Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80918
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor宋家驥(Chia-Chi Sung)
dc.contributor.authorChun-Hao Changen
dc.contributor.author張君豪zh_TW
dc.date.accessioned2022-11-24T03:21:54Z-
dc.date.available2021-11-08
dc.date.available2022-11-24T03:21:54Z-
dc.date.copyright2021-11-08
dc.date.issued2021
dc.date.submitted2021-09-17
dc.identifier.citation1. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” Journal of the American Chemical Society. 131(17): p. 6050-6051. 2009. 2. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science. 338(6107): p. 643-647. 2012. 3. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, and J. E. Moser, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Scientific reports. 2(1): p. 1-7. 2012. 4. J. Y. Kim, J.-W. Lee, H. S. Jung, H. Shin, and N.-G. Park, “High-efficiency perovskite solar cells,” Chemical Reviews. 120(15): p. 7867-7918. 2020. 5. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science. 342(6156): p. 341-344. 2013. 6. G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells,” Energy Environmental Science. 7(3): p. 982-988. 2014. 7. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature. 499(7458): p. 316-319. 2013. 8. Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” Journal of the American Chemical Society. 136(2): p. 622-625. 2014. 9. P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, “Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates,” Nature communications. 4(1): p. 1-6. 2013. 10. G. Niu, W. Li, F. Meng, L. Wang, H. Dong, and Y. Qiu, “Study on the stability of CH₃NH₃PbI₃ films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells.” 2013. 11. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells,” Nano letters. 13(4): p. 1764-1769. 2013. 12. Z. Song, A. Abate, S. C. Watthage, G. K. Liyanage, A. B. Phillips, U. Steiner, M. Graetzel, and M. J. Heben, “Perovskite solar cell stability in humid air: partially reversible phase transitions in the PbI2‐CH3NH3I‐H2O system,” Advanced Energy Materials. 6(19): p. 1600846. 2016. 13. J. Yang, B. D. Siempelkamp, D. Liu, and T. L. Kelly, “Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques,” ACS nano. 9(2): p. 1955-1963. 2015. 14. K. Ankireddy, B. W. Lavery, and T. Druffel, “Atmospheric PROCESSING of perovskite solar cells using intense pulsed light sintering,” Journal of Electronic Materials. 47(2): p. 1285-1292. 2018. 15. Z. Hu, Z. Liu, L. K. Ono, M. Jiang, S. He, D. Y. Son, and Y. Qi, “The impact of atmosphere on energetics of lead halide perovskites,” Advanced Energy Materials. 10(24): p. 2000908. 2020. 16. P. Luo, W. Xia, S. Zhou, L. Sun, J. Cheng, C. Xu, and Y. Lu, “Solvent engineering for ambient-air-processed, phase-stable CsPbI3 in perovskite solar cells,” The journal of physical chemistry letters. 7(18): p. 3603-3608. 2016. 17. J. Xu, Z. Hu, X. Jia, L. Huang, X. Huang, L. Wang, P. Wang, H. Zhang, J. Zhang, and J. Zhang, “A rapid annealing technique for efficient perovskite solar cells fabricated in air condition under high humidity,” Organic Electronics. 34: p. 84-90. 2016. 18. K. Zhang, Z. Wang, G. Wang, J. Wang, Y. Li, W. Qian, S. Zheng, S. Xiao, and S. Yang, “A prenucleation strategy for ambient fabrication of perovskite solar cells with high device performance uniformity,” Nature communications. 11(1): p. 1-11. 2020. 19. M. Anaya, J. F. Galisteo-López, M. E. Calvo, J. P. Espinós, and H. Míguez, “Origin of light-induced photophysical effects in organic metal halide perovskites in the presence of oxygen,” The journal of physical chemistry letters. 9(14): p. 3891-3896. 2018. 20. R. Brenes, C. Eames, V. Bulović, M. S. Islam, and S. D. Stranks, “The impact of atmosphere on the local luminescence properties of metal halide perovskite grains,” Advanced Materials. 30(15): p. 1706208. 2018. 21. H.-H. Fang, S. Adjokatse, H. Wei, J. Yang, G. R. Blake, J. Huang, J. Even, and M. A. Loi, “Ultrahigh sensitivity of methylammonium lead tribromide perovskite single crystals to environmental gases,” Science Advances. 2(7): p. e1600534. 2016. 22. Y. Tian, M. Peter, E. Unger, M. Abdellah, K. Zheng, T. Pullerits, A. Yartsev, V. Sundström, and I. G. Scheblykin, “Mechanistic insights into perovskite photoluminescence enhancement: light curing with oxygen can boost yield thousandfold,” Physical Chemistry Chemical Physics. 17(38): p. 24978-24987. 2015. 23. G. Wang, D. Liu, J. Xiang, D. Zhou, K. Alameh, B. Ding, and Q. Song, “Efficient perovskite solar cell fabricated in ambient air using one-step spin-coating,” RSC advances. 6(49): p. 43299-43303. 2016. 24. H. Gao, C. Bao, F. Li, T. Yu, J. Yang, W. Zhu, X. Zhou, G. Fu, and Z. Zou, “Nucleation and crystal growth of organic–inorganic lead halide perovskites under different relative humidity,” ACS applied materials interfaces. 7(17): p. 9110-9117. 2015. 25. Y. Cheng, X. Xu, Y. Xie, H. W. Li, J. Qing, C. Ma, C. S. Lee, F. So, and S. W. Tsang, “18% High‐Efficiency Air‐Processed Perovskite Solar Cells Made in a Humid Atmosphere of 70% RH,” Solar RRL. 1(9): p. 1700097. 2017. 26. S. J. Fonash, S. Ashok, and R. T. FONASH, “Solar cell,” Encyclopædya Britannica. 2018. 27. M. A. Green. High efficiency silicon solar cells. in Seventh EC Photovoltaic Solar Energy Conference. 1987. Springer. 28. T. D. Lee and A. U. Ebong, “A review of thin film solar cell technologies and challenges,” Renewable and Sustainable Energy Reviews. 70: p. 1286-1297. 2017. 29. M. A. Green, E. D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, and X. Hao, “Solar cell efficiency tables (version 56),” Progress in Photovoltaics: Research and Applications. 28(NREL/JA-5900-77544). 2020. 30. M. Kaelin, D. Rudmann, and A. Tiwari, “Low cost processing of CIGS thin film solar cells,” Solar Energy. 77(6): p. 749-756. 2004. 31. H. Ohyama, T. Aramoto, S. Kumazawa, H. Higuchi, T. Arita, S. Shibutani, T. Nishio, J. Nakajima, M. Tsuji, and A. Hanafusa. 16.0% efficient thin-film CdS/CdTe solar cells. in Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference-1997. 1997. IEEE. 32. Y. Cao, Y. Liu, S. M. Zakeeruddin, A. Hagfeldt, and M. Grätzel, “Direct contact of selective charge extraction layers enables high-efficiency molecular photovoltaics,” Joule. 2(6): p. 1108-1117. 2018. 33. L. Meng, Y. Zhang, X. Wan, C. Li, X. Zhang, Y. Wang, X. Ke, Z. Xiao, L. Ding, and R. Xia, “Organic and solution-processed tandem solar cells with 17.3% efficiency,” Science. 361(6407): p. 1094-1098. 2018. 34. G. Kim, H. Min, K. S. Lee, S. M. Yoon, and S. I. Seok, “Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells,” Science. 370(6512): p. 108-112. 2020. 35. G. Perrakis, G. Kakavelakis, G. Kenanakis, C. Petridis, E. Stratakis, M. Kafesaki, and E. Kymakis, “Efficient and environmental-friendly perovskite solar cells via embedding plasmonic nanoparticles: an optical simulation study on realistic device architectures,” Optics express. 27(22): p. 31144-31163. 2019. 36. S. Bremner, M. Levy, and C. B. Honsberg, “Analysis of tandem solar cell efficiencies under AM1. 5G spectrum using a rapid flux calculation method,” Progress in photovoltaics: Research and Applications. 16(3): p. 225-233. 2008. 37. S. Razza, S. Castro-Hermosa, A. Di Carlo, and T. M. Brown, “Research update: large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology,” Apl Materials. 4(9): p. 091508. 2016. 38. W. J. Yin, T. Shi, and Y. Yan, “Unique properties of halide perovskites as possible origins of the superior solar cell performance,” Advanced Materials. 26(27): p. 4653-4658. 2014. 39. R. B. T. B. Correa-Baena, S. E. Sarma, and I. M. Peters, “Perovskite PV-powered RFID: enabling low-cost self-powered IoT sensors.” 40. H. Cheema, J. Watson, and J. H. Delcamp, “Photon management strategies in SSM-DSCs: Realization of a> 11% PCE device with a 2.3 V output,” Solar Energy. 208: p. 747-752. 2020. 41. J.-Y. Xi, R. Jia, W. Li, J. Wang, F.-Q. Bai, R. I. Eglitis, and H.-X. Zhang, “How does graphene enhance the photoelectric conversion efficiency of dye sensitized solar cells? An insight from a theoretical perspective,” Journal of Materials Chemistry A. 7(6): p. 2730-2740. 2019. 42. S. Mandal, G. R. Kandregula, and V. N. B. Tokala, “A computational investigation of the influence of acceptor moieties on photovoltaic performances and adsorption onto the TiO2 surface in triphenylamine-based dyes for DSSC application,” Journal of Photochemistry and Photobiology A: Chemistry. 401: p. 112745. 2020. 43. R. Su, S. Ashraf, L. Lyu, and A. El-Shafei, “Tailoring dual-channel anchorable organic sensitizers with indolo [2, 3-b] quinoxaline moieties: Correlation between structure and DSSC performance,” Solar Energy. 206: p. 443-454. 2020. 44. M. Zalas and K. Jelak, “Optimization of platinum precursor concentration for new, fast and simple fabrication method of counter electrode for DSSC application,” Optik. 206: p. 164314. 2020. 45. M. I. A. Umar, V. Haris, and A. A. Umar, “The influence of MoSe2 coated onto Pt film to DSSC performance with the structure TiO2/Dye/LxMoSe2Pt (0≤ x≤ 5),” Materials Letters. 275: p. 128076. 2020. 46. E. Kouhestanian, S. A. Mozaffari, M. Ranjbar, and H. S. Amoli, “Enhancing the electron transfer process of TiO2-based DSSC using DC magnetron sputtered ZnO as an efficient alternative for blocking layer,” Organic Electronics. 86: p. 105915. 2020. 47. W. Yang, C. Hsu, Y. Liu, R. Hsu, T. Lu, and C. Hu, “The structure and photocatalytic activity of TiO2 thin films deposited by dc magnetron sputtering,” Superlattices and Microstructures. 52(6): p. 1131-1142. 2012. 48. T. N. Kumar, S. Yuvaraj, P. Kavitha, V. Sudhakar, K. Krishnamoorthy, and B. Neppolian, “Aromatic amine passivated TiO2 for dye-sensitized solar cells (DSSC) with~ 9.8% efficiency,” Solar Energy. 201: p. 965-971. 2020. 49. S. S. Mali and C. K. Hong, “pin/nip type planar hybrid structure of highly efficient perovskite solar cells towards improved air stability: synthetic strategies and the role of p-type hole transport layer (HTL) and n-type electron transport layer (ETL) metal oxides,” Nanoscale. 8(20): p. 10528-10540. 2016. 50. J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale. 3(10): p. 4088-4093. 2011. 51. S. Guarnera, A. Abate, W. Zhang, J. M. Foster, G. Richardson, A. Petrozza, and H. J. Snaith, “Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer layer,” The journal of physical chemistry letters. 6(3): p. 432-437. 2015. 52. D. Liu and T. L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,” Nature photonics. 8(2): p. 133-138. 2014. 53. J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, and G. Li, “Moisture assisted perovskite film growth for high performance solar cells,” Applied Physics Letters. 105(18): p. 183902. 2014. 54. J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-j. Kim, A. Sarkar, and M. K. Nazeeruddin, “Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nature photonics. 7(6): p. 486-491. 2013. 55. N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “Compositional engineering of perovskite materials for high-performance solar cells,” Nature. 517(7535): p. 476. 2015. 56. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells,” Nature materials. 13(9): p. 897. 2014. 57. M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature. 501(7467): p. 395-398. 2013. 58. J. H. Heo, H. J. Han, D. Kim, T. K. Ahn, and S. H. Im, “Hysteresis-less inverted CH 3 NH 3 PbI 3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency,” Energy Environmental Science. 8(5): p. 1602-1608. 2015. 59. W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange,” Science. 348(6240): p. 1234-1237. 2015. 60. J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen, and T. C. Wen, “CH3NH3PbI3 perovskite/fullerene planar‐heterojunction hybrid solar cells,” Advanced Materials. 25(27): p. 3727-3732. 2013. 61. L. Meng, J. You, T.-F. Guo, and Y. Yang, “Recent advances in the inverted planar structure of perovskite solar cells,” Accounts of chemical research. 49(1): p. 155-165. 2016. 62. S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T. C. Sum, and Y. M. Lam, “The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells,” Energy Environmental Science. 7(1): p. 399-407. 2014. 63. J. You, Z. Hong, Y. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, and H. Zhou, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS nano. 8(2): p. 1674-1680. 2014. 64. Y. Zhao and K. Zhu, “CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells,” The Journal of Physical Chemistry C. 118(18): p. 9412-9418. 2014. 65. C. Zuo and L. Ding, “An 80.11% FF record achieved for perovskite solar cells by using the NH 4 Cl additive,” Nanoscale. 6(17): p. 9935-9938. 2014. 66. Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environmental Science. 7(8): p. 2619-2623. 2014. 67. B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D'Haen, L. D'Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, and E. Mosconi, “Intrinsic thermal instability of methylammonium lead trihalide perovskite,” Advanced Energy Materials. 5(15): p. 1500477. 2015. 68. C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, “Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties,” Inorganic chemistry. 52(15): p. 9019-9038. 2013. 69. A. J. Pearson, G. E. Eperon, P. E. Hopkinson, S. N. Habisreutinger, J. T. W. Wang, H. J. Snaith, and N. C. Greenham, “Oxygen degradation in mesoporous Al2O3/CH3NH3PbI3‐xClx perovskite solar cells: kinetics and mechanisms,” Advanced Energy Materials. 6(13): p. 1600014. 2016. 70. Z. H. Bakr, Q. Wali, A. Fakharuddin, L. Schmidt-Mende, T. M. Brown, and R. Jose, “Advances in hole transport materials engineering for stable and efficient perovskite solar cells,” Nano Energy. 34: p. 271-305. 2017. 71. G. Niu, X. Guo, and L. Wang, “Review of recent progress in chemical stability of perovskite solar cells,” Journal of Materials Chemistry A. 3(17): p. 8970-8980. 2015. 72. H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Interface engineering of highly efficient perovskite solar cells,” Science. 345(6196): p. 542-546. 2014. 73. G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. van Franeker, D. W. DeQuilettes, S. Pathak, R. J. Sutton, G. Grancini, and D. S. Ginger, “The importance of moisture in hybrid lead halide perovskite thin film fabrication,” ACS nano. 9(9): p. 9380-9393. 2015. 74. M. K. Gangishetty, R. W. Scott, and T. L. Kelly, “Effect of relative humidity on crystal growth, device performance and hysteresis in planar heterojunction perovskite solar cells,” Nanoscale. 8(12): p. 6300-6307. 2016. 75. B. Hailegnaw, S. Kirmayer, E. Edri, G. Hodes, and D. Cahen, “Rain on methylammonium lead iodide based perovskites: possible environmental effects of perovskite solar cells,” The journal of physical chemistry letters. 6(9): p. 1543-1547. 2015. 76. G. Niu, W. Li, F. Meng, L. Wang, H. Dong, and Y. Qiu, “Study on the stability of CH 3 NH 3 PbI 3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells,” Journal of Materials Chemistry A. 2(3): p. 705-710. 2014. 77. W. Zhang, J. Xiong, J. Li, and W. A. Daoud, “Mechanism of water effect on enhancing the photovoltaic performance of triple-cation hybrid perovskite solar cells,” ACS applied materials interfaces. 11(13): p. 12699-12708. 2019. 78. J. Zhang, T. Song, Z. Zhang, K. Ding, F. Huang, and B. Sun, “Layered ultrathin PbI 2 single crystals for high sensitivity flexible photodetectors,” Journal of Materials Chemistry C. 3(17): p. 4402-4406. 2015. 79. M. Saliba, J.-P. Correa-Baena, C. M. Wolff, M. Stolterfoht, N. Phung, S. Albrecht, D. Neher, and A. Abate, “How to Make over 20% Efficient Perovskite Solar Cells in Regular (n–i–p) and Inverted (p–i–n) Architectures,” Chemistry of Materials. 30(13): p. 4193-4201. 2018. 80. B.-T. Liu, J.-H. Yang, and Y.-S. Huang, “Highly efficient perovskite solar cells fabricated under a 70% relative humidity atmosphere,” Journal of Power Sources. 500: p. 229985. 2021. 81. S. Ahmad, H. Abbas, M. B. Khan, V. Nagal, A. Hafiz, and Z. H. Khan, “ZnO for stable and efficient perovskite bulk heterojunction solar cell fabricated under ambient atmosphere,” Solar Energy. 216: p. 164-170. 2021. 82. M. F. M. Noh, N. A. Arzaee, I. N. N. Mumthas, A. Aadenan, F. H. Saifuddin, A. D. A.-G. Syakirin, M. Abd Mutalib, M. Q. Lokman, M. A. Ibrahim, and M. A. M. Teridi, “Superiority of two-step deposition over one-step deposition for perovskite solar cells processed in high humidity atmosphere,” Optical Materials. 118: p. 111288. 2021. 83. S. Y. Kim, K. Hong, K. Kim, H. K. Yu, W.-K. Kim, and J.-L. Lee, Effect of N 2, Ar, and O 2 plasma treatments on surface properties of metals. 2008, American Institute of Physics. 84. S. Baskaran, Structure and regulation of yeast glycogen synthase. 2010. 85. T. Sherkar, C. Momblona, and L. Gil-Escrig, “J. ávila, M. Sessolo, HJ Bolink and LJA Koster,” ACS Energy Lett. 2: p. 1214. 2017. 86. H.-S. Kim, A. Hagfeldt, and N.-G. Park, “Morphological and compositional progress in halide perovskite solar cells,” Chemical Communications. 55(9): p. 1192-1200. 2019. 87. G. Eperon and V. Burlakov, “M; Docampo, P.; Goriely, A.; Snaith, HJHJ Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells,” Adv. Funct. Mater. 24: p. 151-157. 2014. 88. S. N. Habisreutinger, T. Leijtens, G. E. Eperon, S. D. Stranks, R. J. Nicholas, and H. J. Snaith, “Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells,” Nano letters. 14(10): p. 5561-5568. 2014. 89. A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, and Y. Yang, “A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability,” science. 345(6194): p. 295-298. 2014. 90. J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. Van Schilfgaarde, and A. Walsh, “Atomistic origins of high-performance in hybrid halide perovskite solar cells,” Nano letters. 14(5): p. 2584-2590. 2014. 91. I. Deretzis, A. Alberti, G. Pellegrino, E. Smecca, F. Giannazzo, N. Sakai, T. Miyasaka, and A. La Magna, “Atomistic origins of CH3NH3PbI3 degradation to PbI2 in vacuum,” Applied Physics Letters. 106(13): p. 131904. 2015. 92. H. Zheng, G. Liu, X. Chen, B. Zhang, A. Alsaedi, T. Hayat, X. Pan, and S. Dai, “High-performance mixed-dimensional perovskite solar cells with enhanced stability against humidity, heat and UV light,” Journal of Materials Chemistry A. 6(41): p. 20233-20241. 2018. 93. Z. Song, S. C. Watthage, A. B. Phillips, B. L. Tompkins, R. J. Ellingson, and M. J. Heben, “Impact of processing temperature and composition on the formation of methylammonium lead iodide perovskites,” Chemistry of Materials. 27(13): p. 4612-4619. 2015. 94. Y. Tidhar, E. Edri, H. Weissman, D. Zohar, G. Hodes, D. Cahen, B. Rybtchinski, and S. Kirmayer, “Crystallization of methyl ammonium lead halide perovskites: implications for photovoltaic applications,” Journal of the American Chemical Society. 136(38): p. 13249-13256. 2014. 95. S. Sarkar, H. Pradeepa, G. Nayak, L. Marty, J. Renard, J. Coraux, N. Bendiab, V. Bouchiat, J. K. Basu, and A. Bid, “Evolution of inter-layer coupling in artificially stacked bilayer MoS 2,” Nanoscale Advances. 1(11): p. 4398-4405. 2019. 96. X. Xue, W. Ji, Z. Mao, H. Mao, Y. Wang, X. Wang, W. Ruan, B. Zhao, and J. R. Lombardi, “Raman investigation of nanosized TiO2: effect of crystallite size and quantum confinement,” The Journal of Physical Chemistry C. 116(15): p. 8792-8797. 2012. 97. W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, and M. A. Alam, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science. 347(6221): p. 522-525. 2015. 98. M. Ralaiarisoa, Y. Busby, J. Frisch, I. Salzmann, J.-J. Pireaux, and N. Koch, “Correlation of annealing time with crystal structure, composition, and electronic properties of CH 3 NH 3 PbI 3− x Cl x mixed-halide perovskite films,” Physical Chemistry Chemical Physics. 19(1): p. 828-836. 2017. 99. Q. Wang, Y. Shao, H. Xie, L. Lyu, X. Liu, Y. Gao, and J. Huang, “Qualifying composition dependent p and n self-doping in CH3NH3PbI3,” Applied Physics Letters. 105(16): p. 163508. 2014. 100. G. R. Kumar, A. D. Savariraj, S. Karthick, S. Selvam, B. Balamuralitharan, H.-J. Kim, K. K. Viswanathan, M. Vijaykumar, and K. Prabakar, “Phase transition kinetics and surface binding states of methylammonium lead iodide perovskite,” Physical Chemistry Chemical Physics. 18(10): p. 7284-7292. 2016. 101. T.-W. Ng, C.-Y. Chan, M.-F. Lo, Z. Q. Guan, and C.-S. Lee, “Formation chemistry of perovskites with mixed iodide/chloride content and the implications on charge transport properties,” Journal of Materials Chemistry A. 3(17): p. 9081-9085. 2015. 102. C. Rocks, V. Svrcek, P. Maguire, and D. Mariotti, “Understanding surface chemistry during MAPbI 3 spray deposition and its effect on photovoltaic performance,” Journal of Materials Chemistry C. 5(4): p. 902-916. 2017. 103. J.-H. Lee, N. C. Bristowe, P. D. Bristowe, and A. K. Cheetham, “Role of hydrogen-bonding and its interplay with octahedral tilting in CH 3 NH 3 PbI 3,” Chemical Communications. 51(29): p. 6434-6437. 2015. 104. H. Xie, X. Liu, L. Lyu, D. Niu, Q. Wang, J. Huang, and Y. Gao, “Effects of precursor ratios and annealing on electronic structure and surface composition of CH3NH3PbI3 perovskite films,” The Journal of Physical Chemistry C. 120(1): p. 215-220. 2016. 105. K. Wang, B. Ecker, and Y. Gao, “Photoemission Studies on the Environmental Stability of Thermal Evaporated MAPbI3 Thin Films and MAPbBr3 Single Crystals,” Energies. 14(7): p. 2005. 2021. 106. W. Huang, J. S. Manser, P. V. Kamat, and S. Ptasinska, “Evolution of chemical composition, morphology, and photovoltaic efficiency of CH3NH3PbI3 perovskite under ambient conditions,” Chemistry of Materials. 28(1): p. 303-311. 2016. 107. S. Rondon and P. M. Sherwood, “Core level and valence band spectra of PbO by XPS,” Surface Science Spectra. 5(2): p. 97-103. 1998.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80918-
dc.description.abstract高效率鈣鈦礦太陽能電池 (PSCs) 需要使用可控制氣氛的充氮手套箱中製造。 本研究我們使用預熱 MAPbI3 前體液溫度,並在相對濕度 (60-70%) 與電池有效活性面積 ≈ 0.09 cm2 的反式混合鹵化物 CH3NH3PbI3 PSCs ,探討元件性能與鈣鈦礦薄膜之間的相關性。我們研究利用一種用於生產高質量的有機-無機鈣鈦礦薄膜和太陽能電池,並耐濕且通用的製造方法。由於採用了預熱方法,所以大大抑制了濕度的影響。使用預熱MAPbI3 前驅液可以增加對可見光波長的吸收,研究發現當結構中存在少量 H2O 時,它可以填充 MAPbI3 薄膜中的晶界; XRD分析表明改變預熱溫度可以減少中間相。使用簡單的鈣鈦礦前驅體預熱方法,在大氣環境製程 PSCs 的光電轉換效率 (PCE) 達到 7.72%。 第二部分我們將預熱鈣鈦礦前驅液90 oC,進行不同退火時間處理,來改變鈣鈦礦晶粒尺寸,有助於在環境大氣氣氛中,ITO基底上獲得均勻穩定的鈣鈦礦薄膜。最終我們得出結論,這些結果將在大氣條件下實現更好的 MAPbI3 薄膜均勻性,並提供了一種可行的方法。這一研究努力是為了理解 MAPbI3 薄膜的物理特性,並揭開在大氣環境中製備 MAPbI3 薄膜,並進行進一步的元件開發,獲得在大氣條件下製造的高效鈣鈦礦太陽能電池,而無需具有良好穩定性的有機空穴及導電材料。最終我們獲得太陽光電轉換效率為10.7%。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:21:54Z (GMT). No. of bitstreams: 1
U0001-1609202122073600.pdf: 8496889 bytes, checksum: 5c3e9ea7e06465810af6610165dd2a8f (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES viii LIST OF TABLES xii Chapter 1 Introduction 1 1.1 Motivation and Objective 4 Chapter 2 The Formats of the Thesis 5 2.1 Evolution and Principles of Solar Cells 5 2.1.1 First generation solar cells 6 2.1.2 Second generation solar cells 7 2.1.3 Third generation solar cells 9 2.1.4 Characteristics of Solar Cells 11 2.1.5 Current-Voltage measurements 13 2.2 Fundamentals of Perovskite Solar Cells 15 2.2.1 The development from Dye-Sensitized Solar Cells (DSSCs) 15 2.2.2 Organometal halide perovskites and working mechanism 20 2.3 Causes of Instability in Perovskite Solar Cells Research 21 2.3.1 The Influence of water into the perovskite precursor 22 2.3.2 The Relative humidity on the preparation of perovskite films 23 Chapter 3 Experimental procedure 25 3.1 Experiment process 26 3.1.1 Pre-treatment of ITO glass substrate 28 3.1.2 Hole transport layer 28 3.1.3 Active layer 29 3.1.4 Electron transport layer 29 3.1.5 Sputtering Pt electrode layer 29 3.2 Experimental chemicals 30 3.3 Experimental equipment and Sample characterization 31 3.3.1 Oxygen plasma treatment 31 3.3.2 Field-emission scanning electron microscope 32 3.3.3 X-Ray Diffraction 34 3.3.4 XPS photoelectron spectroscopy 36 3.3.5 UV-VIS Spectrophotometry 38 3.3.6 PL Spectrophotometry 40 3.3.7 I-V Curve Current density-voltage characteristics 42 Chapter 4 Results and Discussion 44 4.1 Different preheating precursor temperatures affects the MAPbI3 films 44 4.1.1 Effect of preheating temperature on perovskite films morphology 44 4.1.2 The influence of preheating temperature on the optical properties of perovskite films 51 4.1.3 I–V characteristics of the solar cells stored in different preheating temperatures 55 4.2 Different annealing time affects the MAPbI3 films 58 4.2.1 Effect of annealing time on perovskite films morphology 58 4.2.2 The influence of annealing time on the optical properties of perovskite films 65 4.2.3 Using XPS analysis to influence MAPbI3 films at different annealing time 67 4.2.4 I–V characteristics of the solar cells stored in different annealing time 83 Chapter 5 Conclusion and Future work 86 REFERENCE 88
dc.language.isoen
dc.subject大氣製程zh_TW
dc.subject鈣鈦礦zh_TW
dc.subject太陽能電池zh_TW
dc.subject預熱溫度zh_TW
dc.subject光電轉換效率zh_TW
dc.subject高濕度zh_TW
dc.subjectMAPbI3en
dc.subjectHigh Humidityen
dc.subjectPreheatingen
dc.subjectAir preparationen
dc.subjectPerovskite solar cellsen
dc.title預熱前驅液及改變退火時間在大氣下製備鈣鈦礦太陽能電池zh_TW
dc.title"Pre-heating and annealing time for Ambient-Air-Processed, Phase-Stable MAPbI3 in Perovskite Solar Cells"en
dc.date.schoolyear109-2
dc.description.degree博士
dc.contributor.oralexamcommittee李岳聯(Hsin-Tsai Liu),張合(Chih-Yang Tseng),蔡孟霖,許春耀
dc.subject.keyword鈣鈦礦,太陽能電池,預熱溫度,光電轉換效率,高濕度,大氣製程,zh_TW
dc.subject.keywordAir preparation,Perovskite solar cells,MAPbI3,Preheating,High Humidity,en
dc.relation.page95
dc.identifier.doi10.6342/NTU202103222
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-09-22
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
U0001-1609202122073600.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
8.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved