請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80916完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃正雅(Cheng-Ya Huang) | |
| dc.contributor.author | Yueh-Hsia Chen | en |
| dc.contributor.author | 陳月霞 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:21:49Z | - |
| dc.date.available | 2022-02-15 | |
| dc.date.available | 2022-11-24T03:21:49Z | - |
| dc.date.copyright | 2022-02-15 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-02-08 | |
| dc.identifier.citation | 1. Hung LC, Kung PT, Lung CH, et al. Assessment of the Risk of Oral Cancer Incidence in A High-Risk Population and Establishment of A Predictive Model for Oral Cancer Incidence Using A Population-Based Cohort in Taiwan. Int J Environ Res Public Health. Jan 20 2020;17(2)doi:10.3390/ijerph17020665 2. Chang TS, Chang CM, Ho HC, et al. Impact of young age on the prognosis for oral cancer: a population-based study in Taiwan. PloS One. 2013;8(9):e75855. doi:10.1371/journal.pone.0075855 3. Liao CT, Wang HM, Hsieh LL, et al. Higher distant failure in young age tongue cancer patients. Oral Oncol. Aug 2006;42(7):718-25. doi:10.1016/j.oraloncology.2005.11.012 4. Cheng PT, Hao SP, Lin YH, Yeh AR. Objective comparison of shoulder dysfunction after three neck dissection techniques. Ann Otol Rhinol Laryngol. Aug 2000;109(8 Pt 1):761-6. doi:10.1177/000348940010900811 5. Harish K. Neck dissections: radical to conservative. World J Surg Oncol. Apr 18 2005;3(1):21. doi:10.1186/1477-7819-3-21 6. Robbins KT, Clayman G, Levine PA, et al. Neck dissection classification update: revisions proposed by the American Head and Neck Society and the American Academy of Otolaryngology-Head and Neck Surgery. Arch Otolaryngol Head Neck Surg. Jul 2002;128(7):751-8. doi:10.1001/archotol.128.7.751 7. Ewing MR, Martin H. Disability following radical neck dissection; an assessment based on the postoperative evaluation of 100 patients. Cancer. Sep 1952;5(5):873-83. 8. Gane EM, Michaleff ZA, Cottrell MA, et al. Prevalence, incidence, and risk factors for shoulder and neck dysfunction after neck dissection: A systematic review. Eur J Surg Oncol. Jul 2017;43(7):1199-1218. doi:10.1016/j.ejso.2016.10.026 9. Erisen L, Basel B, Irdesel J, et al. Shoulder function after accessory nerve-sparing neck dissections. Head Neck. Nov 2004;26(11):967-71. doi:10.1002/hed.20095 10. Carr SD, Bowyer D, Cox G. Upper limb dysfunction following selective neck dissection: a retrospective questionnaire study. Head Neck. Jun 2009;31(6):789-92. doi:10.1002/hed.21018 11. Dijkstra PU, van Wilgen PC, Buijs RP, et al. Incidence of shoulder pain after neck dissection: a clinical explorative study for risk factors. Head Neck. Nov 2001;23(11):947-53. doi:10.1002/hed.1137 12. Orhan KS, Demirel T, Baslo B, et al. Spinal accessory nerve function after neck dissections. J Laryngol Otol. Jan 2007;121(1):44-8. doi:10.1017/S0022215106002052 13. Didesch JT, Tang P. Anatomy, Etiology, and Management of Scapular Winging. J Hand Surg Am. Apr 2019;44(4):321-330. doi:10.1016/j.jhsa.2018.08.008 14. Kibler WB, Ludewig PM, McClure PW, Michener LA, Bak K, Sciascia AD. Clinical implications of scapular dyskinesis in shoulder injury: the 2013 consensus statement from the 'Scapular Summit'. Br J Sports Med. Sep 2013;47(14):877-85. doi:10.1136/bjsports-2013-092425 15. Ellenbecker TS, Cools A. Rehabilitation of shoulder impingement syndrome and rotator cuff injuries: an evidence-based review. Br J Sports Med. Apr 2010;44(5):319-27. doi:10.1136/bjsm.2009.058875 16. Johnson G, Bogduk N, Nowitzke A, House D. Anatomy and actions of the trapezius muscle. Clin Biomech (Bristol, Avon). Jan 1994;9(1):44-50. doi:10.1016/0268-0033(94)90057-4 17. Ebaugh D, Finley M. Muscle activation associated with scapular function and dysfunction. Disorders of the scapula and their role in shoulder injury. Springer; 2017:25-33. 18. Goldstein DP, Ringash J, Bissada E, et al. Scoping review of the literature on shoulder impairments and disability after neck dissection. Head Neck. Feb 2014;36(2):299-308. doi:10.1002/hed.23243 19. Kelley MJ, Kane TE, Leggin BG. Spinal accessory nerve palsy: associated signs and symptoms. J Orthop Sports Phys Ther. Feb 2008;38(2):78-86. doi:10.2519/jospt.2008.2454 20. Roren A, Fayad F, Poiraudeau S, et al. Specific scapular kinematic patterns to differentiate two forms of dynamic scapular winging. Clin Biomech (Bristol, Avon). Oct 2013;28(8):941-7. doi:10.1016/j.clinbiomech.2013.09.003 21. Gane EM, McPhail SM, Hatton AL, Panizza BJ, O'Leary SP. The relationship between physical impairments, quality of life and disability of the neck and upper limb in patients following neck dissection. J Cancer Surviv. Oct 2018;12(5):619-631. doi:10.1007/s11764-018-0697-5 22. Stuiver MM, van Wilgen CP, de Boer EM, et al. Impact of shoulder complaints after neck dissection on shoulder disability and quality of life. Otolaryngol Head Neck Surg. Jul 2008;139(1):32-9. doi:10.1016/j.otohns.2008.03.019 23. Eickmeyer SM, Walczak CK, Myers KB, Lindstrom DR, Layde P, Campbell BH. Quality of life, shoulder range of motion, and spinal accessory nerve status in 5-year survivors of head and neck cancer. PM R. Dec 2014;6(12):1073-80. doi:10.1016/j.pmrj.2014.05.015 24. McGarvey AC, Osmotherly PG, Hoffman GR, Chiarelli PE. Impact of neck dissection on scapular muscle function: a case-controlled electromyographic study. Arch Phys Med Rehabil. Jan 2013;94(1):113-9. doi:10.1016/j.apmr.2012.07.017 25. McGarvey AC, Osmotherly PG, Hoffman GR, Chiarelli PE. Scapular muscle exercises following neck dissection surgery for head and neck cancer: a comparative electromyographic study. Phys Ther. Jun 2013;93(6):786-97. doi:10.2522/ptj.20120385 26. Lima LP, Amar A, Lehn CN. Spinal accessory nerve neuropathy following neck dissection. Braz J Otorhinolaryngol. Mar-Apr 2011;77(2):259-62. doi:10.1590/s1808-86942011000200017 27. Baskurt Z, Baskurt F, Gelecek N, Ozkan MH. The effectiveness of scapular stabilization exercise in the patients with subacromial impingement syndrome. J Back Musculoskelet Rehabil. 2011;24(3):173-9. doi:10.3233/BMR-2011-0291 28. Struyf F, Nijs J, Mollekens S, et al. Scapular-focused treatment in patients with shoulder impingement syndrome: a randomized clinical trial. Clin Rheumatol. Jan 2013;32(1):73-85. doi:10.1007/s10067-012-2093-2 29. Park SI, Choi YK, Lee JH, Kim YM. Effects of shoulder stabilization exercise on pain and functional recovery of shoulder impingement syndrome patients. J Phys Ther Sci. Nov 2013;25(11):1359-62. doi:10.1589/jpts.25.1359 30. Moezy A, Sepehrifar S, Solaymani Dodaran M. The effects of scapular stabilization based exercise therapy on pain, posture, flexibility and shoulder mobility in patients with shoulder impingement syndrome: a controlled randomized clinical trial. Med J Islam Repub Iran. 2014;28:87. 31. Turgut E, Duzgun I, Baltaci G. Effects of Scapular Stabilization Exercise Training on Scapular Kinematics, Disability, and Pain in Subacromial Impingement: A Randomized Controlled Trial. Arch Phys Med Rehabil. Oct 2017;98(10):1915-1923 e3. doi:10.1016/j.apmr.2017.05.023 32. Nowotny J, Kasten P, Kopkow C, Biewener A, Mauch F. Evaluation of a New Exercise Program in the Treatment of Scapular Dyskinesis. Int J Sports Med. Oct 2018;39(10):782-790. doi:10.1055/a-0608-4584 33. Worsley P, Warner M, Mottram S, et al. Motor control retraining exercises for shoulder impingement: effects on function, muscle activation, and biomechanics in young adults. J Shoulder Elbow Surg. Apr 2013;22(4):e11-9. doi:10.1016/j.jse.2012.06.010 34. Roy JS, Moffet H, Hebert LJ, Lirette R. Effect of motor control and strengthening exercises on shoulder function in persons with impingement syndrome: a single-subject study design. Man Ther. Apr 2009;14(2):180-8. doi:10.1016/j.math.2008.01.010 35. De Mey K, Danneels LA, Cagnie B, Huyghe L, Seyns E, Cools AM. Conscious correction of scapular orientation in overhead athletes performing selected shoulder rehabilitation exercises: the effect on trapezius muscle activation measured by surface electromyography. J Orthop Sports Phys Ther. Jan 2013;43(1):3-10. doi:10.2519/jospt.2013.4283 36. Hotta GH, Santos AL, McQuade KJ, de Oliveira AS. Scapular-focused exercise treatment protocol for shoulder impingement symptoms: Three-dimensional scapular kinematics analysis. Clin Biomech (Bristol, Avon). Jan 2018;51:76-81. doi:10.1016/j.clinbiomech.2017.12.005 37. Jones SA, Pamukoff DN, Mauntel TC, Blackburn JT, Myers JB. The Influence of Verbal and Tactile Feedback on Electromyographic Amplitude of the Shoulder Musculature During Common Therapeutic Exercises. J Sport Rehabil. Sep 1 2018;27(5):424-430. doi:10.1123/jsr.2016-0233 38. McNeely ML, Campbell K, Ospina M, et al. Exercise interventions for upper-limb dysfunction due to breast cancer treatment. Cochrane Database Syst Rev. Jun 16 2010;(6):CD005211. doi:10.1002/14651858.CD005211.pub2 39. Wong CK, Levine WN, Deo K, et al. Natural history of frozen shoulder: fact or fiction? A systematic review. Physiotherapy. Mar 2017;103(1):40-47. doi:10.1016/j.physio.2016.05.009 40. Carvalho AP, Vital FM, Soares BG. Exercise interventions for shoulder dysfunction in patients treated for head and neck cancer. Cochrane Database Syst Rev. Apr 18 2012;4(4):CD008693. doi:10.1002/14651858.CD008693.pub2 41. McGarvey AC, Hoffman GR, Osmotherly PG, Chiarelli PE. Maximizing shoulder function after accessory nerve injury and neck dissection surgery: A multicenter randomized controlled trial. Head Neck. Jul 2015;37(7):1022-31. doi:10.1002/hed.23712 42. Chen YH, Liang WA, Hsu CY, et al. Functional outcomes and quality of life after a 6-month early intervention program for oral cancer survivors: a single-arm clinical trial. PeerJ. 2018;6:e4419. doi:10.7717/peerj.4419 43. Robbins KT, Shaha AR, Medina JE, et al. Consensus statement on the classification and terminology of neck dissection. Arch Otolaryngol Head Neck Surg. May 2008;134(5):536-8. doi:10.1001/archotol.134.5.536 44. Kowalski LP, Sanabria A. Elective neck dissection in oral carcinoma: a critical review of the evidence. Acta Otorhinolaryngol Ital. Jun 2007;27(3):113-7. 45. Ferlito A, Silver CE, Rinaldo A. Elective management of the neck in oral cavity squamous carcinoma: current concepts supported by prospective studies. Br J Oral Maxillofac Surg. Jan 2009;47(1):5-9. doi:10.1016/j.bjoms.2008.06.001 46. Meininger AK, Figuerres BF, Goldberg BA. Scapular winging: an update. J Am Acad Orthop Surg. Aug 2011;19(8):453-62. doi:10.5435/00124635-201108000-00001 47. Drake RL, Gray H, Mitchell AWM, Vogl W. Gray's anatomy for students / Richard L. Drake, A. Wayne Vogl, Adam W.M. Mitchell ; illustrations by Richard Tibbetts and Paul Richardson ; photographs by Ansell Horn. Fourth edition. ed. Anatomy for students. Elsevier; 2020. 48. Camargo PR, Neumann DA. Kinesiologic considerations for targeting activation of scapulothoracic muscles - part 2: trapezius. Braz J Phys Ther. Nov - Dec 2019;23(6):467-475. doi:10.1016/j.bjpt.2019.01.011 49. Neumann DA, Kelly ER, Kiefer CL, Martens K, Grosz CM. Kinesiology of the musculoskeletal system : foundations for rehabilitation 3rd ed. Elsevier; 2017. 50. Ludewig PM, Lawrence RL. Mechanics of the scapula in shoulder function and dysfunction. Disorders of the scapula and their role in shoulder injury. Springer; 2017:7-23. 51. Lefevre-Colau MM, Nguyen C, Palazzo C, et al. Recent advances in kinematics of the shoulder complex in healthy people. Ann Phys Rehabil Med. Jan 2018;61(1):56-59. doi:10.1016/j.rehab.2017.09.001 52. Wu G, van der Helm FC, Veeger HE, et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion--Part II: shoulder, elbow, wrist and hand. J Biomech. May 2005;38(5):981-992. doi:10.1016/j.jbiomech.2004.05.042 53. McClure PW, Michener LA, Sennett BJ, Karduna AR. Direct 3-dimensional measurement of scapular kinematics during dynamic movements in vivo. J Shoulder Elbow Surg. May-Jun 2001;10(3):269-77. doi:10.1067/mse.2001.112954 54. Ludewig PM, Phadke V, Braman JP, Hassett DR, Cieminski CJ, LaPrade RF. Motion of the shoulder complex during multiplanar humeral elevation. J Bone Joint Surg Am. Feb 2009;91(2):378-89. doi:10.2106/JBJS.G.01483 55. Ludewig PM, Reynolds JF. The association of scapular kinematics and glenohumeral joint pathologies. J Orthop Sports Phys Ther. Feb 2009;39(2):90-104. doi:10.2519/jospt.2009.2808 56. Lawrence RL, Braman JP, Laprade RF, Ludewig PM. Comparison of 3-dimensional shoulder complex kinematics in individuals with and without shoulder pain, part 1: sternoclavicular, acromioclavicular, and scapulothoracic joints. J Orthop Sports Phys Ther. Sep 2014;44(9):636-45, A1-8. doi:10.2519/jospt.2014.5339 57. Lefevre-Colau MM, Nguyen C, Palazzo C, et al. Kinematic patterns in normal and degenerative shoulders. Part II: Review of 3-D scapular kinematic patterns in patients with shoulder pain, and clinical implications. Ann Phys Rehabil Med. Jan 2018;61(1):46-53. doi:10.1016/j.rehab.2017.09.002 58. Teece RM, Lunden JB, Lloyd AS, Kaiser AP, Cieminski CJ, Ludewig PM. Three-dimensional acromioclavicular joint motions during elevation of the arm. J Orthop Sports Phys Ther. Apr 2008;38(4):181-90. doi:10.2519/jospt.2008.2386 59. Neumann DA, Camargo PR. Kinesiologic considerations for targeting activation of scapulothoracic muscles - part 1: serratus anterior. Braz J Phys Ther. Nov - Dec 2019;23(6):459-466. doi:10.1016/j.bjpt.2019.01.008 60. Wadsworth DJ, Bullock-Saxton JE. Recruitment patterns of the scapular rotator muscles in freestyle swimmers with subacromial impingement. Int J Sports Med. Nov 1997;18(8):618-24. doi:10.1055/s-2007-972692 61. Phadke V, Ludewig PM. Study of the scapular muscle latency and deactivation time in people with and without shoulder impingement. J Electromyogr Kinesiol. Apr 2013;23(2):469-75. doi:10.1016/j.jelekin.2012.10.004 62. Mendez-Rebolledo G, Gatica-Rojas V, Martinez-Valdes E, Xie HB. The recruitment order of scapular muscles depends on the characteristics of the postural task. J Electromyogr Kinesiol. Dec 2016;31:40-47. doi:10.1016/j.jelekin.2016.09.001 63. Cools AM, Declercq GA, Cambier DC, Mahieu NN, Witvrouw EE. Trapezius activity and intramuscular balance during isokinetic exercise in overhead athletes with impingement symptoms. Scand J Med Sci Sports. Feb 2007;17(1):25-33. doi:10.1111/j.1600-0838.2006.00570.x 64. Kibler WB, Sciascia A. Current concepts: scapular dyskinesis. Br J Sports Med. Apr 2010;44(5):300-5. doi:10.1136/bjsm.2009.058834 65. Struyf F, Cagnie B, Cools A, et al. Scapulothoracic muscle activity and recruitment timing in patients with shoulder impingement symptoms and glenohumeral instability. J Electromyogr Kinesiol. Apr 2014;24(2):277-84. doi:10.1016/j.jelekin.2013.12.002 66. Cools AM, Dewitte V, Lanszweert F, et al. Rehabilitation of scapular muscle balance: which exercises to prescribe? Am J Sports Med. Oct 2007;35(10):1744-51. doi:10.1177/0363546507303560 67. Borstad JD, Ludewig PM. Comparison of scapular kinematics between elevation and lowering of the arm in the scapular plane. Clin Biomech (Bristol, Avon). Nov-Dec 2002;17(9-10):650-9. doi:10.1016/s0268-0033(02)00136-5 68. Plummer HA, Sum JC, Pozzi F, Varghese R, Michener LA. Observational Scapular Dyskinesis: Known-Groups Validity in Patients With and Without Shoulder Pain. J Orthop Sports Phys Ther. Aug 2017;47(8):530-537. doi:10.2519/jospt.2017.7268 69. Hickey D, Solvig V, Cavalheri V, Harrold M, McKenna L. Scapular dyskinesis increases the risk of future shoulder pain by 43% in asymptomatic athletes: a systematic review and meta-analysis. Br J Sports Med. Jan 2018;52(2):102-110. doi:10.1136/bjsports-2017-097559 70. Salerno G, Cavaliere M, Foglia A, et al. The 11th nerve syndrome in functional neck dissection. Laryngoscope. Jul 2002;112(7 Pt 1):1299-307. doi:10.1097/00005537-200207000-00029 71. Kibler WB, Uhl TL, Maddux JW, Brooks PV, Zeller B, McMullen J. Qualitative clinical evaluation of scapular dysfunction: a reliability study. J Shoulder Elbow Surg. Nov-Dec 2002;11(6):550-6. doi:10.1067/mse.2002.126766 72. Huang TS, Huang HY, Wang TG, Tsai YS, Lin JJ. Comprehensive classification test of scapular dyskinesis: A reliability study. Man Ther. Jun 2015;20(3):427-32. doi:10.1016/j.math.2014.10.017 73. Huang TS, Ou HL, Huang CY, Lin JJ. Specific kinematics and associated muscle activation in individuals with scapular dyskinesis. J Shoulder Elbow Surg. Aug 2015;24(8):1227-34. doi:10.1016/j.jse.2014.12.022 74. Kim DH, Cho YJ, Tiel RL, Kline DG. Surgical outcomes of 111 spinal accessory nerve injuries. Neurosurgery. Nov 2003;53(5):1106-12; discussion 1102-3. doi:10.1227/01.neu.0000089058.82201.3d 75. McNeely ML, Parliament M, Courneya KS, et al. A pilot study of a randomized controlled trial to evaluate the effects of progressive resistance exercise training on shoulder dysfunction caused by spinal accessory neurapraxia/neurectomy in head and neck cancer survivors. Head Neck. Jun 2004;26(6):518-30. doi:10.1002/hed.20010 76. McNeely ML, Parliament MB, Seikaly H, et al. Effect of exercise on upper extremity pain and dysfunction in head and neck cancer survivors: a randomized controlled trial. Cancer. Jul 1 2008;113(1):214-22. doi:10.1002/cncr.23536 77. Gane EM, McPhail SM, Hatton AL, Panizza BJ, O'Leary SP. Neck and Shoulder Motor Function following Neck Dissection: A Comparison with Healthy Control Subjects. Otolaryngol Head Neck Surg. Jun 2019;160(6):1009-1018. doi:10.1177/0194599818821885 78. Tsuji T, Tanuma A, Onitsuka T, et al. Electromyographic findings after different selective neck dissections. Laryngoscope. Feb 2007;117(2):319-22. doi:10.1097/01.mlg.0000249781.20989.5c 79. Cheng YJ, Tsai MH, Chiang CJ, et al. Adjuvant radiotherapy after curative surgery for oral cavity squamous cell carcinoma and treatment effect of timing and duration on outcome-A Taiwan Cancer Registry national database analysis. Cancer Med. Jun 14 2018;doi:10.1002/cam4.1611 80. Gallagher KK, Sacco AG, Lee JS, et al. Association Between Multimodality Neck Treatment and Work and Leisure Impairment: A Disease-Specific Measure to Assess Both Impairment and Rehabilitation After Neck Dissection. JAMA Otolaryngol Head Neck Surg. Oct 2015;141(10):888-93. doi:10.1001/jamaoto.2015.2049 81. Sun Q, Guo S, Wang D, Fang QG. Shoulder Dysfunction After Radiotherapy in Surgically and Nonsurgically Treated Necks: A Prospective Study. Medicine (Baltimore). Jul 2015;94(30):e1229. doi:10.1097/MD.0000000000001229 82. Chepeha DB, Taylor RJ, Chepeha JC, et al. Functional assessment using Constant's Shoulder Scale after modified radical and selective neck dissection. Head Neck. May 2002;24(5):432-6. doi:10.1002/hed.10067 83. Chen AM, Wang PC, Daly ME, et al. Dose--volume modeling of brachial plexus-associated neuropathy after radiation therapy for head-and-neck cancer: findings from a prospective screening protocol. Int J Radiat Oncol Biol Phys. Mar 15 2014;88(4):771-7. doi:10.1016/j.ijrobp.2013.11.244 84. Sheikh A, Shallwani H, Ghaffar S. Postoperative shoulder function after different types of neck dissection in head and neck cancer. Ear Nose Throat J. Apr-May 2014;93(4-5):E21-6. 85. Harris AS. Do patients benefit from physiotherapy for shoulder dysfunction following neck dissection? A systematic review. J Laryngol Otol. Jan 22 2020:1-5. doi:10.1017/S0022215120000079 86. Lin JJ, Hanten WP, Olson SL, et al. Functional activities characteristics of shoulder complex movements: Exploration with a 3-D electromagnetic measurement system. J Rehabil Res Dev. Mar-Apr 2005;42(2):199-210. doi:10.1682/jrrd.2004.04.0045 87. Ludewig PM, Cook TM. Alterations in shoulder kinematics and associated muscle activity in people with symptoms of shoulder impingement. Phys Ther. Mar 2000;80(3):276-91. 88. McClure P, Greenberg E, Kareha S. Evaluation and management of scapular dysfunction. Sports Med Arthrosc Rev. Mar 2012;20(1):39-48. doi:10.1097/JSA.0b013e31824716a8 89. Kibler WB. The role of the scapula in athletic shoulder function. Am J Sports Med. Mar-Apr 1998;26(2):325-37. doi:10.1177/03635465980260022801 90. Odom CJ, Taylor AB, Hurd CE, Denegar CR. Measurement of scapular asymetry and assessment of shoulder dysfunction using the Lateral Scapular Slide Test: a reliability and validity study. Phys Ther. Feb 2001;81(2):799-809. doi:10.1093/ptj/81.2.799 91. Shadmehr A, Bagheri H, Ansari NN, Sarafraz H. The reliability measurements of lateral scapular slide test at three different degrees of shoulder joint abduction. Br J Sports Med. Mar 2010;44(4):289-93. doi:10.1136/bjsm.2008.050872 92. Struyf F, Nijs J, De Coninck K, Giunta M, Mottram S, Meeusen R. Clinical assessment of scapular positioning in musicians: an intertester reliability study. J Athl Train. Sep-Oct 2009;44(5):519-26. doi:10.4085/1062-6050-44.5.519 93. Shadmehr A, Azarsa MH, Jalaie S. Inter- and intrarater reliability of modified lateral scapular slide test in healthy athletic men. Biomed Res Int. 2014;2014:384149. doi:10.1155/2014/384149 94. Shadmehr A, Sarafraz H, Heidari Blooki M, Jalaie SH, Morais N. Reliability, agreement, and diagnostic accuracy of the Modified Lateral Scapular Slide test. Man Ther. Aug 2016;24:18-24. doi:10.1016/j.math.2016.04.004 95. Uhl TL, Kibler WB, Gecewich B, Tripp BL. Evaluation of clinical assessment methods for scapular dyskinesis. Arthroscopy. Nov 2009;25(11):1240-8. doi:10.1016/j.arthro.2009.06.007 96. McClure P, Tate AR, Kareha S, Irwin D, Zlupko E. A clinical method for identifying scapular dyskinesis, part 1: reliability. J Athl Train. Mar-Apr 2009;44(2):160-4. doi:10.4085/1062-6050-44.2.160 97. Tate AR, McClure P, Kareha S, Irwin D, Barbe MF. A clinical method for identifying scapular dyskinesis, part 2: validity. J Athl Train. Mar-Apr 2009;44(2):165-73. doi:10.4085/1062-6050-44.2.165 98. Rabin A, Irrgang JJ, Fitzgerald GK, Eubanks A. The intertester reliability of the Scapular Assistance Test. J Orthop Sports Phys Ther. Sep 2006;36(9):653-60. doi:10.2519/jospt.2006.2234 99. Tate AR, McClure PW, Kareha S, Irwin D. Effect of the Scapula Reposition Test on shoulder impingement symptoms and elevation strength in overhead athletes. J Orthop Sports Phys Ther. Jan 2008;38(1):4-11. doi:10.2519/jospt.2008.2616 100. Fernandez-Matias R, Gallardo-Zamora P, Sanchez-Aguilera CL, Mardones-Varela H, Gallego-Izquierdo T, Pecos-Martin D. Reliability of the Scapula Reposition Test in Subjects with Rotator Cuff Tendinopathy and Scapular Dyskinesis. J Clin Med. Dec 28 2019;9(1)doi:10.3390/jcm9010080 101. McGarvey AC, Chiarelli PE, Osmotherly PG, Hoffman GR. Physiotherapy for accessory nerve shoulder dysfunction following neck dissection surgery: a literature review. Head Neck. Feb 2011;33(2):274-80. doi:10.1002/hed.21366 102. Cricchio M, Frazer C. Scapulothoracic and scapulohumeral exercises: a narrative review of electromyographic studies. J Hand Ther. Oct-Dec 2011;24(4):322-33; quiz 334. doi:10.1016/j.jht.2011.06.001 103. Andersen CH, Zebis MK, Saervoll C, et al. Scapular muscle activity from selected strengthening exercises performed at low and high intensities. J Strength Cond Res. Sep 2012;26(9):2408-16. doi:10.1519/JSC.0b013e31823f8d24 104. Schory A, Bidinger E, Wolf J, Murray L. A Systematic Review of the Exercises That Produce Optimal Muscle Ratios of the Scapular Stabilizers in Normal Shoulders. Int J Sports Phys Ther. Jun 2016;11(3):321-36. 105. Myers JB, Lephart SM. The role of the sensorimotor system in the athletic shoulder. J Athl Train. Jul 2000;35(3):351-63. 106. Myers JB, Wassinger CA, Lephart SM. Sensorimotor contribution to shoulder stability: effect of injury and rehabilitation. Man Ther. Aug 2006;11(3):197-201. doi:10.1016/j.math.2006.04.002 107. Zhang C, Li Y, Zhong Y, Feng C, Zhang Z, Wang C. Effectiveness of motor control exercise on non-specific chronic low back pain, disability and core muscle morphological characteristics: a meta-analysis of randomized controlled trials. Eur J Phys Rehabil Med. Oct 2021;57(5):793-806. doi:10.23736/S1973-9087.21.06555-2 108. Saragiotto BT, Maher CG, Yamato TP, et al. Motor control exercise for chronic non-specific low-back pain. Cochrane Database Syst Rev. Jan 8 2016;(1):CD012004. doi:10.1002/14651858.CD012004 109. Franca FJR, Callegari B, Ramos LAV, et al. Motor Control Training Compared With Transcutaneous Electrical Nerve Stimulation in Patients With Disc Herniation With Associated Radiculopathy: A Randomized Controlled Trial. Am J Phys Med Rehabil. Mar 2019;98(3):207-214. doi:10.1097/PHM.0000000000001048 110. Paolucci T, Cardarola A, Colonnelli P, et al. Give me a kiss! An integrative rehabilitative training program with motor imagery and mirror therapy for recovery of facial palsy. Eur J Phys Rehabil Med. Feb 2020;56(1):58-67. doi:10.23736/S1973-9087.19.05757-5 111. Lustenhouwer R, Cameron IGM, van Alfen N, et al. Altered sensorimotor representations after recovery from peripheral nerve damage in neuralgic amyotrophy. Cortex. Jun 2020;127:180-190. doi:10.1016/j.cortex.2020.02.011 112. Cools AM, Witvrouw EE, De Clercq GA, et al. Scapular muscle recruitment pattern: electromyographic response of the trapezius muscle to sudden shoulder movement before and after a fatiguing exercise. J Orthop Sports Phys Ther. May 2002;32(5):221-9. doi:10.2519/jospt.2002.32.5.221 113. Cools AM, Witvrouw EE, Declercq GA, Danneels LA, Cambier DC. Scapular muscle recruitment patterns: trapezius muscle latency with and without impingement symptoms. Am J Sports Med. Jul-Aug 2003;31(4):542-9. doi:10.1177/03635465030310041101 114. Mottram SL. Dynamic stability of the scapula. Man Ther. Aug 1997;2(3):123-131. doi:10.1054/math.1997.0292 115. Mottram SL, Woledge RC, Morrissey D. Motion analysis study of a scapular orientation exercise and subjects' ability to learn the exercise. Man Ther. Feb 2009;14(1):13-8. doi:10.1016/j.math.2007.07.008 116. Williams CK, Carnahan H. Motor learning perspectives on haptic training for the upper extremities. IEEE Trans Haptics. Apr-Jun 2014;7(2):240-50. doi:10.1109/TOH.2013.2297102 117. Sigrist R, Rauter G, Riener R, Wolf P. Augmented visual, auditory, haptic, and multimodal feedback in motor learning: a review. Psychon Bull Rev. Feb 2013;20(1):21-53. doi:10.3758/s13423-012-0333-8 118. Huang TS, Du WY, Wang TG, et al. Progressive conscious control of scapular orientation with video feedback has improvement in muscle balance ratio in patients with scapular dyskinesis: a randomized controlled trial. J Shoulder Elbow Surg. Aug 2018;27(8):1407-1414. doi:10.1016/j.jse.2018.04.006 119. Weon JH, Kwon OY, Cynn HS, Lee WH, Kim TH, Yi CH. Real-time visual feedback can be used to activate scapular upward rotators in people with scapular winging: an experimental study. J Physiother. 2011;57(2):101-7. doi:10.1016/S1836-9553(11)70020-0 120. Giggins OM, Persson UM, Caulfield B. Biofeedback in rehabilitation. J Neuroeng Rehabil. Jun 18 2013;10:60. doi:10.1186/1743-0003-10-60 121. San Juan JG, Gunderson SR, Kane-Ronning K, Suprak DN. Scapular kinematic is altered after electromyography biofeedback training. J Biomech. Jun 14 2016;49(9):1881-1886. doi:10.1016/j.jbiomech.2016.04.036 122. Huang HY, Lin JJ, Guo YL, Wang WT, Chen YJ. EMG biofeedback effectiveness to alter muscle activity pattern and scapular kinematics in subjects with and without shoulder impingement. J Electromyogr Kinesiol. Feb 2013;23(1):267-74. doi:10.1016/j.jelekin.2012.09.007 123. Holtermann A, Roeleveld K, Mork PJ, et al. Selective activation of neuromuscular compartments within the human trapezius muscle. J Electromyogr Kinesiol. Oct 2009;19(5):896-902. doi:10.1016/j.jelekin.2008.04.016 124. Holtermann A, Mork PJ, Andersen LL, Olsen HB, Sogaard K. The use of EMG biofeedback for learning of selective activation of intra-muscular parts within the serratus anterior muscle: a novel approach for rehabilitation of scapular muscle imbalance. J Electromyogr Kinesiol. Apr 2010;20(2):359-65. doi:10.1016/j.jelekin.2009.02.009 125. Carvalho AP, Vital FM, Soares BG. Exercise interventions for shoulder dysfunction in patients treated for head and neck cancer. Cochrane Database Syst Rev. 2012;4:CD008693. doi:10.1002/14651858.CD008693.pub2 126. Sun Q, Guo S, Wang D, Xu N, Fang QG. Shoulder Dysfunction After Radiotherapy in Surgically and Nonsurgically Treated Necks: A Prospective Study. Medicine (Baltimore). Jul 2015;94(30):e1229. doi:10.1097/MD.0000000000001229 127. Shumway-Cook A. Motor control : theory and practical applications. 2nd ed. Lippincott Williams Wilkins; 2001. 128. Chan JY, Wong ST, Chan RC, Wei WI. Shoulder Dysfunction after Selective Neck Dissection in Recurrent Nasopharyngeal Carcinoma. Otolaryngol Head Neck Surg. Sep 2015;153(3):379-84. doi:10.1177/0194599815590589 129. Norkin CC, White DJ. Measurement of joint motion: a guide to goniometry. FA Davis; 2016. 130. Beretta-Piccoli M, Cescon C, Barbero M, D'Antona G. Reliability of surface electromyography in estimating muscle fiber conduction velocity: A systematic review. J Electromyogr Kinesiol. Oct 2019;48:53-68. doi:10.1016/j.jelekin.2019.06.005 131. McIntosh KC, Gabriel DA. Reliability of a simple method for determining muscle fiber conduction velocity. Muscle Nerve. Feb 2012;45(2):257-65. doi:10.1002/mus.22268 132. Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. Oct 2000;10(5):361-74. doi:10.1016/s1050-6411(00)00027-4 133. Ekstrom RA, Soderberg GL, Donatelli RA. Normalization procedures using maximum voluntary isometric contractions for the serratus anterior and trapezius muscles during surface EMG analysis. J Electromyogr Kinesiol. Aug 2005;15(4):418-28. doi:10.1016/j.jelekin.2004.09.006 134. Zeger SL, Liang KY. Longitudinal data analysis for discrete and continuous outcomes. Biometrics. Mar 1986;42(1):121-30. 135. Birhanu T, Molenberghs G, Sotto C, Kenward MG. Doubly robust and multiple-imputation-based generalized estimating equations. J Biopharm Stat. Mar 2011;21(2):202-25. doi:10.1080/10543406.2011.550096 136. Paik M. The generalized estimating equation approach when data are not missing completely at random. Journal of the American Statistical Association. 1997;92:1320-1329. 137. Ma Y, Mazumdar M, Memtsoudis SG. Beyond repeated-measures analysis of variance: advanced statistical methods for the analysis of longitudinal data in anesthesia research. Reg Anesth Pain Med. Jan-Feb 2012;37(1):99-105. doi:10.1097/AAP.0b013e31823ebc74 138. Struyf F, Nijs J, Mollekens S, et al. Scapular-focused treatment in patients with shoulder impingement syndrome: a randomized clinical trial. Clin Rheumatol. 2013;32(1):73‐85. doi:10.1007/s10067-012-2093-2 139. Muir SW, Corea CL, Beaupre L. Evaluating change in clinical status: reliability and measures of agreement for the assessment of glenohumeral range of motion. N Am J Sports Phys Ther. Sep 2010;5(3):98-110. 140. Frikha M, Chaari N, Elghoul Y, Mohamed-Ali HH, Zinkovsky AV. Effects of Combined Versus Singular Verbal or Haptic Feedback on Acquisition, Retention, Difficulty, and Competence Perceptions in Motor Learning. Percept Mot Skills. Aug 2019;126(4):713-732. doi:10.1177/0031512519842759 141. Ludewig PM, Cook TM, Nawoczenski DA. Three-dimensional scapular orientation and muscle activity at selected positions of humeral elevation. J Orthop Sports Phys Ther. Aug 1996;24(2):57-65. doi:10.2519/jospt.1996.24.2.57 142. Del Balso C, Cafarelli E. Adaptations in the activation of human skeletal muscle induced by short-term isometric resistance training. J Appl Physiol (1985). Jul 2007;103(1):402-11. doi:10.1152/japplphysiol.00477.2006 143. Gabriel DA, Kamen G, Frost G. Neural adaptations to resistive exercise: mechanisms and recommendations for training practices. Sports Med. 2006;36(2):133-49. doi:10.2165/00007256-200636020-00004 144. Camargo PR, Alburquerque-Sendin F, Avila MA, Haik MN, Vieira A, Salvini TF. Effects of Stretching and Strengthening Exercises, With and Without Manual Therapy, on Scapular Kinematics, Function, and Pain in Individuals With Shoulder Impingement: A Randomized Controlled Trial. J Orthop Sports Phys Ther. Dec 2015;45(12):984-97. doi:10.2519/jospt.2015.5939 145. Sale DG. Neural adaptation to resistance training. Med Sci Sports Exerc. Oct 1988;20(5 Suppl):S135-45. doi:10.1249/00005768-198810001-00009 146. Kibler WB, Sciascia AD. Disorders of the Scapula and their role in shoulder injury. Spring……… | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80916 | - |
| dc.description.abstract | "背景:近幾年,我國口腔癌發生率佔世界之冠,且為頭頸癌中最常見之部位。脊副神經肩功能障礙是口腔癌患者接受頸部廓清術後最常見的併發症,會引發肩胛運動障礙並影響生活品質。過去研究指出肩胛訓練運動可改善肩部夾擠症候群患者的肩關節活動度、肩胛肌肉力量、肩胛骨位置。此外,肩胛訓練運動結合動作控制訓練除了提升肩關節活動度與肩胛肌肉力量之外,還可改善肩胛肌肉徵召方式,減輕肩痛和失能。由於脊副神經損傷會造成斜方肌功能障礙,無法正常穩定肩胛骨,有別於肩部夾擠症候群因為上斜方肌與其他肩胛肌肉力量間不平衡所造成的肩胛運動障礙,目前尚無研究將肩胛訓練運動結合動作控制之治療模式應用於口腔癌患者頸部廓清術後,因脊副神經肩功能障礙所造成之肩胛運動障礙。本論文目的在探討肩胛訓練運動結合不同動作控制訓練之技巧,對脊副神經功能障礙之口腔癌患者肩胛功能之訓練效果。本論文包含三個實驗:實驗一目的為探討肩胛訓練運動中給予治療師回饋對肩胛動作控制的短期訓練成效;實驗二目的為探討肩胛訓練運動中患者使用內在意識控制的長期訓練成效;實驗三目的為探討肩胛訓練運動合併表面肌電圖之視覺回饋的長期訓練成效。 方法:實驗一招募38位口腔癌患者,隨機分配至動作控制組與一般運動組,二組皆在頸部廓清術後平均12天,開始為期一個月的治療介入。治療內容包含肩關節一般性物理治療介入(止痛電刺激、肩關節活動)和肩胛訓練運動,而動作控制組於肩胛訓練運動中,治療師會給予肩胛動作控制之回饋。於介入前和介入後,記錄受試者的肩關節疼痛度、肩關節外展活動度、肩胛肌肉最大自主等長收縮與執行肩胛動作時之肌電訊號。實驗二招募36位口腔癌患者,隨機分配至動作控制組與一般運動組,二組在經過頸部廓清術後,立即進行三個月的治療介入。動作控制組於肩胛訓練運動中強調患者本身對肩胛骨的意識控制。於介入前、介入後一個月與介入後三個月進行評估,評估參數包含:肩關節疼痛度、肩關節外展活動度、上肢功能自陳量表、肩胛關節肌肉最大等長收縮肌力與肌電訊號、執行肩胛動作時之肌電訊號。實驗三共徵招24位口腔癌患者,隨機分配至動作控制肌電回饋組與動作控制組,介入時間為三個月。二組都給予肩關節一般性物理治療介入(止痛電刺激、肩關節活動)、肩胛訓練運動和肩胛動作控制訓練,而動作控制肌電回饋組在動作控制訓練時給予斜方肌肌電反應之視覺回饋,而動作控制組則無給予肌電回饋。於介入前、介入後三個月進行評估,評估參數包含:肩關節疼痛度、肩關節外展活動度、肩胛位置、上肢功能自陳量表,以及上斜方肌、中斜方肌和下斜方肌最大等長收縮肌力和肌電訊號,以及肩關節外展向心和離心收縮之肌電訊號。 結果:實驗一,介入一個月後,二組肩關節疼痛皆降低,肩胛肌肉於最大自主等長收縮時,肌電訊號強度皆增加。然肩關節外展活動度僅有動作控制組增加(95% CI 3.80 ~ 20.51, p=0.004),且在執行負重聳肩動作時(拿1公斤啞鈴),動作控制組的上斜方肌肌電強度下降(95% CI: -33.06 ~ -1.29, p=0.034),一般運動組則無改變。此外,執行肩部平行內收與屈曲動作時,動作控制組的前鋸肌肌電強度降低(95% CI: -29.73~ -27.68, p<0.001),而一般運動組反而增加(95% CI: 28.16 ~ 30.05, p<0.001)。實驗二,介入三個月後,二組除了肩關節疼痛度和上肢功能外,其餘結果皆呈顯著進步。然而,動作控制組的進步程度較一般運動組多,於三個月時,動作控制組之肩關節外展活動度較一般運動組多19度(95% CI: 10 ~ 29, p<0.001)、上斜方肌肌力介入前後共進步11牛頓(95% CI: 2 ~ 20, p=0.021),生活品質也在介入後有明顯進步(95% CI: 4 ~ 33, p=0.011)。另外,執行肩部平行內收與屈曲動作時,一般運動組之前鋸肌肌電強度較動作控制組高(95% CI 7 to 205, p=0.037)。實驗三,介入3個月後,動作控制肌電回饋組顯著改善雙側肩胛對稱性,在雙手下垂、插腰及肩外展下,二側對稱性分別比動作控制組增加1.0公分(95% CI:-1.6 ~ -0.4, p=0.001)、0.5公分(95 % CI:-0.9 ~ 0, p=0.040)和1.1公分(95% CI:-1.8 ~ -0.3, p=0.004)。二組肩關節疼痛皆無顯著改變,動作控制肌電回饋組肩關節外展活動度進步23度(95% CI: 14 ~ 31, p<0.001),而動作控制組進步15度(95 % CI:6 ~ 24, p<0.001)。二組皆增加上斜方肌和中斜方肌之最大等長收縮肌力,然只有動作控制肌電回饋組在介入後顯著增加下斜方肌肌力和上肢功能,且於手臂抬高和放下過程中,上斜方肌和中斜方肌肌電強度降低。 結論:整合實驗一、二、三之結果,於臨床上,建議口腔癌病人在頸部廓清術後,以動作控制加上肩胛訓練運動進行早期動作介入,可有效促進肩關節活動度和減少肩胛肌肉代償之效果。此外,在肩胛訓練運動訓練中,肌電回饋訓練動作控制比單純只有動作控制更能提升雙側肩胛骨對稱性以增加肩胛控制穩定程度,提升肩胛肌肉效能與上肢功能。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:21:49Z (GMT). No. of bitstreams: 1 U0001-0502202215245700.pdf: 13574605 bytes, checksum: cc431d30ebd96c50f6cad48f9ee48e79 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 中文摘要 iii Abstract v Table of Contents viii List of Tables x List of Figures xi List of Appendix xii CHAPTER 1 Introduction 1 1.1 Background 1 1.2 Study purposes 3 1.3 Hypotheses 5 CHAPTER 2 Review of the Literature 6 2.1 Scapular kinematics and scapular dyskinesis 6 2.2 Evaluations of scapular dyskinesis 14 2.3 Interventions for scapular dyskinesis 16 CHAPTER 3 Experiment 1: Short-term training effects (1 month) of motor-control training integrating into scapular-focused exercises with extrinsic feedback from a physical therapist 23 3.1 Introduction 23 3.2 Methods 25 3.3 Results 30 3.4 Discussion 32 3.5 Conclusions 37 CHAPTER 4 Experiment 2: Long-term training effects (3 months) of motor-control training integrating into scapular-focused exercises with inherent feedback through conscious correction of scapular orientation by patients themselves 39 4.1 Introduction 39 4.2 Methods 41 4.3 Results 46 4.4 Discussion 49 4.5 Conclusions 53 CHAPTER 5 Experiment 3: Long-term training effects (3 months) of motor-control training integrating into scapular-focused exercises with EMG biofeedback 54 5.1 Introduction 54 5.2 Methods 55 5.3 Results 60 5.4 Discussion 62 5.5 Conclusions 65 CHAPTER 6 General discussion and conclusions 67 6.1 General discussion 67 6.2 Conclusions 70 References 72 | |
| dc.language.iso | en | |
| dc.subject | 口腔癌 | zh_TW |
| dc.subject | 頸部廓清術 | zh_TW |
| dc.subject | 動作控制 | zh_TW |
| dc.subject | 脊副神經 | zh_TW |
| dc.subject | 肩胛骨運動異常 | zh_TW |
| dc.subject | 肩胛訓練運動 | zh_TW |
| dc.subject | 肌電回饋 | zh_TW |
| dc.subject | scapular-focused exercises | en |
| dc.subject | EMG biofeedback | en |
| dc.subject | scapular dyskinesis | en |
| dc.subject | accessory nerve | en |
| dc.subject | neck dissection | en |
| dc.subject | motor control | en |
| dc.subject | oral cancer | en |
| dc.title | 動作控制訓練對頸部廓清術後之肩胛運動障礙治療效果 | zh_TW |
| dc.title | Motor-Control Training on Scapular Dyskinesis in Patients with Neck Dissection | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.author-orcid | 0000-0002-5363-4600 | |
| dc.contributor.oralexamcommittee | 林有德(Chien-Yu Chen),林居正(Ping-Lang Yen),周立偉(Pei-Li Sun),陳譽仁(Mei-Chun Lo) | |
| dc.subject.keyword | 動作控制,肩胛訓練運動,口腔癌,頸部廓清術,脊副神經,肩胛骨運動異常,肌電回饋, | zh_TW |
| dc.subject.keyword | motor control,scapular-focused exercises,oral cancer,neck dissection,accessory nerve,scapular dyskinesis,EMG biofeedback, | en |
| dc.relation.page | 160 | |
| dc.identifier.doi | 10.6342/NTU202200287 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-02-09 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 物理治療學研究所 | zh_TW |
| 顯示於系所單位: | 物理治療學系所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0502202215245700.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 13.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
