound Med Biol, 2016. 42(3): p. 664-73. 5. Pozzi, F., et al., Supraspinatus tendon micromorphology in individuals with subacromial pain syndrome. J Hand Ther, 2017. 30(2): p. 214-20. 6. Singh, J.P., Shoulder ultrasound: What you need to know. Indian J Radiol Imaging, 2012. 22(4): p. 284-92. 7. Martinoli, C., et al., Power Doppler sonography: Clinical applications. Eur J Radiol, 1998. 27: p. S133-40. 8. Fearon, A., et al., The Bonar score revisited: Region of evaluation significantly influences the standardized assessment of tendon degeneration. J Sci Med Sport, 2014. 17(4): p. 346-50. 9. Dean, B.J.F., S.L. Franklin, and A.J. Carr, A systematic review of the histological and molecular changes in rotator cuff disease. Bone Joint Res, 2012. 1(7): p. 158-66. 10. Cipollaro, L., et al., Immunohistochemical features of rotator cuff tendinopathy. Br Med Bull, 2019. 130(1): p. 105-23. 11. McCausland, C., et al., Anatomy, shoulder and upper limb, shoulder muscles, in StatPearls. 2020, StatPearls Publishing: Treasure Island, Florida. 12. Khan, K.M., et al., Time to abandon the 'tendinitis' myth. BMJ, 2002. 324(7338): p. 626-7. 13. Steinmann, S., et al., Spectrum of tendon pathologies: Triggers, trails and end-state. Int J Mol Sci, 2020. 21(3): p. 844. 14. Fu, S.C., et al., Deciphering the pathogenesis of tendinopathy: A three-stages process. Sports Med Arthrosc Rehabil Ther Technol, 2010. 2: p. 30. 15. Littlewood, C., S. May, and S. Walters, Epidemiology of rotator cuff tendinopathy: A systematic review. Shoulder Elbow, 2013. 5(4): p. 256-65. 16. Minagawa, H., et al., Prevalence of symptomatic and asymptomatic rotator cuff tears in the general population: From mass-screening in one village. J Orthop, 2013. 10(1): p. 8-12. 17. Yamamoto, A., et al., Prevalence and risk factors of a rotator cuff tear in the general population. J Shoulder Elbow Surg, 2010. 19(1): p. 116-20. 18. Neer, C.S., Impingement lesions. Clin Orthop Relat Res, 1983(173): p. 70-7. 19. Lewis, J., et al., Rotator cuff tendinopathy: Navigating the diagnosis-management conundrum. J Orthop Sports Phys Ther, 2015. 45(11): p. 923-37. 20. Leong, H.T., et al., Risk factors for rotator cuff tendinopathy: A systematic review and meta-analysis. J Rehabil Med, 2019. 51(9): p. 627-37. 21. Sayampanathan, A.A. and T.H. Andrew, Systematic review on risk factors of rotator cuff tears. J Orthop Surg (Hong Kong), 2017. 25(1): p. 2309499016684318. 22. Sommerich, C.M., J.D. McGlothlin, and W.S. Marras, Occupational risk factors associated with soft tissue disorders of the shoulder: A review of recent investigations in the literature. Ergonomics, 1993. 36(6): p. 697-717. 23. Seitz, A.L., et al., Mechanisms of rotator cuff tendinopathy: Intrinsic, extrinsic, or both? Clin Biomech (Bristol, Avon), 2011. 26(1): p. 1-12. 24. Cook, J.L. and C.R. Purdam, Is tendon pathology a continuum? A pathology model to explain the clinical presentation of load-induced tendinopathy. Br J Sports Med, 2009. 43(6): p. 409-16. 25. Burbank, K.M., et al., Chronic shoulder pain: part I. Evaluation and diagnosis. Am Fam Physician, 2008. 77(4): p. 453-60. 26. Dinnes, J., et al., The effectiveness of diagnostic tests for the assessment of shoulder pain due to soft tissue disorders: a systematic review. Health Technol Assess, 2003. 7(29): p. 1-166. 27. Roy, J.S., et al., Diagnostic accuracy of ultrasonography, MRI and MR arthrography in the characterisation of rotator cuff disorders: A systematic review and meta-analysis. Br J Sports Med, 2015. 49(20): p. 1316-28. 28. de Jesus, J.O., et al., Accuracy of MRI, MR arthrography, and ultrasound in the diagnosis of rotator cuff tears: A meta-analysis. AJR Am J Roentgenol, 2009. 192(6): p. 1701-7. 29. Crass, J.R., E.V. Craig, and S.B. Feinberg, Clinical significance of sonographic findings in the abnormal but intact rotator cuff: A preliminary report. J Clin Ultrasound, 1988. 16(9): p. 625-34. 30. Ellman, H., Diagnosis and treatment of incomplete rotator cuff tears. Clin Orthop Relat Res, 1990. (254): p. 64-74. 31. Jacobson, J.A., et al., Full-thickness and partial-thickness supraspinatus tendon tears: Value of US signs in diagnosis. Radiology, 2004. 230(1): p. 234-42. 32. DeOrio, J.K. and R.H. Cofield, Results of a second attempt at surgical repair of a failed initial rotator-cuff repair. J Bone Joint Surg Am, 1984. 66(4): p. 563-7. 33. Allen, G.M. and D.J. Wilson, Ultrasound of the shoulder. Eur J Ultrasound, 2001. 14(1): p. 3-9. 34. Chianca, V., et al., Rotator cuff calcific tendinopathy: From diagnosis to treatment. Acta Biomed, 2018. 89(1-s): p. 186-96. 35. Uhthoff, H.K. and K. Sarkar, Calcifying tendinitis. Baillieres Clin Rheumatol, 1989. 3(3): p. 567-81. 36. Bianchi, S. and C. Martinoli, Ultrasound of the musculoskeletal system. Medical radiology. 2007, Berlin ; New York: Springer. xiv, p. 974. 37. Sconfienza, L.M., et al., Rotator cuff calcific tendinitis: Does warm saline solution improve the short-term outcome of double-needle US-guided treatment? Radiology, 2012. 262(2): p. 560-6. 38. Martinoli, C., et al., Power Doppler sonography: General principles, clinical applications, and future prospects. Eur Radiol, 1998. 8(7): p. 1224-35. 39. Chiou, H.J., et al., Evaluation of calcific tendonitis of the rotator cuff: Role of color Doppler ultrasonography. J Ultrasound Med, 2002. 21(3): p. 289-95. 40. Lewis, J.S., et al., The prevalence of neovascularity in patients clinically diagnosed with rotator cuff tendinopathy. BMC Musculoskelet Disord, 2009. 10: p. 163. 41. Takahashi, N., et al., Progression of degenerative changes of the biceps tendon after successful rotator cuff repair. J Shoulder Elbow Surg, 2017. 26(3): p. 424-9. 42. Chang, K.V., et al., Power Doppler presentation of shoulders with biceps disorder. Arch Phys Med Rehabil, 2010. 91(4): p. 624-31. 43. Ingwersen, K.G., et al., Ultrasound assessment for grading structural tendon changes in supraspinatus tendinopathy: An inter-rater reliability study. BMJ Open, 2016. 6(5): p. e011746. 44. Collinger, J.L., et al., Reliability of quantitative ultrasound measures of the biceps and supraspinatus tendons. Acad Radiol, 2009. 16(11): p. 1424-32. 45. Felix, E.R., et al., Increased reliability of quantitative ultrasound measures of the supraspinatus tendon using multiple image analysts and analysis runs. Am J Phys Med Rehabil, 2018. 97(1): p. 62-7. 46. Collinger, J.L., et al., Validation of grayscale-based quantitative ultrasound in manual wheelchair users: Relationship to established clinical measures of shoulder pathology. Am J Phys Med Rehabil, 2010. 89(5): p. 390-400. 47. Tsai, Y.H., et al., Quantification of sonographic echogenicity by the gray-level histogram in patients with supraspinatus tendinopathy. J Med Ultrason (2001), 2014. 41(3): p. 343-9. 48. Ferrer, G.A., et al., The correlation of quantitative ultrasound measures and supraspinatus tendon quality: A pilot study. J Med Ultrasound, 2020. 28(3): p. 162-8. 49. Angelsen, B.A. and R.C. Waag, Ultrasound imaging: Waves, signals, and signal processing. ASAJ, 2007. 121(4): p. 1820. 50. Damerjian, V., et al., Speckle characterization methods in ultrasound images - A review. IRBM, 2014. 35: p. 202-13. 51. Wagner, R.F., et al., Statistics of speckle in ultrasound B-scans. IEEE Trans Sonics Ultrason, 1983. 30(3): p. 156-63. 52. Derode, A. and M. Fink, Correlation length of ultrasonic speckle in anisotropic random media: Application to coherent echo detection. J Acoust Soc Am, 1998. 103(1): p. 73-82. 53. Tuthill, T.A., et al., Frequency analysis of echo texture in tendon. Ultrasound Med Biol, 1999. 25(6): p. 959-68. 54. Kulig, K., et al., Patellar tendon morphology in volleyball athletes with and without patellar tendinopathy. Scand J Med Sci Sports, 2013. 23(2): p. e81-8. 55. Garcia, T., W.J. Hornof, and M.F. Insana, On the ultrasonic properties of tendon. Ultrasound Med Biol, 2003. 29(12): p. 1787-97. 56. Cassel, M., et al., Achilles tendon morphology assessed using image based spatial frequency analysis is altered among healthy elite adolescent athletes compared to recreationally active controls. J Sci Med Sport, 2019. 22(8): p. 882-6. 57. Pearson, S.J., A.J. Engel, and G.R. Bashford, Changes in tendon spatial frequency parameters with loading. J Biomech, 2017. 57: p. 136-40. 58. Nourissat, G., F. Berenbaum, and D. Duprez, Tendon injury: From biology to tendon repair. Nat Rev Rheumatol, 2015. 11(4): p. 223-33. 59. Banos, C.C., A.H. Thomas, and C.K. Kuo, Collagen fibrillogenesis in tendon development: Current models and regulation of fibril assembly. Birth Defects Res C Embryo Today, 2008. 84(3): p. 228-44. 60. Clark, J.M. and D.T. Harryman, 2nd, Tendons, ligaments, and capsule of the rotator cuff. Gross and microscopic anatomy. J Bone Joint Surg Am, 1992. 74(5): p. 713-25. 61. Burkhart, S.S., J.C. Esch, and R.S. Jolson, The rotator crescent and rotator cable: An anatomic description of the shoulder's 'suspension bridge'. Arthroscopy, 1993. 9(6): p. 611-6. 62. Fallon, J., et al., Functional morphology of the supraspinatus tendon. J Orthop Res, 2002. 20(5): p. 920-6. 63. Khan, K.M., et al., Histopathology of common tendinopathies. Update and implications for clinical management. Sports Med, 1999. 27(6): p. 393-408. 64. Józsa, L., et al., Alterations in dry mass content of collagen fibers in degenerative tendinopathy and tendon-rupture. Matrix, 1989. 9(2): p. 140-6. 65. Pingel, J., et al., Local biochemical and morphological differences in human Achilles tendinopathy: A case control study. BMC Musculoskelet Disord, 2012. 13: p. 53. 66. Sano, H., et al., Histologic evidence of degeneration at the insertion of 3 rotator cuff tendons: A comparative study with human cadaveric shoulders. J Shoulder Elbow Surg, 1999. 8(6): p. 574-9. 67. Candes, E., et al., Fast discrete curvelet transforms. Multiscale Model Simul, 2006. 5(3): p. 861-99. 68. Candes, E.J. and D.L. Donoho, Curvelets: A surprisingly effective nonadaptive representation for objects with edges. 2000, Stanford Univ Ca Dept of Statistics. 69. Bredfeldt, J.S., et al., Computational segmentation of collagen fibers from second-harmonic generation images of breast cancer. J Biomed Opt, 2014. 19(1): p. 16007. 70. Bredfeldt, J.S., et al., Automated quantification of aligned collagen for human breast carcinoma prognosis. J Pathol Inform, 2014. 5(1): p. 28. 71. Liu, Y., et al., Fibrillar collagen quantification with curvelet transform based computational methods. Front Bioeng Biotechnol, 2020. 8(198). 72. Liu, Y., et al., Methods for quantifying fibrillar collagen alignment. Methods Mol Biol, 2017. 1627: p. 429-51. 73. Best, S.L., et al., Collagen organization of renal cell carcinoma differs between low and high grade tumors. BMC Cancer, 2019. 19(1): p. 490. 74. Drifka, C.R., et al., Periductal stromal collagen topology of pancreatic ductal adenocarcinoma differs from that of normal and chronic pancreatitis. Mod Pathol, 2015. 28(11): p. 1470-80. 75. Conklin, M.W., et al., Collagen alignment as a predictor of recurrence after ductal carcinoma In Situ. Cancer Epidemiol Biomarkers Prev, 2018. 27(2): p. 138-45. 76. Kastelic, J., A. Galeski, and E. Baer, The multicomposite structure of tendon. Connect Tissue Res, 1978. 6(1): p. 11-23. 77. Screen, H.R., et al., Tendon functional extracellular matrix. J Orthop Res, 2015. 33(6): p. 793-9. 78. Samiric, T., M.Z. Ilic, and C.J. Handley, Characterisation of proteoglycans and their catabolic products in tendon and explant cultures of tendon. Matrix Biol, 2004. 23(2): p. 127-40. 79. Reed, C.C. and R.V. Iozzo, The role of decorin in collagen fibrillogenesis and skin homeostasis. Glycoconj J, 2002. 19(4-5): p. 249-55. 80. Docheva, D., et al., Tenomodulin is necessary for tenocyte proliferation and tendon maturation. Mol Cell Biol, 2005. 25(2): p. 699-705. 81. Schmelzer, C.E.H., T. Hedtke, and A. Heinz, Unique molecular networks: Formation and role of elastin cross-links. IUBMB Life, 2020. 72(5): p. 842-54. 82. Thorpe, C.T., et al., The role of the non-collagenous matrix in tendon function. Int J Exp Pathol, 2013. 94(4): p. 248-59. 83. Liu, H., et al., Crucial transcription factors in tendon development and differentiation: Their potential for tendon regeneration. Cell Tissue Res, 2014. 356(2): p. 287-98. 84. Scott, A., et al., Scleraxis expression is coordinately regulated in a murine model of patellar tendon injury. J Orthop Res, 2011. 29(2): p. 289-96. 85. Shukunami, C., et al., Scleraxis is a transcriptional activator that regulates the expression of Tenomodulin, a marker of mature tenocytes and ligamentocytes. Sci Rep, 2018. 8(1): p. 3155. 86. Gulotta, L.V., et al., Bone marrow-derived mesenchymal stem cells transduced with scleraxis improve rotator cuff healing in a rat model. Am J Sports Med, 2011. 39(6): p. 1282-9. 87. Chen, X., et al., Scleraxis-overexpressed human embryonic stem cell-derived mesenchymal stem cells for tendon tissue engineering with knitted silk-collagen scaffold. Tissue Eng Part A, 2014. 20(11-12): p. 1583-92. 88. Lejard, V., et al., EGR1 and EGR2 involvement in vertebrate tendon differentiation. J Biol Chem, 2011. 286(7): p. 5855-67. 89. Ito, Y., et al., The Mohawk homeobox gene is a critical regulator of tendon differentiation. Proc Natl Acad Sci U S A, 2010. 107(23): p. 10538-42. 90. Liu, W., et al., The atypical homeodomain transcription factor Mohawk controls tendon morphogenesis. Mol Cell Biol, 2010. 30(20): p. 4797-807. 91. Sejersen, M.H., et al., Proteomics perspectives in rotator cuff research: A systematic review of gene expression and protein composition in human tendinopathy. PLoS One, 2015. 10(4): p. e0119974. 92. Tokito, A. and M. Jougasaki, Matrix metalloproteinases in non-neoplastic disorders. Int J Mol Sci, 2016. 17(7): p. 1178. 93. Cong, G.T., et al., Evaluating the role of subacromial impingement in rotator cuff tendinopathy: Development and analysis of a novel murine model. J Orthop Res, 2018. 36(10): p. 2780-8. 94. de Witte, P.B., et al., Calcific tendinitis of the rotator cuff: A randomized controlled trial of ultrasound-guided needling and lavage versus subacromial corticosteroids. Am J Sports Med, 2013. 41(7): p. 1665-73. 95. Lin, J., et al., Mechanical roles in formation of oriented collagen fibers. Tissue Eng Part B Rev, 2020. 26(2): p. 116-28. 96. Benjamin, M. and J.R. Ralphs, Fibrocartilage in tendons and ligaments--an adaptation to compressive load. J Anat, 1998. 193(Pt 4): p. 481-94. 97. Jo, C.H., et al., Degree of tendon degeneration and stage of rotator cuff disease. Knee Surg Sports Traumatol Arthrosc, 2017. 25(7): p. 2100-8. 98. Apostolakos, J., et al., The enthesis: A review of the tendon-to-bone insertion. Muscles Ligaments Tendons J, 2014. 4(3): p. 333-42. 99. Benjamin, M., E.J. Evans, and L. Copp, The histology of tendon attachments to bone in man. J Anat, 1986. 149: p. 89-100. 100. Codman, E., Rupture of the supraspinatus tendon and other lesions in or about the subacromial bursa. The shoulder. 1934, New York: G. Miller Co. Medical Publishers, Inc. 101. Naidoo, N., L. Lazarus, and K.S. Satyapal, The histological analysis of the glenohumeral' critical zone'. J Morphol, 2016. 34(3): p. 1051-7. 102. Gumucio, J.P., et al., Scleraxis is required for the growth of adult tendons in response to mechanical loading. JCI Insight, 2020. 5(13): p. e138295. 103. Nichols, A.E.C., et al., Novel roles for scleraxis in regulating adult tenocyte function. BMC Cell Biol, 2018. 19(1): p. 14. 104. Best, K.T. and A.E. Loiselle, Scleraxis lineage cells contribute to organized bridging tissue during tendon healing and identify a subpopulation of resident tendon cells. FASEB J, 2019. 33(7): p. 8578-87. 105. Dyment, N.A., et al., The paratenon contributes to scleraxis-expressing cells during patellar tendon healing. PLoS One, 2013. 8(3): p. e59944. 106. Sakabe, T., et al., Transcription factor scleraxis vitally contributes to progenitor lineage direction in wound healing of adult tendon in mice. J Biol Chem, 2018. 293(16): p. 5766-80. 107. Best, K.T., et al., Scleraxis-lineage cell depletion improves tendon healing and disrupts adult tendon homeostasis. Elife, 2021. 10: p. e62203. 108. Xu, S.Y., S.F. Li, and G.X. Ni, Strenuous treadmill running induces a chondrocyte phenotype in rat Achilles tendons. Med Sci Monit, 2016. 22: p. 3705-12. 109. Lui, P.P., et al., Chondrocyte phenotype and ectopic ossification in collagenase-induced tendon degeneration. J Histochem Cytochem, 2009. 57(2): p. 91-100. 110. Jessop, Z.M., et al., Morphological and biomechanical characterization of immature and mature nasoseptal cartilage. Sci Rep, 2019. 9(1): p. 12464. 111. Birk, D.E., M.V. Nurminskaya, and E.I. Zycband, Collagen fibrillogenesis in situ: fibril segments undergo post-depositional modifications resulting in linear and lateral growth during matrix development. Dev Dyn, 1995. 202(3): p. 229-43. 112. Smith, M.M., et al., Modulation of aggrecan and ADAMTS expression in ovine tendinopathy induced by altered strain. Arthritis Rheum, 2008. 58(4): p. 1055-66. 113. Tanaka, M., et al., Factors related to successful outcome of conservative treatment for rotator cuff tears. Ups J Med Sci, 2010. 115(3): p. 193-200. 114. Pauly, S., et al., Characterization of tendon cell cultures of the human rotator cuff. Eur Cell Mater, 2010. 20: p. 84-97.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80930-
dc.description.abstract"背景與目的:肩袖肌腱病變 (rotator cuff tendinopathy) 是常見的肩部疾病。先前的研究指出旋轉袖肌腱病變的組織與分子變化包括肌腱組織內細胞數量增多、細胞型態變圓、胞外基質排列紊亂,以及肌腱基質、基質酵素、肌腱特定的轉錄因子和細胞因子基因表現增加。超音波影像檢查是一項可以用來檢測肌腱病理變化的非侵入性工具,先前的研究使用空間頻率分析 (spatial frequency analysis) 量化斑點樣型 (speckle pattern),可反映肌腱內膠原纖維束排列的品質。空間頻率峰值半徑 (peak spatial frequency radius) 定義為二維空間頻譜中的原點與空間頻率峰值之間的距離,可以表示肌腱中膠原纖維束的排列一致性,文獻指出空間頻率峰值半徑用以檢測肌腱病變是具有高預測率的參數之一,然而,空間頻率峰值半徑仍缺乏從組織和分子層面證據證實肌腱超音波影像呈現的病理變化。本研究旨在探討棘上肌肌腱超音波影像分析與旋轉袖肌腱病變患者基因表現之間的相關性,並且透過組織切片驗證超音波影像分析代表的肌腱特徵。 實驗設計:本篇研究為觀察型、橫斷相關性研究。 材料與方法:本研究招募旋轉袖肌腱撕裂的患者為實驗組,健康成年人為對照組,二組受試者皆進行棘上肌腱超音波影像檢查,並使用空間頻率峰值半徑量化肌腱品質。實驗組接受旋轉袖肌腱修補手術,術中收集撕裂肌腱殘端進一步分析。檢體使用蘇木精-伊紅染色與馬森三色染色觀察肌腱組織型態,使用 CurveAlign 對馬森三色染色組織影像定量膠原纖維的排列一致程度。並分離檢體細胞體外培養,進行基因和蛋白質分析。 結果:實驗組棘上肌腱超音波影像的空間頻率峰值半徑顯著低於年輕健康成人 (實驗組:1.093 ± 0.319 mm-1; 對照組:1.590 ± 0.525 mm-1 ; p = 0.006)。實驗組Scx 基因與空間頻率峰值半徑呈顯著中度負相關 (rs = -0.621, p = 0.01)。組織染色結果發現相較於高空間頻率峰值半徑的實驗組受試者,具有較低空間頻率峰值半徑的受試者之組織染色呈現較差的膠原纖維排列和肌腱結構,有顯著較低的排列係數 (p = 0.026),Scx 基因的表現顯著較高 (p = 0.026),Scleraixs 蛋白質的分泌較多。 結論:空間頻率峰值半徑是量化棘上肌肌腱超音波影像斑點樣型合適的參數,空間頻率峰值半徑越低,肌腱中膠原纖維束的排列越差。此外,退化較嚴重的棘上肌肌腱的品質較差,肌腱內膠原纖維排列紊亂,可能是受到 Scx 的調節所致。 臨床意義:探究空間頻率峰值半徑與肌腱分子變化的相關性,可以協助臨床人員解釋肌腱超音波影像的微觀特徵與及早偵測肌腱病變。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:22:24Z (GMT). No. of bitstreams: 1
U0001-1409202116173500.pdf: 6187166 bytes, checksum: 9ee4398832f6104a7075bc8c82d85f01 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 i 誌謝 ii 中文摘要 iii Abstract v 目 錄 vii 表目錄 x 圖目錄 xi 第一章 序論 1 1.1 研究背景 1 1.2 研究目的 2 1.3 研究問題 2 1.4 實驗假設 3 1.5 臨床意義 4 第二章 文獻回顧 5 2.1 旋轉袖肌腱病變 5 2.2 旋轉袖肌腱病變的超音波影像 8 2.2.1 旋轉袖肌腱病變的超音波影像特徵 8 2.2.2 旋轉袖肌腱的超音波影像定量分析 12 2.2.3 肌腱超音波影像空間頻譜分析 14 2.3 肌腱的組織結構 19 2.3.1 肌腱的解剖結構 19 2.3.2 肌腱病變組織的特徵 20 2.3.3 組織的纖維排列定量 22 2.4 肌腱的分子組成 25 2.4.1 肌腱的胞外基質 25 2.4.2 肌腱特定轉錄因子 26 2.4.3 旋轉袖肌腱病變的分子變化 27 第三章 實驗方法 30 3.1 實驗設計 30 3.2 受試者 31 3.2.1 收案與排案條件 31 3.2.2 資料蒐集 31 3.2.3 超音波影像取得 32 3.2.4 肌腱檢體蒐集 33 3.3 實驗試藥 34 3.4 實驗方法 35 3.4.1 超音波影像空間頻譜分析 35 3.4.2 組織學分析 36 3.4.3 體外細胞培養 38 3.4.4 基因分析 39 3.4.5 蛋白質分析 42 3.4.6 統計分析 44 第四章 結果 45 4.1 受試者人口學資料 45 4.2 健康受試者與肌腱撕裂患者的超音波影像分析 46 4.3 超音波影像與基因表現的相關性 48 4.4 超音波影像對應組織、分子之發現 49 4.4.1 超音波影像與組織分析 49 4.4.2 超音波影像與分子分析 51 第五章 討論 53 第六章 結語 64 參考文獻 65 附表 76 附圖 89
dc.language.isozh-TW
dc.subject分子生物zh_TW
dc.subject旋轉袖肌腱病變zh_TW
dc.subject超音波影像zh_TW
dc.subject空間頻譜分析zh_TW
dc.subject膠原纖維排列zh_TW
dc.subjectUltrasonographyen
dc.subjectMolecular biologyen
dc.subjectCollagen alignmenten
dc.subjectRotator cuff tendinopathyen
dc.subjectSpatial frequency analysisen
dc.title旋轉袖肌腱病變:超音波影像與分子表現的關聯zh_TW
dc.titleRotator Cuff Tendinopathy: Association between Ultrasound Images and Molecular Expressionen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王興國(Hsin-Tsai Liu),孫瑞昇(Chih-Yang Tseng),陳文翔
dc.subject.keyword旋轉袖肌腱病變,超音波影像,空間頻譜分析,膠原纖維排列,分子生物,zh_TW
dc.subject.keywordRotator cuff tendinopathy,Ultrasonography,Spatial frequency analysis,Collagen alignment,Molecular biology,en
dc.relation.page109
dc.identifier.doi10.6342/NTU202103177
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-09-16
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept物理治療學研究所zh_TW
顯示於系所單位:物理治療學系所

文件中的檔案:
檔案 大小格式 
U0001-1409202116173500.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
6.04 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved